Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-16T18:26:01.900Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  22 September 2009

Robert DiSalle
Affiliation:
University of Western Ontario
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Understanding Space-Time
The Philosophical Development of Physics from Newton to Einstein
, pp. 163 - 170
Publisher: Cambridge University Press
Print publication year: 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barbour, J. and Pfister, H. (eds) (1995). Mach's Principle: From Newton's Bucket to Quantum Gravity. Einstein Studies, vol. 6. Boston: Birkhäuser.Google Scholar
Belot, G. and Earman, J. (2001). Pre-Socratic quantum gravity. In Physics Meets Philosophy at the Planck Scale, eds Callander, C. and Huggett, N.. Cambridge: Cambridge University Press, pp. 213–55.CrossRefGoogle Scholar
Ben-Menachem, Y. (2001). Convention: Poincaré and some of his critics. British Journal for the Philosophy of Science, 52, 471–513.CrossRefGoogle Scholar
Bishop, R. and Goldberg, S. (1980). Tensor Analysis on Manifolds. New York: Dover Publications.Google Scholar
Bolzano, B. (1817). Rein analytische Beweis des Lehrsatz. In B. Bolzano, Early Mathematical Works, 1781–1848, ed. Novy, L.. Prague: Institute of Slovak and General History, 1981.Google Scholar
Carnap, R. (1956).Empiricism, semantics, and ontology. In Meaning and Necessity.Chicago: University of Chicago Press, Supplement A, pp. 205–21.Google Scholar
Carnap, R. (1995). An Introduction to the Philosophy of Science. New York: Dover Publications (reprint).Google Scholar
Carrier, M. (1994). Geometric facts and geometric theory: Helmholtz and 20th-century philosophy of physical geometry. In Universalgenie Helmholtz: Rückblick nach 100 Jahren, ed. Kruger, L.. Berlin: Akademie-Verlag.CrossRefGoogle Scholar
Coffa, J. A. (1983). From geometry to tolerance: sources of conventionalism in the 19th century. In From Quarks to Quasars, ed. Colodny., R. G.Pittsburgh Studies in the Philosophy of Science, vol. X. Pittsburgh: University of Pittsburgh Press.Google Scholar
Coffa, J. A. (1991). The Semantic Tradition from Kant to Carnap. Cambridge: Cambridge University Press.
Demopoulos, W. (2000). On the origin and status of our conception of number. Notre Dame Journal of Formal Logic, 41, 210–26.Google Scholar
Demopoulos, W. (2003). On the rational reconstruction of our theoretical knowledge. British Journal for the Philosophy of Science, 54, 371–403.CrossRefGoogle Scholar
Descartes, R. (1983). The Principles of Philosophy, transl. Miller, V. R. and Miller, R. P.. Dordrecht: Reidel.Google Scholar
Dingler, H. (1934). H. Helmholtz und die Grundlagen der Geometrie. Zeitschrift für Physik, 90, 348–54.CrossRefGoogle Scholar
DiSalle, R. (1990). The “essential properties” of matter, space, and time. In Philosophical Perspectives on Newtonian Science, eds Bricker, P. and Hughes, R. I. G.. Cambridge, MA: MIT Press.Google Scholar
DiSalle, R. (1991). Conventionalism and the origins of the inertial frame concept. In PSA 1990: Proceedings of the 1990 Biennial Meeting of the Philosophy of Science Association. East Lansing: The Philosophy of Science Association.
DiSalle, R. (2002a). Newton's philosophical analysis of space and time. In The Cambridge Companion to Newton, eds Cohen, I. B. and Smith, G. E.. Cambridge: Cambridge University Press.Google Scholar
DiSalle, R. (2002b). Conventionalism and modern physics: a re-assessment. NoÛs, 36, 169–200.CrossRefGoogle Scholar
DiSalle, R. (2002c). Reconsidering Ernst Mach on space, time, and motion. In Reading Natural Philosophy: Essays in the History and Philosophy of Science and Mathematics to Honor Howard Stein on his 70th Birthday, ed. Malament, D.. Chicago: Open Court Press.Google Scholar
DiSalle, R. (2002d). Space and time: inertial frames. In The Stanford Encyclopedia of Philosophy, <http://plato.stanford.edu/archives/win2003/entries/spacetime-iframes/>.
DiSalle, R. (2006). Kant, Helmholtz, and the meaning of empiricism. In Kant's Legacy, eds Friedman, M. and Nordmann, A.. Cambridge, MA: MIT Press.Google Scholar
Earman, J. (1989). World Enough and Spacetime: Absolute and Relational Theories of Motion. Cambridge, MA: MIT Press.Google Scholar
Eddington, A. S. (1918). Report on the Relativity Theory of Gravitation. London: Fleetwood Press.Google Scholar
Eddington, A. S. (1920). Space, Time, and Gravitation. An Outline of General Relativity Theory. Cambridge: Cambridge University Press.Google Scholar
Eddington, A. S. (1923). The Mathematical Theory of Relativity. Cambridge: Cambridge University Press.Google Scholar
Ehlers, J. (1973a). The nature and structure of space-time. In The Physicist's Conception of Nature, ed. Mehra, J.. Dordrecht: Reidel, pp. 71–95.CrossRefGoogle Scholar
Ehlers, J. (1973b). A survey of general relativity theory. In Relativity, Astrophysics, and Cosmology, ed. Israel, W.. Dordrecht: Reidel.CrossRefGoogle Scholar
Einstein, A. (1905). Zur elektrodynamik bewegter Körper. Annalen der Physik, 17, 891–921.CrossRefGoogle Scholar
Einstein, A. (1911). On the influence of gravitation on the propagation of light. In The Principle of Relativity, eds Einstein, A., Lorentz, H. A., Minkowski, H. and Weyl, H., transl. Perrett, W. and Jeffery, G. B.. New York: Dover Books, 1952, pp. 97–108.Google Scholar
Einstein, A. (1916). Die Grundlage der allegemeinen Relativitätstheorie. Leipzig: Johann Ambrosius Barth. (Reprint from Annalen der Physik, (4) 49, 769–822.)
Einstein, A. (1917). Über die spezielle und die allgemeine Relativitätstheorie (Gemeinverständlich), 2nd edn. Braunschweig: Vieweg und Sohn.
