Skip to main content Accessibility help
×
  • Cited by 88
Publisher:
Cambridge University Press
Online publication date:
September 2009
Print publication year:
2006
Online ISBN:
9780511487361

Book description

Presenting the history of space-time physics, from Newton to Einstein, as a philosophical development DiSalle reflects our increasing understanding of the connections between ideas of space and time and our physical knowledge. He suggests that philosophy's greatest impact on physics has come about, less by the influence of philosophical hypotheses, than by the philosophical analysis of concepts of space, time and motion, and the roles they play in our assumptions about physical objects and physical measurements. This way of thinking leads to interpretations of the work of Newton and Einstein and the connections between them. It also offers ways of looking at old questions about a priori knowledge, the physical interpretation of mathematics, and the nature of conceptual change. Understanding Space-Time will interest readers in philosophy, history and philosophy of science, and physics, as well as readers interested in the relations between physics and philosophy.

Refine List

Actions for selected content:

Select all | Deselect all
  • View selected items
  • Export citations
  • Download PDF (zip)
  • Save to Kindle
  • Save to Dropbox
  • Save to Google Drive

Save Search

You can save your searches here and later view and run them again in "My saved searches".

Please provide a title, maximum of 40 characters.
×

Contents

References
References
Barbour, J. and Pfister, H. (eds) (1995). Mach's Principle: From Newton's Bucket to Quantum Gravity. Einstein Studies, vol. 6. Boston Google Scholar: Birkhäuser.
Belot, G. and Earman, J. (2001). Pre-Socratic quantum gravity. In Physics Meets Philosophy at the Planck Scale, eds Callander, C. and Huggett, N.. Cambridge CrossRef | Google Scholar: Cambridge University Press, pp. 213–55.
Ben-Menachem, Y. (2001). Convention: Poincaré and some of his critics. British Journal for the Philosophy of Science, 52 CrossRef | Google Scholar, 471–513.
Bishop, R. and Goldberg, S. (1980). Tensor Analysis on Manifolds. New York Google Scholar: Dover Publications.
Bolzano, B. (1817). Rein analytische Beweis des Lehrsatz. In B. Bolzano, Early Mathematical Works, 1781–1848, ed. Novy, L.. Prague: Institute of Slovak and General History, 1981 Google Scholar.
Carnap, R. (1956).Empiricism, semantics, and ontology. In Meaning and Necessity.Chicago Google Scholar: University of Chicago Press, Supplement A, pp. 205–21.
Carnap, R. (1995). An Introduction to the Philosophy of Science. New York Google Scholar: Dover Publications (reprint).
Carrier, M. (1994). Geometric facts and geometric theory: Helmholtz and 20th-century philosophy of physical geometry. In Universalgenie Helmholtz: Rückblick nach 100 Jahren, ed. Kruger, L.. Berlin CrossRef | Google Scholar: Akademie-Verlag.
Coffa, J. A. (1983). From geometry to tolerance: sources of conventionalism in the 19th century. In From Quarks to Quasars, ed. Colodny., R. G.Pittsburgh Studies in the Philosophy of Science, vol. X. Pittsburgh Google Scholar: University of Pittsburgh Press.
Coffa, J. A. (1991). The Semantic Tradition from Kant to Carnap. Cambridge Google Scholar: Cambridge University Press.
