De Neys argues that assigning exclusive capacities to automatic (i.e., intuitive, system 1) versus controlled (i.e., deliberate, system 2) processes is unsupportable in current dual-process frameworks and unsupported by evidence. Dismissing such exclusivity, however, is premature and based on a limited sampling of psychological research. In particular, the dual implicit process model (DIPM; March, Gaertner, & Olson, Reference March, Gaertner and Olson2018a, Reference March, Gaertner and Olson2018b) details how automatic threat processing is fundamentally distinct from automatic valence processing and deliberate processing. According to the DIPM, a neural architecture that facilitates survival evolved to preferentially process immediate survival threats relative to other negatively and positively valenced stimuli. Such preferential processing manifests as faster and stronger perceptual, physiological, and behavioral reactions to physically threatening stimuli. Because of the necessarily fast time course of those reactions, their functional utility could not be supported by deliberate (system 2) processing.
March, Gaertner, and Olson (Reference March, Gaertner and Olson2017) provided initial evidence of the exclusivity of automatic threat processing based on reactions to four categories of stimulus images: threatening (e.g., snarling predators, gunmen), negative (e.g., feces, wounded animals), positive (e.g., puppies, babies), and neutral (e.g., doorknobs, cups). Three studies presented those stimuli in visual search, eye-tracking, and startle-eyeblink paradigms. Consistent with the exclusivity of automatic threat processing, threatening stimuli (relative to the other stimuli) were detected faster, more frequent targets of initial eye-gaze, and elicited stronger startle-eyeblinks (with responses occurring between 200 and 1,000 ms). March, Gaertner, and Olson (Reference March, Gaertner and Olson2022) provided even stronger evidence of exclusivity by suboptimally presenting those stimuli below conscious perception at 15–21 ms in three additional studies. Despite participants being unable to describe what was presented (based on two pilot studies), threatening stimuli (relative to the other stimuli) elicited stronger skin-conductance and startle-eyeblinks and more negative downstream evaluations. Automatic threat processing (but neither automatic valence processing nor deliberate processing) evoked functional responses to stimuli below conscious perception. It would be a strange argument indeed to suggest that participants deliberately reasoned skin-conductance and startle-eyeblink to vary uniquely with images of survival threats that they were unable to describe.
The DIPM provides a theoretical rationale for the exclusivity of automatic threat processing and is empirically supported by evidence of such exclusivity. The DIPM, however, is just one example and there are others. In the arena of implicit social cognition, research indicates that automatic processes can commence immediately upon perception of a relevant object, render decisional and behavioral outputs within milliseconds, and return to baseline within a second or so, well before one might wager a guess about the price of a ball (Bargh & Ferguson, Reference Bargh and Ferguson2000; Fazio, Reference Fazio2007). In evaluative priming studies, a prime presented for 150 ms can facilitate categorization of a valence-congruent target, but its spreading activation effect dissipates within a second (Hermans, De Houwer, & Eelen, Reference Hermans, De Houwer and Eelen2001). At least in this context, system 1 culminates well before any deliberative decision making can occur, which might offer some insight into the “unequivocal threshold” problem posed by De Neys (target article). In contrast, to even understand the problem posed to a participant in a ratio bias task or a cognitive reflective task (CRT) problem takes several seconds. By then, system 2 is likely to be already up and running. Thus, the decision processes involved in the sorts of tasks De Neys focuses on are likely to miss the very early effects of system 1. By broadening the scope of dual-process models and research paradigms considered, De Neys would have realized that exclusivity is theoretically and empirically supported.
De Neys argues that assigning exclusive capacities to automatic (i.e., intuitive, system 1) versus controlled (i.e., deliberate, system 2) processes is unsupportable in current dual-process frameworks and unsupported by evidence. Dismissing such exclusivity, however, is premature and based on a limited sampling of psychological research. In particular, the dual implicit process model (DIPM; March, Gaertner, & Olson, Reference March, Gaertner and Olson2018a, Reference March, Gaertner and Olson2018b) details how automatic threat processing is fundamentally distinct from automatic valence processing and deliberate processing. According to the DIPM, a neural architecture that facilitates survival evolved to preferentially process immediate survival threats relative to other negatively and positively valenced stimuli. Such preferential processing manifests as faster and stronger perceptual, physiological, and behavioral reactions to physically threatening stimuli. Because of the necessarily fast time course of those reactions, their functional utility could not be supported by deliberate (system 2) processing.
March, Gaertner, and Olson (Reference March, Gaertner and Olson2017) provided initial evidence of the exclusivity of automatic threat processing based on reactions to four categories of stimulus images: threatening (e.g., snarling predators, gunmen), negative (e.g., feces, wounded animals), positive (e.g., puppies, babies), and neutral (e.g., doorknobs, cups). Three studies presented those stimuli in visual search, eye-tracking, and startle-eyeblink paradigms. Consistent with the exclusivity of automatic threat processing, threatening stimuli (relative to the other stimuli) were detected faster, more frequent targets of initial eye-gaze, and elicited stronger startle-eyeblinks (with responses occurring between 200 and 1,000 ms). March, Gaertner, and Olson (Reference March, Gaertner and Olson2022) provided even stronger evidence of exclusivity by suboptimally presenting those stimuli below conscious perception at 15–21 ms in three additional studies. Despite participants being unable to describe what was presented (based on two pilot studies), threatening stimuli (relative to the other stimuli) elicited stronger skin-conductance and startle-eyeblinks and more negative downstream evaluations. Automatic threat processing (but neither automatic valence processing nor deliberate processing) evoked functional responses to stimuli below conscious perception. It would be a strange argument indeed to suggest that participants deliberately reasoned skin-conductance and startle-eyeblink to vary uniquely with images of survival threats that they were unable to describe.
The DIPM provides a theoretical rationale for the exclusivity of automatic threat processing and is empirically supported by evidence of such exclusivity. The DIPM, however, is just one example and there are others. In the arena of implicit social cognition, research indicates that automatic processes can commence immediately upon perception of a relevant object, render decisional and behavioral outputs within milliseconds, and return to baseline within a second or so, well before one might wager a guess about the price of a ball (Bargh & Ferguson, Reference Bargh and Ferguson2000; Fazio, Reference Fazio2007). In evaluative priming studies, a prime presented for 150 ms can facilitate categorization of a valence-congruent target, but its spreading activation effect dissipates within a second (Hermans, De Houwer, & Eelen, Reference Hermans, De Houwer and Eelen2001). At least in this context, system 1 culminates well before any deliberative decision making can occur, which might offer some insight into the “unequivocal threshold” problem posed by De Neys (target article). In contrast, to even understand the problem posed to a participant in a ratio bias task or a cognitive reflective task (CRT) problem takes several seconds. By then, system 2 is likely to be already up and running. Thus, the decision processes involved in the sorts of tasks De Neys focuses on are likely to miss the very early effects of system 1. By broadening the scope of dual-process models and research paradigms considered, De Neys would have realized that exclusivity is theoretically and empirically supported.
Financial support
This research received no specific grant from any funding agency, commercial, or not-for-profit sectors.
Competing interest
None.