Skip to main content Accessibility help
×
  • Cited by 109
Publisher:
Cambridge University Press
Online publication date:
November 2009
Print publication year:
1991
Online ISBN:
9780511529542

Book description

This book deals with advanced fluid flow methods for design and analysis of engineering systems. Panel methods employing surface distributions of source and vortex singularities based on the solution of boundary integral equations have been extensively used for modelling external and internal aerodynamic flows. Part 1 describes the surface vorticity method and illustrates applications of this technique over a wide range of engineering problems in aerodynamics and turbo-machines, including lifting aerofoils and cascades, mixed-flow and rotating cascades for fans, pumps or turbines, meridional flows in turbo-machines, flow past axisymmetric bodies, ducts and ducted propellers or fans. Part 2 extends surface vorticity modelling to the fairly new CFM field of vortex dynamics or vortex cloud theory, including foundation chapters on convection and viscous diffusion by the random walk technique. Vortex cloud methods are developed, again from first principles, to deal with shear layers, boundary layers, periodic wakes, bluff-body flows, cascades and aerofoils including the use of stall control spoilers. A number of useful computer programs are included.

Refine List

Actions for selected content:

Select all | Deselect all
  • View selected items
  • Export citations
  • Download PDF (zip)
  • Save to Kindle
  • Save to Dropbox
  • Save to Google Drive

Save Search

You can save your searches here and later view and run them again in "My saved searches".

Please provide a title, maximum of 40 characters.
×

Contents

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Book summary page views

Total views: 0 *
Loading metrics...

* Views captured on Cambridge Core between #date#. This data will be updated every 24 hours.

Usage data cannot currently be displayed.