Skip to main content Accessibility help
×
Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-25T18:17:37.773Z Has data issue: false hasContentIssue false

16 - Spatiotemporal scaling of species richness: patterns, processes, and implications

Published online by Cambridge University Press:  05 August 2012

Ethan P. White
Affiliation:
Utah State University, University of Arizona, University of New Mexico
David Storch
Affiliation:
Charles University, Prague
Pablo Marquet
Affiliation:
Pontificia Universidad Catolica de Chile
James Brown
Affiliation:
University of New Mexico
Get access

Summary

The resemblance between time and space, in its simplest form, may be seen by driving a stake into the open water of a lake and then taking a transect toward the shore. We pass first through planktonic vegetation, then perhaps water lilies, then marsh, then grassland, then a succession of forest stages to climax forest. But we can pass through the same succession in the same order without moving at all. We may just sit by the stake for a few years or centuries and the seral stages will come to us one after the other as the lake fills in or drains.

Frank W. Preston (1960)

Introduction

Understanding observed patterns of species diversity is a major focus of ecological research (e.g. Hutchinson, 1959; Brown, 1981; Gaston, 2000). However, it is increasingly well established that observed patterns and correlates of species richness are strongly dependent on the spatial scale of analysis (e.g. Levin, 1992; Wright, Currie & Maurer, 1993; Mittelbach et al., 2001; Rahbek & Graves, 2001). This dependence results from differences in how species richness changes with the area sampled (Scheiner et al., 2000; Chase & Leibold, 2002; Lyons & Willig, 2002).

There are literally hundreds of studies on the effects of spatial scale on species richness (the species–area relationship), and numerous additional studies on spatial species turnover (e.g. Connor & McCoy, 1979; Rosenzweig, 1995; Koleff, Gaston & Lennon, 2003).