Einstein, A. (1919). Was ist Relativitäts-Theorie? In The Collected Papers of Albert Einstein, vol. 7, eds Jansen, M., Shulmann, R., Illy, J., Lehner, C. and Buchwald, D.. Princeton, NJ: Princeton University Press, pp. 206–11.Google Scholar
Einstein, A. (1920). Grundgedanken und Methoden der Relativitätstheorie in ihrer Entwickelung dargestellt. In The Collected Papers of Albert Einstein, vol. 7, eds Jansen, M., Shulmann, R., Illy, J., Lehner, C. and Buchwald, D.. Princeton, NJ: Princeton University Press, pp. 212–49.Google Scholar
Einstein, A. (1922). The Meaning of Relativity. Princeton, NJ: Princeton University Press.
Einstein, A. (1949). Autobiographical notes. In Albert Einstein, Philosopher-Scientist, ed. Schilpp, P. A.. Chicago: Open Court, pp. 2–94.Google Scholar
Eisenstadt, J. (1989). The low-water mark of general relativity, 1925–1950. In Einstein and the History of General Relativity, Einstein Studies, vol. 1, eds Howard, D. and Stachel, J.. Boston: Birkhäuser, pp. 277–92.Google Scholar
Euler, L. (1748). Réflexions sur l'espace et le temps. Histoire de l'Academie Royale des sciences et belles lettres, 4, 324–33.Google Scholar
Euler, L. (1765). Theoria motus corporum solidorum. Rostock and Greifswald, 1765.Google Scholar
Flores, F. (1999). Einstein's theory of theories and types of theoretical explanation. International Studies in the Philosophy of Science, 13, 123–34.CrossRefGoogle Scholar
Fock, V. (1959). The Theory of Space, Time, and Gravitation, transl. Kemmer, N.. London: Pergamon Press.Google Scholar
Friedman, M. (1983). Foundations of Space-time Theories. Princeton, NJ: Princeton University Press.Google Scholar
Friedman, M. (1990). Kant and Newton: why gravity is essential to matter. In Philosophical Perspectives on Newtonian Science, eds Bricker, P. and Hughes, R. I. G.. Cambridge, MA: MIT Press.Google Scholar
Friedman, M. (1992). Kant and the Exact Sciences. Cambridge, MA: Harvard University Press.Google Scholar
Friedman, M. (1999a). Geometry, convention, and the relativized a priori: Reichenbach, Schlick, and Carnap. In Reconsidering Logical Positivism. Cambridge: Cambridge University Press, pp. 59–70.CrossRefGoogle Scholar
Friedman, M. (1999b). Poincaré's conventionalism and the logical positivists. In Reconsidering Logical Positivism. Cambridge: Cambridge University Press, pp. 71–86.CrossRefGoogle Scholar
Friedman, M. (1999c). Geometry, construction, and intuition in Kant and his successors. In Between Logic and Intuition: Essays in Honor of Charles Parsons, eds Scher, G. and Tieszen, R.. Cambridge: Cambridge University Press.Google Scholar
Friedman, M. (2002a). Geometry as a branch of physics: background and context for Einstein's “Geometry and Experience”. In Reading Natural Philosophy: Essays in the History and Philosophy of Science and Mathematics to Honor Howard Stein on his 70th Birthday, ed. Malament, D.. Chicago: Open Court Press.Google Scholar
Friedman, M. (2002b). The Dynamics of Reason: the 1999 Kant Lectures at Stanford University. Chicago: University of Chicago Press.
Galileo, (1632 [1996]). Dialogo Sopra I Due Massimi Sistemi del Mondo – Ptolemaico e Copernicano. Florence, 1632. Reprint, Milan: Oscar Mondadori.Google Scholar
Geroch, R. (1978). General Relativity from A to B. Chicago: University of Chicago Press.Google Scholar
Hall, A. R. and Hall, M. B. (eds) (1962). Unpublished Scientific Papers of Isaac Newton. Cambridge: Cambridge University Press.Google Scholar
Hawking, S. and Ellis, G. F. R. (1973). The Large-Scale Structure of Space-Time. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Helmholtz, H. (1868). Über die Thatsachen, die der Geometrie zum Grunde liegen. Nachrichten von der königlichen Gesellschaft der Wissenschaften zu Göttingen, 9, 193–221. Reprinted in Wissenschaftliche Abhandlungen, 2, 618–39.Google Scholar
Helmholtz, H. (1870). Ueber den Ursprung und die Bedeutung der geometrischen Axiome. In Vorträge und Reden, 2 vols. Braunschweig: Vieweg und Sohn, pp. 1–31.Google Scholar
Helmholtz, H. (1878). Die Thatsachen in der Wahrnehmung. In Vorträge und Reden, 2 vols. Braunschweig: Vieweg und Sohn, pp. 215–47.Google Scholar
Helmholtz, H. (1887). Zählen und Messen, erkenntnisstheoretische betrachtet. Wissenschaftliche Abhandlungen, vol. 3. Leipzig: J. A. Barth, pp. 356–91.Google Scholar
Helmholtz, H. (1921). Schriften zur Erkenntnistheorie, eds Hertz, P. and Schlick, M.. Berlin: Springer-Verlag.Google Scholar
Hughes, R. I. G. (1987). The Structure and Interpretation of Quantum Mechanics. Cambridge: Cambridge University Press.Google Scholar
Kant, I. (1764 [1911]). Untersuchung ueber die Deutlichkeit der Grundsaetze der naturlichen Theologie und der Moral (the “Prize Essay”). In Gesammelte Schriften. Akademie Ausgabe, Berlin: Georg Reimer, vol. 2, pp. 273–301.Google Scholar