Demopoulos, W. (2000). On the origin and status of our conception of number. Notre Dame Journal of Formal Logic, 41 Google Scholar, 210–26.
Demopoulos, W. (2003). On the rational reconstruction of our theoretical knowledge. British Journal for the Philosophy of Science, 54 CrossRef | Google Scholar, 371–403.
Descartes, R. (1983). The Principles of Philosophy, transl. Miller, V. R. and Miller, R. P.. Dordrecht Google Scholar: Reidel.
Dingler, H. (1934). H. Helmholtz und die Grundlagen der Geometrie. Zeitschrift für Physik, 90 CrossRef | Google Scholar, 348–54.
DiSalle, R. (1990). The “essential properties” of matter, space, and time. In Philosophical Perspectives on Newtonian Science, eds Bricker, P. and Hughes, R. I. G.. Cambridge, MA Google Scholar: MIT Press.
DiSalle, R. (1991). Conventionalism and the origins of the inertial frame concept. In PSA 1990: Proceedings of the 1990 Biennial Meeting of the Philosophy of Science Association. East Lansing Google Scholar: The Philosophy of Science Association.
DiSalle, R. (2002a). Newton's philosophical analysis of space and time. In The Cambridge Companion to Newton, eds Cohen, I. B. and Smith, G. E.. Cambridge Google Scholar: Cambridge University Press.
DiSalle, R. (2002b). Conventionalism and modern physics: a re-assessment. NoÛs, 36 CrossRef | Google Scholar, 169–200.
DiSalle, R. (2002c). Reconsidering Ernst Mach on space, time, and motion. In Reading Natural Philosophy: Essays in the History and Philosophy of Science and Mathematics to Honor Howard Stein on his 70th Birthday, ed. Malament, D.. Chicago Google Scholar: Open Court Press.
DiSalle, R. (2002d). Space and time: inertial frames. In The Stanford Encyclopedia of Philosophy, <http://plato.stanford.edu/archives/win2003/entries/spacetime-iframes/>. Google Scholar
DiSalle, R. (2006). Kant, Helmholtz, and the meaning of empiricism. In Kant's Legacy, eds Friedman, M. and Nordmann, A.. Cambridge, MA Google Scholar: MIT Press.
Earman, J. (1989). World Enough and Spacetime: Absolute and Relational Theories of Motion. Cambridge, MA Google Scholar: MIT Press.
Eddington, A. S. (1918). Report on the Relativity Theory of Gravitation. London Google Scholar: Fleetwood Press.
Eddington, A. S. (1920). Space, Time, and Gravitation. An Outline of General Relativity Theory. Cambridge Google Scholar: Cambridge University Press.
Eddington, A. S. (1923). The Mathematical Theory of Relativity. Cambridge Google Scholar: Cambridge University Press.
Ehlers, J. (1973a). The nature and structure of space-time. In The Physicist's Conception of Nature, ed. Mehra, J.. Dordrecht CrossRef | Google Scholar: Reidel, pp. 71–95.
Ehlers, J. (1973b). A survey of general relativity theory. In Relativity, Astrophysics, and Cosmology, ed. Israel, W.. Dordrecht CrossRef | Google Scholar: Reidel.
Einstein, A. (1905). Zur elektrodynamik bewegter Körper. Annalen der Physik, 17 CrossRef | Google Scholar, 891–921.
Einstein, A. (1911). On the influence of gravitation on the propagation of light. In The Principle of Relativity, eds Einstein, A., Lorentz, H. A., Minkowski, H. and Weyl, H., transl. Perrett, W. and Jeffery, G. B.. New York Google Scholar: Dover Books, 1952, pp. 97–108.
Einstein, A. (1916). Die Grundlage der allegemeinen Relativitätstheorie. Leipzig Google Scholar: Johann Ambrosius Barth. (Reprint from Annalen der Physik, (4) 49, 769–822.)