Type
Chapter
Information
Scaling Biodiversity , pp. 325 - 346
Publisher: Cambridge University Press
Print publication year: 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adler, P. B. (2004). Neutral models fail to reproduce observed species-time and species-area relationships in Kansas grasslands. Ecology, 85, 1265–1272.CrossRefGoogle Scholar
Adler, P. B. & Lauenroth, W. K. (2003). The power of time: spatiotemporal scaling of species diversity. Ecology Letters, 6, 749–756.CrossRefGoogle Scholar
Adler, P. B., White, E. P., Lauenroth, W. K., Kaufman, D. M., Rassweiler, A. & Rusak, J. A. (2005). Evidence for a general species-time-area relationship. Ecology, 86, 2032–2039.CrossRefGoogle Scholar
Allen, A. P. & White, E. P. (2003). Interactive effects of range size and plot area on species-area relationships. Evolutionary Ecology Research, 5, 493–499.Google Scholar
Allen, A. P., Brown, J. H. & Gillooly, J. F. (2002). Global biodiversity, biochemical kinetics, and the energetic-equivalence rule. Science, 297, 1545–1548.CrossRefGoogle ScholarPubMed
Arrhenius, O. (1921). Species and area. Journal of Ecology, 9, 95–99.CrossRefGoogle Scholar
Bell, G. (2001). Ecology: neutral macroecology. Science, 293, 2413–2418.CrossRefGoogle ScholarPubMed
Blackburn, T. M. & Gaston, K. J. (1996). Spatial patterns in the species richness of birds in the New World. Ecography, 19, 369–376.CrossRefGoogle Scholar
Brewer, A. & Williamson, M. (1994). A new relationship for rarefaction. Biodiversity and Conservation, 3, 373–379.CrossRefGoogle Scholar
Brown, J. H. (1981). Two decades of homage to Santa-Rosalia: toward a general theory of diversity. American Zoologist, 21, 877–888.CrossRefGoogle Scholar
Brown, J. H. (1998). The desert granivory experiments at Portal. In Experimental Ecology, ed. Resetarits, W. J. J. & Bernardo, J., pp. 71–95. New York: Oxford University Press.Google Scholar
Brown, J. H., Ernest, S. K. M., Parody, J. M. & Haskell, J. P. (2001). Regulation of diversity: maintenance of species richness in changing environments. Oecologia, 126, 321–332.CrossRefGoogle ScholarPubMed
Brown, J. H., Gupta, V. K., Li, B. L., Milne, B. T., Restrepo, C. & West, G. B. (2002). The fractal nature of nature: power laws, ecological complexity and biodiversity. Philosophical Transactions of the Royal Society of London, Series B, 357, 619–626.CrossRefGoogle ScholarPubMed
Bunge, J. & Fitzpatrick, M. (1993). Estimating the number of species: a review. Journal of the American Statistical Association, 88, 364–373.Google Scholar
Burnham, K. P. & Anderson, D. R. (1998). Model Selection and Inference: a Practical Information-theoretic Approach. New York: Springer.CrossRefGoogle Scholar
Calder, W. A. (1984). Size, Function, and Life History. Mineola, NY: Dover.Google Scholar
Cam, E., Nichols, J. D., Hines, J. E., Sauer, J. R., Alpizar-Jara, R. & Flather, C. H. (2002). Disentangling sampling and ecological explanations underlying species-area relationships. Ecology, 83, 1118–1130.Google Scholar
Chalcraft, D. R., Williams, J. W., Smith, M. D. & Willig, M. R. (2004). Scale dependence in the relationship between species richness and productivity: the role of spatial and temporal turnover. Ecology, 85, 2701–2708.CrossRefGoogle Scholar
Chase, J. M. & Leibold, M. A. (2002). Spatial scale dictates the productivity-biodiversity relationship. Nature, 416, 427–430.CrossRefGoogle ScholarPubMed
Clarke, A. & Lidgard, S. (2000). Spatial patterns of diversity in the sea: bryozoan species richness in the North Atlantic. Journal of Animal Ecology, 69, 799–814.CrossRefGoogle ScholarPubMed
Coleman, B. D. (1981). On random placement and species-area relations. Mathematical Biosciences, 54, 191–215.CrossRefGoogle Scholar
Connor, E. F. & McCoy, E. D. (1979). Statistics and biology of the species-area relationship. American Naturalist, 113, 791–833.CrossRefGoogle Scholar
Diamond, J. M. (1969). Avifaunal equilibria and species turnover rates on the channel islands of California. Proceedings of the National Academy of Sciences of the United States of America, 64, 57–63.CrossRefGoogle ScholarPubMed
Ernest, S. K. M. & Brown, J. H. (2001). Homeostasis and compensation: the role of species and resources in ecosystem stability. Ecology, 82, 2118–2132.CrossRefGoogle Scholar
Fisher, R. A., Corbet, A. S. & Williams, C. B. (1943). The relation between the number of species and the number of individuals in a random sample of an animal population. Journal of Animal Ecology, 12, 42–58.CrossRefGoogle Scholar
Gaston, K. J. (2000). Global patterns in biodiversity. Nature, 405, 220–227.CrossRefGoogle ScholarPubMed