Kant, I. (1768 [1911]). Von dem ersten Grunde des Unterschiedes der Gegenden im Raume. In Gesammelte Schriften. Akademie Ausgabe, Berlin: Georg Reimer, vol. 2, pp. 375–83.Google Scholar
Kant, I. (1770). De mundi sensibilis atque intelligibilis forma et principiis. In Gesammelte Schriften. Akademie Ausgabe, Berlin: Georg Reimer, vol. 2, pp. 385-419.Google Scholar
Kant, I. (1783). Prolegomena zu einer jeden künftigen Metaphysik die als Wissenschaft wird auftreten können. In Gesammelte Schriften. Akademie Ausgabe, Berlin: Georg Reimer, vol. 4.Google Scholar
Kant, I. (1786 [1911]). Metaphysische Anfangsgründe der Naturwissenschaft. In Gesammelte Schriften. Akademie Ausgabe, Berlin: Georg Reiner, vol. 4, pp. 465–565.Google Scholar
Kant, I. (1787 [1956]). Kritik der reinen Vernunft. Reprint, Berlin: Felix Meiner Verlag.Google Scholar
Klein, F. (1872). Vergleichende Betrachtungen über neuere geometrische Forschungen. Erlangen: A. Duchert.Google Scholar
Kretschmann, E. (1917). Ueber die physikalischen Sinn der Relativitätspostulaten. Annalen der Physik, (4) 53, 575-614.Google Scholar
Kuhn, T. (1970a). The Structure of Scientific Revolutions, 2nd edn. Chicago: University of Chicago Press.Google Scholar
Kuhn, T. (1970b). Logic of discovery or psychology of research? In Criticism and the Growth of Knowledge, eds Lakatos, I. and Musgrave, A.. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Kuhn, T. (1977). A function for thought-experiments. In The Essential Tension. Chicago: University of Chicago Press.Google Scholar
Lange, L. (1885). Ueber das Beharrungsgesetz. Berichte der Königlichen Sachsischen Gesellschaft der Wissenschaften zu Leipzig, Mathematisch-physische Classe, 37, 333–51.Google Scholar
Leibniz, G. W. (1694). Letter to C. Huygens. In Die mathematische Schriften von Gottfried Wilhelm Leibniz. Berlin, 1849–55. Reprint, Hildeshein: Georg Olms, vol. II, pp. 179–85.Google Scholar
Leibniz, G. W. (1695 [1960]). Systeme nouveau de la nature et de la communication des substances, aussi bien que l'union qu'il y a entre l'ame le corps. In Die philosophischen Schriften von Gottfried Wilhelm Leibnitz. Berlin, 1875–90. Reprint, Hildeshein: Georg Olms, vol. IV, pp. 477–87.Google Scholar
Leibniz, G. W. (1699). Letter to B. de Volder. In Die philosophischen Schriften von Gottfried Wilhelm Leibnitz. Berlin, 1875-90. Reprint, Hildeshein: Georg Olms, pp. 168–70.Google Scholar
Leibniz, G. W. (1716). Correspondence with S. Clarke. In Die philosophischen Schriften von Gottfried Wilhelm Leibnitz. Berlin, 1875-90. Reprint, Hildeshein: Georg Olms, vol. VII, pp. 345–440.Google Scholar
Lorentz, H. A. (1895). Michelson's interference experiment. In The Principle of Relativity, eds Einstein, A., Lorentz, H. A., Minkowski, H. and Weyl, H., transl. Perrett, W. and Jeffery, G. B.. New York: Dover Books, pp. 3–7.Google Scholar
Lorentz, H. A. (1904). Electromagnetic phenomena in a system moving with any velocity less than that of light. In The Principle of Relativity, eds Einstein, A., Lorentz, H. A., Minkowski, H. and Weyl, H., transl. Perrett, W. and Jeffery, G. B.. New York: Dover Books, pp. 11–34.Google Scholar
Mach, E. (1883). Die Mechanik in ihrer Entwickelung, historisch-kritisch dargestellt. Leipzig: Brockhaus.Google Scholar
Mach, E. (1889). Die Mechanik in ihrer Entwickelung, historisch-kritisch dargestellt, 2nd edn. Leipzig: Brockhaus.Google Scholar
Magnani, L. (2002). Philosophy and Geometry: Theoretical and Historical Issues. Western Ontario Series in Philosophy of Science, vol. 66. Dordrecht: Kluwer.Google Scholar
Malament, D. (1986). Newtonian gravity, limits, and the geometry of space. In From Quarks to Quasars: Philosophical Problems of Modern Physics, ed. Colodny, R.. Pittsburgh: Pittsburgh University Press.Google Scholar
Maxwell, J. (1877). Matter and Motion. New York: Dover Publications (reprint 1952).
Mill, J. S. (1843). A System of Logic. London: Parker and Son.Google Scholar
Minkowski, H. (1908). Die Grundgleichungen für die elektromagnetischen Vorgänge in bewegten Körper. Nachrichten der königlichen Gesellschaft der Wissenschaften zu Göttingen, mathematisch-physische Klasse, pp. 53–111.Google Scholar
Minkowski, H. (1909). Raum und Zeit. Physikalische Zeitschrift, 10, 104–11.Google Scholar
Misner, C., Thorne, K. and Wheeler, J. A. (1973). Gravitation. New York: W. H. Freeman.Google Scholar
Nagel, E. (1939). The formation of modern conceptions of formal logic in the development of geometry. Osiris, 7, 142–224.CrossRefGoogle Scholar
Neumann, C. (1870). Ueber die Principien der Galilei-Newton'schen Theorie. Leipzig: B. G. Teubner.Google Scholar
Newcombe, S. (1910). Light. In Encyclopaedia Britannica, 11th edn, vol. 16, sect. III, pp. 623–6.