Einstein, A. (1917). Über die spezielle und die allgemeine Relativitätstheorie (Gemeinverständlich), 2nd edn. Braunschweig Google Scholar: Vieweg und Sohn.
Einstein, A. (1919). Was ist Relativitäts-Theorie? In The Collected Papers of Albert Einstein, vol. 7, eds Jansen, M., Shulmann, R., Illy, J., Lehner, C. and Buchwald, D.. Princeton, NJ Google Scholar: Princeton University Press, pp. 206–11.
Einstein, A. (1920). Grundgedanken und Methoden der Relativitätstheorie in ihrer Entwickelung dargestellt. In The Collected Papers of Albert Einstein, vol. 7, eds Jansen, M., Shulmann, R., Illy, J., Lehner, C. and Buchwald, D.. Princeton, NJ Google Scholar: Princeton University Press, pp. 212–49.
Einstein, A. (1922). The Meaning of Relativity. Princeton Google Scholar, NJ: Princeton University Press.
Einstein, A. (1949). Autobiographical notes. In Albert Einstein, Philosopher-Scientist, ed. Schilpp, P. A.. Chicago Google Scholar: Open Court, pp. 2–94.
Eisenstadt, J. (1989). The low-water mark of general relativity, 1925–1950. In Einstein and the History of General Relativity, Einstein Studies, vol. 1, eds Howard, D. and Stachel, J.. Boston Google Scholar: Birkhäuser, pp. 277–92.
Euler, L. (1748). Réflexions sur l'espace et le temps. Histoire de l'Academie Royale des sciences et belles lettres, 4 Google Scholar, 324–33.
Euler, L. (1765). Theoria motus corporum solidorum. Rostock and Greifswald, 1765 Google Scholar.
Flores, F. (1999). Einstein's theory of theories and types of theoretical explanation. International Studies in the Philosophy of Science, 13 CrossRef | Google Scholar, 123–34.
Fock, V. (1959). The Theory of Space, Time, and Gravitation, transl. Kemmer, N.. London Google Scholar: Pergamon Press.
Friedman, M. (1983). Foundations of Space-time Theories. Princeton, NJ Google Scholar: Princeton University Press.
Friedman, M. (1990). Kant and Newton: why gravity is essential to matter. In Philosophical Perspectives on Newtonian Science, eds Bricker, P. and Hughes, R. I. G.. Cambridge, MA Google Scholar: MIT Press.
Friedman, M. (1992). Kant and the Exact Sciences. Cambridge, MA Google Scholar: Harvard University Press.
Friedman, M. (1999a). Geometry, convention, and the relativized a priori: Reichenbach, Schlick, and Carnap. In Reconsidering Logical Positivism. Cambridge CrossRef | Google Scholar: Cambridge University Press, pp. 59–70.
Friedman, M. (1999b). Poincaré's conventionalism and the logical positivists. In Reconsidering Logical Positivism. Cambridge CrossRef | Google Scholar: Cambridge University Press, pp. 71–86.
Friedman, M. (1999c). Geometry, construction, and intuition in Kant and his successors. In Between Logic and Intuition: Essays in Honor of Charles Parsons, eds Scher, G. and Tieszen, R.. Cambridge Google Scholar: Cambridge University Press.
Friedman, M. (2002a). Geometry as a branch of physics: background and context for Einstein's “Geometry and Experience”. In Reading Natural Philosophy: Essays in the History and Philosophy of Science and Mathematics to Honor Howard Stein on his 70th Birthday, ed. Malament, D.. Chicago Google Scholar: Open Court Press.
Friedman, M. (2002b). The Dynamics of Reason: the 1999 Kant Lectures at Stanford University. Chicago Google Scholar: University of Chicago Press.
Galileo, (1632 [1996]). Dialogo Sopra I Due Massimi Sistemi del Mondo – Ptolemaico e Copernicano. Florence, 1632. Reprint, Milan Google Scholar: Oscar Mondadori.
