The Guliya ice cap, on the crest of the Kunlun Shan, central Asia, is an ideal site for acquiring ice cores for climate-change studies. Detailed analyses of the precipitation index (glacier accumulation) and the temperature proxy (δ18O) recorded in the Guliya ice core since 300 years BP show that precipitation correlates with temperature in this region. Climate conditions in the Guliya region since 300 years BP can be separated into three periods: warm and wet from AD 1690 to the end of the 18th century; cold and dry from the 19th century to the 1930s; and warm and wet again since the 1940s. During this period, the climate exhibits just two phases: warm/wet and cold/dry. Comparison of the temperatures and the precipitation recorded in the Guliya ice core shows that variations of temperature and precipitation in the region correlate quite well. However, changes in the precipitation regime appear to lag behind those of the temperature by 20–40 years. We believe this results from the larger heat capacity of the ocean relative to that of the land. Hence, ocean temperatures and corresponding evaporation rates change more slowly than do continental conditions. Additionally, however, positive feedback processes, such as increasing temperatures and precipitation improving vegetation, moisture retention and, hence, local convective precipitation probably play an important role. In this paper, we explain how the timescale of evolving vegetation and the feedback mechanism between precipitation and the temperature could help explain why the changes in precipitation lag those of temperature by 20–40 years over long periods. Taking this time lag into account, we should be able to predict future precipitation trends, based on observed temperature trends.