Newton, I. (1704 [1952]). Opticks. London. Reprint, New York: Dover Publications.Google Scholar
Newton, I. (1726 [1999]). The Principia: Mathematical Principles of Natural Philosophy, transl. Cohen, I. B. and Whitman, A.. Berkeley and Los Angeles: University of California Press.Google Scholar
Newton, I. (1729 [1962]). The System of the World. In Sir Isaac Newton's Mathematical Principles of Natural Philosophy and his System of the World, ed. Cajori, F., transl. Motte, A., 2 vols. Berkeley: University of California Press.Google Scholar
Norton, J. (1989a). What was Einstein's principle of equivalence? In Einstein and the History of General Relativity. Einstein Studies, vol. 1, eds Howard, D. and Stachel, J.. Boston: Birkhäuser, pp. 5–47.Google Scholar
Norton, J. (1989b). How Einstein found his field equations. In Einstein and the History of General Relativity. Einstein Studies, vol. 1, eds Howard, D. and Stachel, J.. Boston: Birkhäuser, pp. 101–59.Google Scholar
Poincaré, H. (1899a). Des fondements de la géométrie; a propos d'un livre de M. Russell. Revue de Metaphysique et de Morale, VII, 251–79.Google Scholar
Poincaré, H. (1899b). Des fondements de la géométrie; réponse à M. Russell. Revue de Metaphysique et de Morale, VIII, 73–86.Google Scholar
Poincaré, H. (1902). La Science et L'Hypothèse. Paris: Flammarion.Google Scholar
Poincaré, H. (1905). Sur la dynamique de l'électron. Comptes rendues de l'Académie des Sciences, 140, 1504–8.Google Scholar
Poincaré, H. (1913). Dernières Pensées. Paris: Flammarion.Google Scholar
Quine, W. V. O. (1953). Two dogmas of empiricism. In From a Logical Point of View. New York: Harper, pp. 20–46.Google Scholar
Reichenbach, H. (1924). Die Bewegungslehre bei Newton, Leibniz, und Huyghens. Kantstudien, 29, 239–45.Google Scholar
Reichenbach, H. (1949). The philosophical significance of relativity. In Albert Einstein, Philosopher-Scientist, ed. Schilpp, P. A.. Chicago: Open Court, pp. 289–311.Google Scholar
Reichenbach, H. (1957). The Philosophy of Space and Time, transl. Reichenbach, M.. New York: Dover Publications. (Originally published as Philosophie der Raum-Zeit-Lehre, Berlin, 1927.)Google Scholar
Riemann, B. (1867). Ueber die Hypothesen, die der Geometrie zu Grunde liegen. In The Collected Works of Bernhard Riemann, ed. Weber, H.. Leipzig: B. G. Teubner, 1902, pp. 272–87. Reprint, New York: Dover Publications, 1956.Google Scholar
Russell, B. (1897). An Essay on the Foundations of Geometry. Cambridge: Cambridge University Press.Google Scholar
Russell, B. (1899). Sur les axiomes de la géométrie. Revue de Metaphysique et de Morale, VII, 684–707.Google Scholar
Russell, B. (1927). The Analysis of Matter. Cambridge: Cambridge University Press.Google Scholar
Schlick, M. (1917). Raum und Zeit in der gegenwärtigen Physik. Zur Einführung in das Verständnis der Relativitäts- und Gravitationstheorie.Berlin.CrossRefGoogle Scholar
Sklar, L. (1977). Space, Time and Spacetime. Berkeley, CA: University of California Press.Google Scholar
Smith, G. E. (2003a). How Newton's Principia changed physics. Unpublished manuscript.
Smith, G. E. (2003b). Newton's Principia. Unpublished lecture notes, Tufts University.
Spivak, M. (1967). A Comprehensive Introduction to Differential Geometry. Berkeley, CA: Publish or Perish Press.Google Scholar
Stachel, J. (1989a). The rigidly rotating disk as the “missing link” in the history of general relativity. In Einstein and the History of General Relativity. Einstein Studies, vol. 1, eds Howard, D. and Stachel, J.. Boston: Birkhäuser, pp. 48–62.Google Scholar
Stachel, J. (1989b). Einstein's search for general covariance. In Einstein and the History of General Relativity. Einstein Studies, vol. 1, eds Howard, D. and Stachel, J.. Boston: Birkhäuser, pp. 63–100.Google Scholar
Stachel, J. (2002a). “What song the sirens sang”: How did Einstein discover special relativity? In Einstein from B to Z. Einstein Studies, vol. 9. Boston: Birkhäuser, pp. 157–70.
Stachel, J. (2002b). The genesis of general relativity. In Einstein from B to Z. Einstein Studies, vol. 9. Boston: Birkhäuser, pp. 233-4.Google Scholar
Stachel, J. (2002c). Einstein and Newton. In Einstein from B to Z. Einstein Studies, vol. 9. Boston: Birkhäuser, pp. 447-52.Google Scholar
Stachel, J. (2002d). Einstein from B to Z. Einstein Studies, vol. 9. Boston: Birkhäuser.Google Scholar
Stein, H. (1967). Newtonian space-time. Texas Quarterly, 10, 174–200.Google Scholar
Stein, H. (1977). Some philosophical prehistory of general relativity. In Foundations of Space-Time Theories, Minnesota Studies in Philosophy of Science, vol. 8, eds Earman, J., Glymour, C. and Stachel, J.. Minneapolis: University of Minnesota Press, pp. 3–49.Google Scholar
Stein, H. (2002). Newton's metaphysics. In The Cambridge Companion to Newton, eds Cohen, I. B. and Smith, G. E.. Cambridge: Cambridge University Press.Google Scholar
Synge, J. L. (1960). Relativity: The General Theory. Amsterdam: North-Holland.Google Scholar
Taylor, E. and Wheeler, J. A. (1978). Spacetime Physics. New York: Wiley.Google Scholar
Thomson, J. (1884). On the law of inertia; the principle of chronometry; and the principle of absolute clinural rest, and of absolute rotation. Proceedings of the Royal Society of Edinburgh, 12, 568–78.Google Scholar
Torretti, R. (1977). Philosophy of Geometry from Riemann to Poincaré. Dordrecht: Riedel.Google Scholar
Torretti, R. (1983). Relativity and Geometry. Oxford: Pergamon Press.Google Scholar
Torretti, R. (1989). Creative Understanding. Chicago: University of Chicago Press.Google Scholar
Trautman, A. (1965). Foundations and current problems of general relativity. In Lectures on General Relativity. Brandeis 1964 Summer Institute on Theoretical Physics, vol. 1, eds Trautman, A., Pirani, F. A. E. and Bondi, H.. Englewood Cliffs, NJ: Prentice-Hall.Google Scholar
Trautman, A. (1966). The general theory of relativity. Soviet Physics Uspekhi, 89, 319–39.CrossRefGoogle Scholar
Truesdell, C. (1967). Reactions of late Baroque mechanics to success, conjecture, error, and failure in Newton's Principia. Texas Quarterly, 10, 238–58.Google Scholar
Fraassen, B. (1989). Laws and Symmetries. Oxford: Oxford University Press.CrossRefGoogle Scholar
Weyl, H. (1918). Raum-Zeit-Materie. Vorlesung über allgemeine Relativitätstheorie. Berlin: Springer-Verlag.Google Scholar