Geroch, R. (1978). General Relativity from A to B. Chicago Google Scholar: University of Chicago Press.
Hall, A. R. and Hall, M. B. (eds) (1962). Unpublished Scientific Papers of Isaac Newton. Cambridge Google Scholar: Cambridge University Press.
Hawking, S. and Ellis, G. F. R. (1973). The Large-Scale Structure of Space-Time. Cambridge CrossRef | Google Scholar: Cambridge University Press.
Helmholtz, H. (1868). Über die Thatsachen, die der Geometrie zum Grunde liegen. Nachrichten von der königlichen Gesellschaft der Wissenschaften zu Göttingen, 9 Google Scholar, 193–221. Reprinted in Wissenschaftliche Abhandlungen, 2, 618–39.
Helmholtz, H. (1870). Ueber den Ursprung und die Bedeutung der geometrischen Axiome. In Vorträge und Reden, 2 vols. Braunschweig Google Scholar: Vieweg und Sohn, pp. 1–31.
Helmholtz, H. (1878). Die Thatsachen in der Wahrnehmung. In Vorträge und Reden, 2 vols. Braunschweig Google Scholar: Vieweg und Sohn, pp. 215–47.
Helmholtz, H. (1887). Zählen und Messen, erkenntnisstheoretische betrachtet. Wissenschaftliche Abhandlungen, vol. 3 Google Scholar. Leipzig: J. A. Barth, pp. 356–91.
Helmholtz, H. (1921). Schriften zur Erkenntnistheorie, eds Hertz, P. and Schlick, M.. Berlin Google Scholar: Springer-Verlag.
Hughes, R. I. G. (1987). The Structure and Interpretation of Quantum Mechanics. Cambridge Google Scholar: Cambridge University Press.
Kant, I. (1764 [1911]). Untersuchung ueber die Deutlichkeit der Grundsaetze der naturlichen Theologie und der Moral (the “Prize Essay”). In Gesammelte Schriften. Akademie Ausgabe, Berlin Google Scholar: Georg Reimer, vol. 2, pp. 273–301.
Kant, I. (1768 [1911]). Von dem ersten Grunde des Unterschiedes der Gegenden im Raume. In Gesammelte Schriften. Akademie Ausgabe, Berlin Google Scholar: Georg Reimer, vol. 2, pp. 375–83.
Kant, I. (1770). De mundi sensibilis atque intelligibilis forma et principiis. In Gesammelte Schriften. Akademie Ausgabe, Berlin Google Scholar: Georg Reimer, vol. 2, pp. 385-419.
Kant, I. (1783). Prolegomena zu einer jeden künftigen Metaphysik die als Wissenschaft wird auftreten können. In Gesammelte Schriften. Akademie Ausgabe, Berlin Google Scholar: Georg Reimer, vol. 4.
Kant, I. (1786 [1911]). Metaphysische Anfangsgründe der Naturwissenschaft. In Gesammelte Schriften. Akademie Ausgabe, Berlin Google Scholar: Georg Reiner, vol. 4, pp. 465–565.
Kant, I. (1787 [1956]). Kritik der reinen Vernunft. Reprint, Berlin Google Scholar: Felix Meiner Verlag.
Klein, F. (1872). Vergleichende Betrachtungen über neuere geometrische Forschungen. Erlangen Google Scholar: A. Duchert.
Kretschmann, E. (1917). Ueber die physikalischen Sinn der Relativitätspostulaten. Annalen der Physik, (4) 53 Google Scholar, 575-614.
Kuhn, T. (1970a). The Structure of Scientific Revolutions, 2nd edn. Chicago Google Scholar: University of Chicago Press.
Kuhn, T. (1970b). Logic of discovery or psychology of research? In Criticism and the Growth of Knowledge, eds Lakatos, I. and Musgrave, A.. Cambridge CrossRef | Google Scholar: Cambridge University Press.
Kuhn, T. (1977). A function for thought-experiments. In The Essential Tension. Chicago Google Scholar: University of Chicago Press.
Lange, L. (1885). Ueber das Beharrungsgesetz. Berichte der Königlichen Sachsischen Gesellschaft der Wissenschaften zu Leipzig, Mathematisch-physische Classe, 37 Google Scholar, 333–51.