Gleason, H. A. (1922). On the relation between species and area. Ecology, 3, 158–162.CrossRefGoogle Scholar
Gotelli, N. J. & Colwell, R. K. (2001). Quantifying biodiversity: procedures and pitfalls in the measurement and comparison of species richness. Ecology Letters, 4, 379–391.CrossRefGoogle Scholar
Grinnell, J. (1922). The role of the “accidental”. Auk, 39, 373–380.CrossRefGoogle Scholar
Gross, K. L., Willig, M. R., Gough, L., Inouye, R. & Cox, S. B. (2000). Patterns of species density and productivity at different spatial scales in herbaceous plant communities. Oikos, 89, 417–427.CrossRefGoogle Scholar
Hadly, E. A. & Maurer, B. A. (2001). Spatial and temporal patterns of species diversity in montane mammal communities of western North America. Evolutionary Ecology Research, 3, 477–486.Google Scholar
Harte, J., Conlisk, E., Ostling, A., Green, J. L. & Smith, A. B. (2005). A theory of spatial-abundance and species-abundance distributions in ecological communities at multiple scales. Ecological Monographs, 75, 179–197.CrossRefGoogle Scholar
Hawkins, B., Field, R., Cornell, H., et al. (2003). Energy, water, and broad-scale geographic patterns of species richness. Ecology, 84, 3105–3117.CrossRefGoogle Scholar
He, F. L. & Legendre, P. (1996). On species-area relations. American Naturalist, 148, 719–737.CrossRefGoogle Scholar
He, F. L. & Legendre, P. (2002). Species diversity patterns derived from species-area models. Ecology, 83, 1185–1198.Google Scholar
Hubbell, S. P. (2001). The Unified Neutral Theory of Biodiversity and Biogeography. Princeton, NJ: Princeton University Press.Google Scholar
Hurlbert, S. H. (1971). The nonconcept of species diversity: a critique and alternative parameters. Ecology, 52, 577–586.CrossRefGoogle ScholarPubMed
Hutchinson, G. E. (1959). Homage to Santa Rosalia: or, Why are there so many animals? American Naturalist, 93, 145–159.CrossRefGoogle Scholar
Inouye, R. S. (1998). Species-area curves and estimates of total species richness in an old-field chronosequence. Plant Ecology, 137, 31–40.CrossRefGoogle Scholar
Koleff, P., Gaston, K. J. & Lennon, J. J. (2003). Measuring beta diversity for presence-absence data. Journal of Animal Ecology, 72, 367–382.CrossRefGoogle Scholar
Lekve, K., Boulinier, T., Stenseth, N. C., et al. (2002). Spatio-temporal dynamics of species richness in coastal fish communities. Proceedings of the Royal Society of London, Series B, 269, 1781–1789.CrossRefGoogle ScholarPubMed
Lennon, J. J., Koleff, P., Greenwood, J. J. D. & Gaston, K. J. (2001). The geographical structure of British bird distributions: diversity, spatial turnover and scale. Journal of Animal Ecology, 70, 966–979.CrossRefGoogle Scholar
Lennon, J. J., Kunin, W. E. & Hartley, S. (2002). Fractal species distributions do not produce power-law species-area relationships. Oikos, 97, 378–386.CrossRefGoogle Scholar
Levin, S. A. (1992). The problem of pattern and scale in ecology. Ecology, 73, 1943–1967.CrossRefGoogle Scholar
Lomolino, M. V. (2000). Ecology's most general, yet protean pattern: the species-area relationship. Journal of Biogeography, 27, 17–26.CrossRefGoogle Scholar
Lyons, S. K. & Willig, M. R. (2002). Species richness, latitude, and scale-sensitivity. Ecology, 83, 47–58.CrossRefGoogle Scholar
MacArthur, R. H. (1964). Environmental factors affecting bird species diversity. American Naturalist, 98, 387–396.CrossRefGoogle Scholar
Maurer, B. A. & McGill, B. J. (2004). Neutral and non-neutral macroecology. Basic and Applied Ecology, 5, 413–422.CrossRefGoogle Scholar
McGill, B. (2003). Strong and weak tests of macroecological theory. Oikos, 102, 679–685.CrossRefGoogle Scholar
McKinney, M. L. & Frederick, D. L. (1999). Species-time curves and population extremes: ecological patterns in the fossil record. Evolutionary Ecology Research, 1, 641–650.Google Scholar
Mittelbach, G. G., Steiner, C. F., Scheiner, S. M., et al. (2001). What is the observed relationship between species richness and productivity? Ecology, 82, 2381–2396.CrossRefGoogle Scholar
Morse, D. R., Lawton, J. H., Dodson, M. M. & Williamson, M. H. (1985). Fractal dimension of vegetation and the distribution of arthropod body lengths. Nature, 314, 731–733.CrossRefGoogle Scholar
Nichols, J. D., Hines, J. E., Sauer, J. R., Fallon, F. W., Fallon, J. E. & Heglund, P. J. (2000). A double-observer approach for estimating detection probability and abundance from point counts. Auk, 117, 393–408.CrossRefGoogle Scholar
Parody, J. M., Cuthbert, F. J. & Decker, E. H. (2001). The effect of 50 years of landscape change on species richness and community composition. Global Ecology and Biogeography, 10, 305–313.CrossRefGoogle Scholar