Weyl, H. (1927). Philosophie der Mathematik und der Naturwissenschaften. In Oldenburg's Handbuch der Philosophie. Munich and Berlin: Verlag R. Oldenburg.Google Scholar
Will, C. (1993). Theory and Experiment in Gravitational Physics, revised edn. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Wilson, C. (2002). Newton and celestial mechanics. In The Cambridge Companion to Newton, eds Cohen, I. B. and Smith, G. E.. Cambridge: Cambridge University Press.Google Scholar
Barbour, J. and Pfister, H. (eds) (1995). Mach's Principle: From Newton's Bucket to Quantum Gravity. Einstein Studies, vol. 6. Boston: Birkhäuser.Google Scholar
Belot, G. and Earman, J. (2001). Pre-Socratic quantum gravity. In Physics Meets Philosophy at the Planck Scale, eds Callander, C. and Huggett, N.. Cambridge: Cambridge University Press, pp. 213–55.CrossRefGoogle Scholar
Ben-Menachem, Y. (2001). Convention: Poincaré and some of his critics. British Journal for the Philosophy of Science, 52, 471–513.CrossRefGoogle Scholar
Bishop, R. and Goldberg, S. (1980). Tensor Analysis on Manifolds. New York: Dover Publications.Google Scholar
Bolzano, B. (1817). Rein analytische Beweis des Lehrsatz. In B. Bolzano, Early Mathematical Works, 1781–1848, ed. Novy, L.. Prague: Institute of Slovak and General History, 1981.Google Scholar
Carnap, R. (1956).Empiricism, semantics, and ontology. In Meaning and Necessity.Chicago: University of Chicago Press, Supplement A, pp. 205–21.Google Scholar
Carnap, R. (1995). An Introduction to the Philosophy of Science. New York: Dover Publications (reprint).Google Scholar
Carrier, M. (1994). Geometric facts and geometric theory: Helmholtz and 20th-century philosophy of physical geometry. In Universalgenie Helmholtz: Rückblick nach 100 Jahren, ed. Kruger, L.. Berlin: Akademie-Verlag.CrossRefGoogle Scholar
Coffa, J. A. (1983). From geometry to tolerance: sources of conventionalism in the 19th century. In From Quarks to Quasars, ed. Colodny., R. G.Pittsburgh Studies in the Philosophy of Science, vol. X. Pittsburgh: University of Pittsburgh Press.Google Scholar
Coffa, J. A. (1991). The Semantic Tradition from Kant to Carnap. Cambridge: Cambridge University Press.
Demopoulos, W. (2000). On the origin and status of our conception of number. Notre Dame Journal of Formal Logic, 41, 210–26.Google Scholar
Demopoulos, W. (2003). On the rational reconstruction of our theoretical knowledge. British Journal for the Philosophy of Science, 54, 371–403.CrossRefGoogle Scholar
Descartes, R. (1983). The Principles of Philosophy, transl. Miller, V. R. and Miller, R. P.. Dordrecht: Reidel.Google Scholar
Dingler, H. (1934). H. Helmholtz und die Grundlagen der Geometrie. Zeitschrift für Physik, 90, 348–54.CrossRefGoogle Scholar
DiSalle, R. (1990). The “essential properties” of matter, space, and time. In Philosophical Perspectives on Newtonian Science, eds Bricker, P. and Hughes, R. I. G.. Cambridge, MA: MIT Press.Google Scholar
DiSalle, R. (1991). Conventionalism and the origins of the inertial frame concept. In PSA 1990: Proceedings of the 1990 Biennial Meeting of the Philosophy of Science Association. East Lansing: The Philosophy of Science Association.
DiSalle, R. (2002a). Newton's philosophical analysis of space and time. In The Cambridge Companion to Newton, eds Cohen, I. B. and Smith, G. E.. Cambridge: Cambridge University Press.Google Scholar
DiSalle, R. (2002b). Conventionalism and modern physics: a re-assessment. NoÛs, 36, 169–200.CrossRefGoogle Scholar
DiSalle, R. (2002c). Reconsidering Ernst Mach on space, time, and motion. In Reading Natural Philosophy: Essays in the History and Philosophy of Science and Mathematics to Honor Howard Stein on his 70th Birthday, ed. Malament, D.. Chicago: Open Court Press.Google Scholar
DiSalle, R. (2002d). Space and time: inertial frames. In The Stanford Encyclopedia of Philosophy, <http://plato.stanford.edu/archives/win2003/entries/spacetime-iframes/>.
DiSalle, R. (2006). Kant, Helmholtz, and the meaning of empiricism. In Kant's Legacy, eds Friedman, M. and Nordmann, A.. Cambridge, MA: MIT Press.Google Scholar
Earman, J. (1989). World Enough and Spacetime: Absolute and Relational Theories of Motion. Cambridge, MA: MIT Press.Google Scholar
Eddington, A. S. (1918). Report on the Relativity Theory of Gravitation. London: Fleetwood Press.Google Scholar
Eddington, A. S. (1920). Space, Time, and Gravitation. An Outline of General Relativity Theory. Cambridge: Cambridge University Press.Google Scholar
Eddington, A. S. (1923). The Mathematical Theory of Relativity. Cambridge: Cambridge University Press.Google Scholar
Ehlers, J. (1973a). The nature and structure of space-time. In The Physicist's Conception of Nature, ed. Mehra, J.. Dordrecht: Reidel, pp. 71–95.CrossRefGoogle Scholar
Ehlers, J. (1973b). A survey of general relativity theory. In Relativity, Astrophysics, and Cosmology, ed. Israel, W.. Dordrecht: Reidel.CrossRefGoogle Scholar
Einstein, A. (1905). Zur elektrodynamik bewegter Körper. Annalen der Physik, 17, 891–921.CrossRefGoogle Scholar
Einstein, A. (1911). On the influence of gravitation on the propagation of light. In The Principle of Relativity, eds Einstein, A., Lorentz, H. A., Minkowski, H. and Weyl, H., transl. Perrett, W. and Jeffery, G. B.. New York: Dover Books, 1952, pp. 97–108.Google Scholar
Einstein, A. (1916). Die Grundlage der allegemeinen Relativitätstheorie. Leipzig: Johann Ambrosius Barth. (Reprint from Annalen der Physik, (4) 49, 769–822.)
Einstein, A. (1917). Über die spezielle und die allgemeine Relativitätstheorie (Gemeinverständlich), 2nd edn. Braunschweig: Vieweg und Sohn.
Einstein, A. (1919). Was ist Relativitäts-Theorie? In The Collected Papers of Albert Einstein, vol. 7, eds Jansen, M., Shulmann, R., Illy, J., Lehner, C. and Buchwald, D.. Princeton, NJ: Princeton University Press, pp. 206–11.Google Scholar
Einstein, A. (1920). Grundgedanken und Methoden der Relativitätstheorie in ihrer Entwickelung dargestellt. In The Collected Papers of Albert Einstein, vol. 7, eds Jansen, M., Shulmann, R., Illy, J., Lehner, C. and Buchwald, D.. Princeton, NJ: Princeton University Press, pp. 212–49.Google Scholar
Einstein, A. (1922). The Meaning of Relativity. Princeton, NJ: Princeton University Press.
