Published online by Cambridge University Press: 05 November 2009
Introduction
The ‘random walk’ model for simulation of viscous diffusion in discrete vortex clouds was first proposed by Chorin (1973) for application to high Reynolds number flows and has been widely used since. The principle involved is to subject all of the free vortex elements to small random displacements which produce a scatter equivalent to the diffusion of vorticity in the continuum which we are seeking to represent. Such flows are described by the Navier Stokes equations which may be expressed in the following vector form, highlighting the processes of convection and diffusion of the vorticity ω,
where q is the velocity vector and ∇2 the Laplacian operator. The third term, applicable only in three-dimensional flows represents the concentration of vorticity due to vortex filament stretching. Otherwise in two-dimensional flows, with which we are concerned here, the vector Navier-Stokes equation reduces to
Normalised by means of length and velocity scales ℓ and W∞ this may be written in the alternative dimensionless form
where the Reynolds number is defined by
For infinite Reynolds number (9.3) describes the convection of vorticity in in viscid flow, for which the technique of discrete vortex modelling was developed in Chapter 8. At the other end of the scale, for very low Reynolds number flow past an object of characteristic dimension ℓ, the viscous diffusion term on the right hand side (9.3) will predominate.
To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.