Leibniz, G. W. (1694). Letter to C. Huygens. In Die mathematische Schriften von Gottfried Wilhelm Leibniz. Berlin, 1849–55. Reprint, Hildeshein Google Scholar: Georg Olms, vol. II, pp. 179–85.
Leibniz, G. W. (1695 [1960]). Systeme nouveau de la nature et de la communication des substances, aussi bien que l'union qu'il y a entre l'ame le corps. In Die philosophischen Schriften von Gottfried Wilhelm Leibnitz. Berlin, 1875–90. Reprint, Hildeshein Google Scholar: Georg Olms, vol. IV, pp. 477–87.
Leibniz, G. W. (1699). Letter to B. de Volder. In Die philosophischen Schriften von Gottfried Wilhelm Leibnitz. Berlin, 1875-90. Reprint, Hildeshein Google Scholar: Georg Olms, pp. 168–70.
Leibniz, G. W. (1716). Correspondence with S. Clarke. In Die philosophischen Schriften von Gottfried Wilhelm Leibnitz. Berlin, 1875-90. Reprint, Hildeshein Google Scholar: Georg Olms, vol. VII, pp. 345–440.
Lorentz, H. A. (1895). Michelson's interference experiment. In The Principle of Relativity, eds Einstein, A., Lorentz, H. A., Minkowski, H. and Weyl, H., transl. Perrett, W. and Jeffery, G. B.. New York Google Scholar: Dover Books, pp. 3–7.
Lorentz, H. A. (1904). Electromagnetic phenomena in a system moving with any velocity less than that of light. In The Principle of Relativity, eds Einstein, A., Lorentz, H. A., Minkowski, H. and Weyl, H., transl. Perrett, W. and Jeffery, G. B.. New York Google Scholar: Dover Books, pp. 11–34.
Mach, E. (1883). Die Mechanik in ihrer Entwickelung, historisch-kritisch dargestellt. Leipzig Google Scholar: Brockhaus.
Mach, E. (1889). Die Mechanik in ihrer Entwickelung, historisch-kritisch dargestellt, 2nd edn. Leipzig Google Scholar: Brockhaus.
Magnani, L. (2002). Philosophy and Geometry: Theoretical and Historical Issues. Western Ontario Series in Philosophy of Science, vol. 66. Dordrecht Google Scholar: Kluwer.
Malament, D. (1986). Newtonian gravity, limits, and the geometry of space. In From Quarks to Quasars: Philosophical Problems of Modern Physics, ed. Colodny, R.. Pittsburgh Google Scholar: Pittsburgh University Press.
Maxwell, J. (1877). Matter and Motion. New York: Dover Publications (reprint 1952 Google Scholar).
Mill, J. S. (1843). A System of Logic. London Google Scholar: Parker and Son.
Minkowski, H. (1908). Die Grundgleichungen für die elektromagnetischen Vorgänge in bewegten Körper. Nachrichten der königlichen Gesellschaft der Wissenschaften zu Göttingen, mathematisch-physische Klasse Google Scholar, pp. 53–111.
Minkowski, H. (1909). Raum und Zeit. Physikalische Zeitschrift, 10 Google Scholar, 104–11.
Misner, C., Thorne, K. and Wheeler, J. A. (1973). Gravitation. New York Google Scholar: W. H. Freeman.
Nagel, E. (1939). The formation of modern conceptions of formal logic in the development of geometry. Osiris, 7 CrossRef | Google Scholar, 142–224.
Neumann, C. (1870). Ueber die Principien der Galilei-Newton'schen Theorie. Leipzig Google Scholar: B. G. Teubner.
Newcombe, S. (1910). Light. In Encyclopaedia Britannica, 11th edn, vol. 16, sect. III, pp. 623–6. Google Scholar
Newton, I. (1704 [1952]). Opticks. London. Reprint, New York Google Scholar: Dover Publications.
Newton, I. (1726 [1999]). The Principia: Mathematical Principles of Natural Philosophy, transl. Cohen, I. B. and Whitman, A.. Berkeley and Los Angeles Google Scholar: University of California Press.