Einstein, A. (1949). Autobiographical notes. In Albert Einstein, Philosopher-Scientist, ed. Schilpp, P. A.. Chicago: Open Court, pp. 2–94.Google Scholar
Eisenstadt, J. (1989). The low-water mark of general relativity, 1925–1950. In Einstein and the History of General Relativity, Einstein Studies, vol. 1, eds Howard, D. and Stachel, J.. Boston: Birkhäuser, pp. 277–92.Google Scholar
Euler, L. (1748). Réflexions sur l'espace et le temps. Histoire de l'Academie Royale des sciences et belles lettres, 4, 324–33.Google Scholar
Euler, L. (1765). Theoria motus corporum solidorum. Rostock and Greifswald, 1765.Google Scholar
Flores, F. (1999). Einstein's theory of theories and types of theoretical explanation. International Studies in the Philosophy of Science, 13, 123–34.CrossRefGoogle Scholar
Fock, V. (1959). The Theory of Space, Time, and Gravitation, transl. Kemmer, N.. London: Pergamon Press.Google Scholar
Friedman, M. (1983). Foundations of Space-time Theories. Princeton, NJ: Princeton University Press.Google Scholar
Friedman, M. (1990). Kant and Newton: why gravity is essential to matter. In Philosophical Perspectives on Newtonian Science, eds Bricker, P. and Hughes, R. I. G.. Cambridge, MA: MIT Press.Google Scholar
Friedman, M. (1992). Kant and the Exact Sciences. Cambridge, MA: Harvard University Press.Google Scholar
Friedman, M. (1999a). Geometry, convention, and the relativized a priori: Reichenbach, Schlick, and Carnap. In Reconsidering Logical Positivism. Cambridge: Cambridge University Press, pp. 59–70.CrossRefGoogle Scholar
Friedman, M. (1999b). Poincaré's conventionalism and the logical positivists. In Reconsidering Logical Positivism. Cambridge: Cambridge University Press, pp. 71–86.CrossRefGoogle Scholar
Friedman, M. (1999c). Geometry, construction, and intuition in Kant and his successors. In Between Logic and Intuition: Essays in Honor of Charles Parsons, eds Scher, G. and Tieszen, R.. Cambridge: Cambridge University Press.Google Scholar
Friedman, M. (2002a). Geometry as a branch of physics: background and context for Einstein's “Geometry and Experience”. In Reading Natural Philosophy: Essays in the History and Philosophy of Science and Mathematics to Honor Howard Stein on his 70th Birthday, ed. Malament, D.. Chicago: Open Court Press.Google Scholar
Friedman, M. (2002b). The Dynamics of Reason: the 1999 Kant Lectures at Stanford University. Chicago: University of Chicago Press.
Galileo, (1632 [1996]). Dialogo Sopra I Due Massimi Sistemi del Mondo – Ptolemaico e Copernicano. Florence, 1632. Reprint, Milan: Oscar Mondadori.Google Scholar
Geroch, R. (1978). General Relativity from A to B. Chicago: University of Chicago Press.Google Scholar
Hall, A. R. and Hall, M. B. (eds) (1962). Unpublished Scientific Papers of Isaac Newton. Cambridge: Cambridge University Press.Google Scholar
Hawking, S. and Ellis, G. F. R. (1973). The Large-Scale Structure of Space-Time. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Helmholtz, H. (1868). Über die Thatsachen, die der Geometrie zum Grunde liegen. Nachrichten von der königlichen Gesellschaft der Wissenschaften zu Göttingen, 9, 193–221. Reprinted in Wissenschaftliche Abhandlungen, 2, 618–39.Google Scholar
Helmholtz, H. (1870). Ueber den Ursprung und die Bedeutung der geometrischen Axiome. In Vorträge und Reden, 2 vols. Braunschweig: Vieweg und Sohn, pp. 1–31.Google Scholar
Helmholtz, H. (1878). Die Thatsachen in der Wahrnehmung. In Vorträge und Reden, 2 vols. Braunschweig: Vieweg und Sohn, pp. 215–47.Google Scholar
Helmholtz, H. (1887). Zählen und Messen, erkenntnisstheoretische betrachtet. Wissenschaftliche Abhandlungen, vol. 3. Leipzig: J. A. Barth, pp. 356–91.Google Scholar
Helmholtz, H. (1921). Schriften zur Erkenntnistheorie, eds Hertz, P. and Schlick, M.. Berlin: Springer-Verlag.Google Scholar
Hughes, R. I. G. (1987). The Structure and Interpretation of Quantum Mechanics. Cambridge: Cambridge University Press.Google Scholar
Kant, I. (1764 [1911]). Untersuchung ueber die Deutlichkeit der Grundsaetze der naturlichen Theologie und der Moral (the “Prize Essay”). In Gesammelte Schriften. Akademie Ausgabe, Berlin: Georg Reimer, vol. 2, pp. 273–301.Google Scholar
Kant, I. (1768 [1911]). Von dem ersten Grunde des Unterschiedes der Gegenden im Raume. In Gesammelte Schriften. Akademie Ausgabe, Berlin: Georg Reimer, vol. 2, pp. 375–83.Google Scholar
Kant, I. (1770). De mundi sensibilis atque intelligibilis forma et principiis. In Gesammelte Schriften. Akademie Ausgabe, Berlin: Georg Reimer, vol. 2, pp. 385-419.Google Scholar
Kant, I. (1783). Prolegomena zu einer jeden künftigen Metaphysik die als Wissenschaft wird auftreten können. In Gesammelte Schriften. Akademie Ausgabe, Berlin: Georg Reimer, vol. 4.Google Scholar
Kant, I. (1786 [1911]). Metaphysische Anfangsgründe der Naturwissenschaft. In Gesammelte Schriften. Akademie Ausgabe, Berlin: Georg Reiner, vol. 4, pp. 465–565.Google Scholar
Kant, I. (1787 [1956]). Kritik der reinen Vernunft. Reprint, Berlin: Felix Meiner Verlag.Google Scholar
Klein, F. (1872). Vergleichende Betrachtungen über neuere geometrische Forschungen. Erlangen: A. Duchert.Google Scholar
Kretschmann, E. (1917). Ueber die physikalischen Sinn der Relativitätspostulaten. Annalen der Physik, (4) 53, 575-614.Google Scholar
Kuhn, T. (1970a). The Structure of Scientific Revolutions, 2nd edn. Chicago: University of Chicago Press.Google Scholar
Kuhn, T. (1970b). Logic of discovery or psychology of research? In Criticism and the Growth of Knowledge, eds Lakatos, I. and Musgrave, A.. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Kuhn, T. (1977). A function for thought-experiments. In The Essential Tension. Chicago: University of Chicago Press.Google Scholar
Lange, L. (1885). Ueber das Beharrungsgesetz. Berichte der Königlichen Sachsischen Gesellschaft der Wissenschaften zu Leipzig, Mathematisch-physische Classe, 37, 333–51.Google Scholar