Peters, R. H. (1983). The Ecological Implications of Body Size. New York: Cambridge University Press.CrossRefGoogle Scholar
Plotkin, J. B., Potts, M. D., Leslie, N., Manokaran, N., LaFrankie, J. & Ashton, P. S. (2000). Species-area curves, spatial aggregation, and habitat specialization in tropical forests. Journal of Theoretical Biology, 207, 81–99.CrossRefGoogle ScholarPubMed
Preston, F. W. (1948). The commonness, and rarity, of species. Ecology, 29, 254–283.CrossRefGoogle Scholar
Preston, F. W. (1960). Time and space and the variation of species. Ecology, 41, 611–627.CrossRefGoogle Scholar
Rahbek, C. & Graves, G. R. (2001). Multiscale assessment of patterns of avian species richness. Proceedings of the National Academy of Sciences of the United States of America, 98, 4534–4539.CrossRefGoogle ScholarPubMed
Rohde, K. (1992). Latitudinal gradients in species-diversity: the search for the primary cause. Oikos, 65, 514–527.CrossRefGoogle Scholar
Rosenzweig, M. L. (1995). Species Diversity in Space and Time. New York: Cambridge University Press.CrossRefGoogle Scholar
Rosenzweig, M. L. (1998). Preston's ergodic conjecture: the accumulation of species in space and time. In Biodiversity Dynamics, ed. Mckinney, M. L. & Drake, J. A., pp. 311–348. New York: Columbia University Press.Google Scholar
Russell, G. J. (1998). Turnover dynamics across ecological and geological scales. In Biodiversity Dynamics, ed. Mckinney, M. L. & Drake, J. A., pp. 377–404. New York: Columbia University Press.Google Scholar
Russell, G. J., Diamond, J. M., Pimm, S. L. & Reed, T. M. (1995). A century of turnover: community dynamics at 3 timescales. Journal of Animal Ecology, 64, 628–641.CrossRefGoogle Scholar
Sanders, H. L. (1968). Marine benthic diversity: a comparative study. American Naturalist, 102, 243–282.CrossRefGoogle Scholar
Scheiner, S. M., Cox, S. B., Willig, M., Mittelbach, G. G., Osenberg, C. & Kaspari, M. (2000). Species richness; species-area curves and Simpson's Paradox. Evolutionary Ecology Research, 2, 791–802.Google Scholar
Schmidt-Nielsen, K. (1984). Scaling: Why is Animal Size So Important. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Šizling, A. & Storch, D. (2004). Power-law species-area relationships and self-similar species distributions within finite areas. Ecology Letters, 7, 60–68.CrossRefGoogle Scholar
Stevens, R. & Willig, M. (2002). Geographical ecology at the community level: perspectives on the diversity of new world bats. Ecology, 83, 545–560.CrossRefGoogle Scholar
Storch, D., Gaston, K. J. & Cepak, J. (2002). Pink landscapes: 1/f spectra of spatial environmental variability and bird community composition. Proceedings of the Royal Society of London, Series B, 269, 1791–1796.CrossRefGoogle ScholarPubMed
Storch, D., Evans, K. L. & Gaston, K. J. (2005). The species-area-energy relationship. Ecology Letters, 8, 487–492.CrossRefGoogle ScholarPubMed
Venables, W. N. & Ripley, B. D. (1999). Modern Applied Statistics with S-PLUS. New York: Springer.CrossRefGoogle Scholar
White, E. P. (2004). Two-phase species-time relationships in North American land birds. Ecology Letters, 7, 329–336.CrossRefGoogle Scholar
White, E. P., Adler, P. B., Lauenroth, W. K., et al. (2006). A comparison of the species-time relationship across ecosystems and taxonomic groups. Oikos, 112, 185–195.CrossRefGoogle Scholar
Williams, C. B. (1943). Area and number of species. Nature, 152, 264–267.CrossRefGoogle Scholar
Williams, C. B. (1964). Patterns in the Balance of Nature. London: Academic Press.Google Scholar
Williamson, M. (1987). Are communities ever stable? In Colonization, Succession, and Stability, ed. Gray, A. J., Crawley, M. J. & Edwards, P. J., pp. 353–371. Oxford: Blackwell Scientific Publications.Google Scholar
Williamson, M. (1988). Relationship of species number to area, distance and other variables. In Analytical Biogeography, ed. Myers, A. A. & Giller, P. S., pp. 91–115. New York: Chapman and Hall.CrossRefGoogle Scholar
Williamson, M., Gaston, K. J. & Lonsdale, W. M. (2001). The species-area relationship does not have an asymptote! Journal of Biogeography, 28, 827–830.CrossRefGoogle Scholar
Wright, D. H. (1983). Species-energy theory: an extension of species-area theory. Oikos, 41, 496–506.CrossRefGoogle Scholar
Wright, D. H., Currie, D. J. & Maurer, B. A. (1993). Energy supply and patterns of species richness on local and regional scales. In Species Diversity in Ecological Communities, ed. Ricklefs, R. E. & Schluter, D., pp. 66–74. Chicago: University of Chicago Press.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×