Newton, I. (1729 [1962]). The System of the World. In Sir Isaac Newton's Mathematical Principles of Natural Philosophy and his System of the World, ed. Cajori, F., transl. Motte, A., 2 vols. Berkeley Google Scholar: University of California Press.
Norton, J. (1989a). What was Einstein's principle of equivalence? In Einstein and the History of General Relativity. Einstein Studies, vol. 1, eds Howard, D. and Stachel, J.. Boston Google Scholar: Birkhäuser, pp. 5–47.
Norton, J. (1989b). How Einstein found his field equations. In Einstein and the History of General Relativity. Einstein Studies, vol. 1, eds Howard, D. and Stachel, J.. Boston Google Scholar: Birkhäuser, pp. 101–59.
Poincaré, H. (1899a). Des fondements de la géométrie; a propos d'un livre de M. Russell. Revue de Metaphysique et de Morale, VII Google Scholar, 251–79.
Poincaré, H. (1899b). Des fondements de la géométrie; réponse à M. Russell. Revue de Metaphysique et de Morale, VIII Google Scholar, 73–86.
Poincaré, H. (1902). La Science et L'Hypothèse. Paris Google Scholar: Flammarion.
Poincaré, H. (1905). Sur la dynamique de l'électron. Comptes rendues de l'Académie des Sciences, 140 Google Scholar, 1504–8.
Poincaré, H. (1913). Dernières Pensées. Paris Google Scholar: Flammarion.
Quine, W. V. O. (1953). Two dogmas of empiricism. In From a Logical Point of View. New York Google Scholar: Harper, pp. 20–46.
Reichenbach, H. (1924). Die Bewegungslehre bei Newton, Leibniz, und Huyghens. Kantstudien, 29 Google Scholar, 239–45.
Reichenbach, H. (1949). The philosophical significance of relativity. In Albert Einstein, Philosopher-Scientist, ed. Schilpp, P. A.. Chicago Google Scholar: Open Court, pp. 289–311.
Reichenbach, H. (1957). The Philosophy of Space and Time, transl. Reichenbach, M.. New York: Dover Publications. (Originally published as Philosophie der Raum-Zeit-Lehre, Berlin, 1927 Google Scholar.)
Riemann, B. (1867). Ueber die Hypothesen, die der Geometrie zu Grunde liegen. In The Collected Works of Bernhard Riemann, ed. Weber, H.. Leipzig: B. G. Teubner, 1902, pp. 272–87. Reprint, New York: Dover Publications, 1956 Google Scholar.
Russell, B. (1897). An Essay on the Foundations of Geometry. Cambridge Google Scholar: Cambridge University Press.
Russell, B. (1899). Sur les axiomes de la géométrie. Revue de Metaphysique et de Morale, VII Google Scholar, 684–707.
Russell, B. (1927). The Analysis of Matter. Cambridge Google Scholar: Cambridge University Press.
Schlick, M. (1917). Raum und Zeit in der gegenwärtigen Physik. Zur Einführung in das Verständnis der Relativitäts- und Gravitationstheorie.Berlin CrossRef | Google Scholar.
Sklar, L. (1977). Space, Time and Spacetime. Berkeley, CA Google Scholar: University of California Press.
Smith, G. E. (2003a). How Newton's Principia changed physics. Unpublished manuscript. Google Scholar
Smith, G. E. (2003b). Newton's Principia. Unpublished lecture notes, Tufts University. Google Scholar
Spivak, M. (1967). A Comprehensive Introduction to Differential Geometry. Berkeley, CA Google Scholar: Publish or Perish Press.
Stachel, J. (1989a). The rigidly rotating disk as the “missing link” in the history of general relativity. In Einstein and the History of General Relativity. Einstein Studies, vol. 1, eds Howard, D. and Stachel, J.. Boston Google Scholar: Birkhäuser, pp. 48–62.