Leibniz, G. W. (1694). Letter to C. Huygens. In Die mathematische Schriften von Gottfried Wilhelm Leibniz. Berlin, 1849–55. Reprint, Hildeshein: Georg Olms, vol. II, pp. 179–85.Google Scholar
Leibniz, G. W. (1695 [1960]). Systeme nouveau de la nature et de la communication des substances, aussi bien que l'union qu'il y a entre l'ame le corps. In Die philosophischen Schriften von Gottfried Wilhelm Leibnitz. Berlin, 1875–90. Reprint, Hildeshein: Georg Olms, vol. IV, pp. 477–87.Google Scholar
Leibniz, G. W. (1699). Letter to B. de Volder. In Die philosophischen Schriften von Gottfried Wilhelm Leibnitz. Berlin, 1875-90. Reprint, Hildeshein: Georg Olms, pp. 168–70.Google Scholar
Leibniz, G. W. (1716). Correspondence with S. Clarke. In Die philosophischen Schriften von Gottfried Wilhelm Leibnitz. Berlin, 1875-90. Reprint, Hildeshein: Georg Olms, vol. VII, pp. 345–440.Google Scholar
Lorentz, H. A. (1895). Michelson's interference experiment. In The Principle of Relativity, eds Einstein, A., Lorentz, H. A., Minkowski, H. and Weyl, H., transl. Perrett, W. and Jeffery, G. B.. New York: Dover Books, pp. 3–7.Google Scholar
Lorentz, H. A. (1904). Electromagnetic phenomena in a system moving with any velocity less than that of light. In The Principle of Relativity, eds Einstein, A., Lorentz, H. A., Minkowski, H. and Weyl, H., transl. Perrett, W. and Jeffery, G. B.. New York: Dover Books, pp. 11–34.Google Scholar
Mach, E. (1883). Die Mechanik in ihrer Entwickelung, historisch-kritisch dargestellt. Leipzig: Brockhaus.Google Scholar
Mach, E. (1889). Die Mechanik in ihrer Entwickelung, historisch-kritisch dargestellt, 2nd edn. Leipzig: Brockhaus.Google Scholar
Magnani, L. (2002). Philosophy and Geometry: Theoretical and Historical Issues. Western Ontario Series in Philosophy of Science, vol. 66. Dordrecht: Kluwer.Google Scholar
Malament, D. (1986). Newtonian gravity, limits, and the geometry of space. In From Quarks to Quasars: Philosophical Problems of Modern Physics, ed. Colodny, R.. Pittsburgh: Pittsburgh University Press.Google Scholar
Maxwell, J. (1877). Matter and Motion. New York: Dover Publications (reprint 1952).
Mill, J. S. (1843). A System of Logic. London: Parker and Son.Google Scholar
Minkowski, H. (1908). Die Grundgleichungen für die elektromagnetischen Vorgänge in bewegten Körper. Nachrichten der königlichen Gesellschaft der Wissenschaften zu Göttingen, mathematisch-physische Klasse, pp. 53–111.Google Scholar
Minkowski, H. (1909). Raum und Zeit. Physikalische Zeitschrift, 10, 104–11.Google Scholar
Misner, C., Thorne, K. and Wheeler, J. A. (1973). Gravitation. New York: W. H. Freeman.Google Scholar
Nagel, E. (1939). The formation of modern conceptions of formal logic in the development of geometry. Osiris, 7, 142–224.CrossRefGoogle Scholar
Neumann, C. (1870). Ueber die Principien der Galilei-Newton'schen Theorie. Leipzig: B. G. Teubner.Google Scholar
Newcombe, S. (1910). Light. In Encyclopaedia Britannica, 11th edn, vol. 16, sect. III, pp. 623–6.
Newton, I. (1704 [1952]). Opticks. London. Reprint, New York: Dover Publications.Google Scholar
Newton, I. (1726 [1999]). The Principia: Mathematical Principles of Natural Philosophy, transl. Cohen, I. B. and Whitman, A.. Berkeley and Los Angeles: University of California Press.Google Scholar
Newton, I. (1729 [1962]). The System of the World. In Sir Isaac Newton's Mathematical Principles of Natural Philosophy and his System of the World, ed. Cajori, F., transl. Motte, A., 2 vols. Berkeley: University of California Press.Google Scholar
Norton, J. (1989a). What was Einstein's principle of equivalence? In Einstein and the History of General Relativity. Einstein Studies, vol. 1, eds Howard, D. and Stachel, J.. Boston: Birkhäuser, pp. 5–47.Google Scholar
Norton, J. (1989b). How Einstein found his field equations. In Einstein and the History of General Relativity. Einstein Studies, vol. 1, eds Howard, D. and Stachel, J.. Boston: Birkhäuser, pp. 101–59.Google Scholar
Poincaré, H. (1899a). Des fondements de la géométrie; a propos d'un livre de M. Russell. Revue de Metaphysique et de Morale, VII, 251–79.Google Scholar
Poincaré, H. (1899b). Des fondements de la géométrie; réponse à M. Russell. Revue de Metaphysique et de Morale, VIII, 73–86.Google Scholar
Poincaré, H. (1902). La Science et L'Hypothèse. Paris: Flammarion.Google Scholar
Poincaré, H. (1905). Sur la dynamique de l'électron. Comptes rendues de l'Académie des Sciences, 140, 1504–8.Google Scholar
Poincaré, H. (1913). Dernières Pensées. Paris: Flammarion.Google Scholar
Quine, W. V. O. (1953). Two dogmas of empiricism. In From a Logical Point of View. New York: Harper, pp. 20–46.Google Scholar
Reichenbach, H. (1924). Die Bewegungslehre bei Newton, Leibniz, und Huyghens. Kantstudien, 29, 239–45.Google Scholar
Reichenbach, H. (1949). The philosophical significance of relativity. In Albert Einstein, Philosopher-Scientist, ed. Schilpp, P. A.. Chicago: Open Court, pp. 289–311.Google Scholar
Reichenbach, H. (1957). The Philosophy of Space and Time, transl. Reichenbach, M.. New York: Dover Publications. (Originally published as Philosophie der Raum-Zeit-Lehre, Berlin, 1927.)Google Scholar
Riemann, B. (1867). Ueber die Hypothesen, die der Geometrie zu Grunde liegen. In The Collected Works of Bernhard Riemann, ed. Weber, H.. Leipzig: B. G. Teubner, 1902, pp. 272–87. Reprint, New York: Dover Publications, 1956.Google Scholar
Russell, B. (1897). An Essay on the Foundations of Geometry. Cambridge: Cambridge University Press.Google Scholar
Russell, B. (1899). Sur les axiomes de la géométrie. Revue de Metaphysique et de Morale, VII, 684–707.Google Scholar
Russell, B. (1927). The Analysis of Matter. Cambridge: Cambridge University Press.Google Scholar
Schlick, M. (1917). Raum und Zeit in der gegenwärtigen Physik. Zur Einführung in das Verständnis der Relativitäts- und Gravitationstheorie.Berlin.CrossRefGoogle Scholar
Sklar, L. (1977). Space, Time and Spacetime. Berkeley, CA: University of California Press.Google Scholar
Smith, G. E. (2003a). How Newton's Principia changed physics. Unpublished manuscript.