Stachel, J. (1989b). Einstein's search for general covariance. In Einstein and the History of General Relativity. Einstein Studies, vol. 1, eds Howard, D. and Stachel, J.. Boston Google Scholar: Birkhäuser, pp. 63–100.
Stachel, J. (2002a). “What song the sirens sang”: How did Einstein discover special relativity? In Einstein from B to Z. Einstein Studies, vol. 9. Boston Google Scholar: Birkhäuser, pp. 157–70.
Stachel, J. (2002b). The genesis of general relativity. In Einstein from B to Z. Einstein Studies, vol. 9. Boston Google Scholar: Birkhäuser, pp. 233-4.
Stachel, J. (2002c). Einstein and Newton. In Einstein from B to Z. Einstein Studies, vol. 9. Boston Google Scholar: Birkhäuser, pp. 447-52.
Stachel, J. (2002d). Einstein from B to Z. Einstein Studies, vol. 9. Boston Google Scholar: Birkhäuser.
Stein, H. (1967). Newtonian space-time. Texas Quarterly, 10 Google Scholar, 174–200.
Stein, H. (1977). Some philosophical prehistory of general relativity. In Foundations of Space-Time Theories, Minnesota Studies in Philosophy of Science, vol. 8, eds Earman, J., Glymour, C. and Stachel, J.. Minneapolis Google Scholar: University of Minnesota Press, pp. 3–49.
Stein, H. (2002). Newton's metaphysics. In The Cambridge Companion to Newton, eds Cohen, I. B. and Smith, G. E.. Cambridge Google Scholar: Cambridge University Press.
Synge, J. L. (1960). Relativity: The General Theory. Amsterdam Google Scholar: North-Holland.
Taylor, E. and Wheeler, J. A. (1978). Spacetime Physics. New York Google Scholar: Wiley.
Thomson, J. (1884). On the law of inertia; the principle of chronometry; and the principle of absolute clinural rest, and of absolute rotation. Proceedings of the Royal Society of Edinburgh, 12 Google Scholar, 568–78.
Torretti, R. (1977). Philosophy of Geometry from Riemann to Poincaré. Dordrecht Google Scholar: Riedel.
Torretti, R. (1983). Relativity and Geometry. Oxford Google Scholar: Pergamon Press.
Torretti, R. (1989). Creative Understanding. Chicago Google Scholar: University of Chicago Press.
Trautman, A. (1965). Foundations and current problems of general relativity. In Lectures on General Relativity. Brandeis 1964 Summer Institute on Theoretical Physics, vol. 1, eds Trautman, A., Pirani, F. A. E. and Bondi, H.. Englewood Cliffs, NJ Google Scholar: Prentice-Hall.
Trautman, A. (1966). The general theory of relativity. Soviet Physics Uspekhi, 89 CrossRef | Google Scholar, 319–39.
Truesdell, C. (1967). Reactions of late Baroque mechanics to success, conjecture, error, and failure in Newton's Principia. Texas Quarterly, 10 Google Scholar, 238–58.
Fraassen, B. (1989). Laws and Symmetries. Oxford CrossRef | Google Scholar: Oxford University Press.
Weyl, H. (1918). Raum-Zeit-Materie. Vorlesung über allgemeine Relativitätstheorie. Berlin Google Scholar: Springer-Verlag.
Weyl, H. (1927). Philosophie der Mathematik und der Naturwissenschaften. In Oldenburg's Handbuch der Philosophie. Munich and Berlin Google Scholar: Verlag R. Oldenburg.
Will, C. (1993). Theory and Experiment in Gravitational Physics, revised edn. Cambridge CrossRef | Google Scholar: Cambridge University Press.
Wilson, C. (2002). Newton and celestial mechanics. In The Cambridge Companion to Newton, eds Cohen, I. B. and Smith, G. E.. Cambridge Google Scholar: Cambridge University Press.

Metrics

Altmetric attention score

Usage data cannot currently be displayed.