Smith, G. E. (2003b). Newton's Principia. Unpublished lecture notes, Tufts University.
Spivak, M. (1967). A Comprehensive Introduction to Differential Geometry. Berkeley, CA: Publish or Perish Press.Google Scholar
Stachel, J. (1989a). The rigidly rotating disk as the “missing link” in the history of general relativity. In Einstein and the History of General Relativity. Einstein Studies, vol. 1, eds Howard, D. and Stachel, J.. Boston: Birkhäuser, pp. 48–62.Google Scholar
Stachel, J. (1989b). Einstein's search for general covariance. In Einstein and the History of General Relativity. Einstein Studies, vol. 1, eds Howard, D. and Stachel, J.. Boston: Birkhäuser, pp. 63–100.Google Scholar
Stachel, J. (2002a). “What song the sirens sang”: How did Einstein discover special relativity? In Einstein from B to Z. Einstein Studies, vol. 9. Boston: Birkhäuser, pp. 157–70.
Stachel, J. (2002b). The genesis of general relativity. In Einstein from B to Z. Einstein Studies, vol. 9. Boston: Birkhäuser, pp. 233-4.Google Scholar
Stachel, J. (2002c). Einstein and Newton. In Einstein from B to Z. Einstein Studies, vol. 9. Boston: Birkhäuser, pp. 447-52.Google Scholar
Stachel, J. (2002d). Einstein from B to Z. Einstein Studies, vol. 9. Boston: Birkhäuser.Google Scholar
Stein, H. (1967). Newtonian space-time. Texas Quarterly, 10, 174–200.Google Scholar
Stein, H. (1977). Some philosophical prehistory of general relativity. In Foundations of Space-Time Theories, Minnesota Studies in Philosophy of Science, vol. 8, eds Earman, J., Glymour, C. and Stachel, J.. Minneapolis: University of Minnesota Press, pp. 3–49.Google Scholar
Stein, H. (2002). Newton's metaphysics. In The Cambridge Companion to Newton, eds Cohen, I. B. and Smith, G. E.. Cambridge: Cambridge University Press.Google Scholar
Synge, J. L. (1960). Relativity: The General Theory. Amsterdam: North-Holland.Google Scholar
Taylor, E. and Wheeler, J. A. (1978). Spacetime Physics. New York: Wiley.Google Scholar
Thomson, J. (1884). On the law of inertia; the principle of chronometry; and the principle of absolute clinural rest, and of absolute rotation. Proceedings of the Royal Society of Edinburgh, 12, 568–78.Google Scholar
Torretti, R. (1977). Philosophy of Geometry from Riemann to Poincaré. Dordrecht: Riedel.Google Scholar
Torretti, R. (1983). Relativity and Geometry. Oxford: Pergamon Press.Google Scholar
Torretti, R. (1989). Creative Understanding. Chicago: University of Chicago Press.Google Scholar
Trautman, A. (1965). Foundations and current problems of general relativity. In Lectures on General Relativity. Brandeis 1964 Summer Institute on Theoretical Physics, vol. 1, eds Trautman, A., Pirani, F. A. E. and Bondi, H.. Englewood Cliffs, NJ: Prentice-Hall.Google Scholar
Trautman, A. (1966). The general theory of relativity. Soviet Physics Uspekhi, 89, 319–39.CrossRefGoogle Scholar
Truesdell, C. (1967). Reactions of late Baroque mechanics to success, conjecture, error, and failure in Newton's Principia. Texas Quarterly, 10, 238–58.Google Scholar
Fraassen, B. (1989). Laws and Symmetries. Oxford: Oxford University Press.CrossRefGoogle Scholar
Weyl, H. (1918). Raum-Zeit-Materie. Vorlesung über allgemeine Relativitätstheorie. Berlin: Springer-Verlag.Google Scholar
Weyl, H. (1927). Philosophie der Mathematik und der Naturwissenschaften. In Oldenburg's Handbuch der Philosophie. Munich and Berlin: Verlag R. Oldenburg.Google Scholar
Will, C. (1993). Theory and Experiment in Gravitational Physics, revised edn. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Wilson, C. (2002). Newton and celestial mechanics. In The Cambridge Companion to Newton, eds Cohen, I. B. and Smith, G. E.. Cambridge: Cambridge University Press.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Robert DiSalle, University of Western Ontario
  • Book: Understanding Space-Time
  • Online publication: 22 September 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511487361.007
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Robert DiSalle, University of Western Ontario
  • Book: Understanding Space-Time
  • Online publication: 22 September 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511487361.007
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Robert DiSalle, University of Western Ontario
  • Book: Understanding Space-Time
  • Online publication: 22 September 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511487361.007
Available formats
×