Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-22T19:03:03.993Z Has data issue: false hasContentIssue false

8 - Mechanisms of immunity to Salmonella infections

Published online by Cambridge University Press:  04 December 2009

Duncan Maskell
Affiliation:
University of Cambridge
Pietro Mastroeni
Affiliation:
Senior Lecturer in the Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 OES, UK
Pietro Mastroeni
Affiliation:
University of Cambridge
Get access

Summary

INTRODUCTION

Salmonella enterica affects humans and animals worldwide. It can be found in sewage-, sea-, and river- water and can contaminate food. Asymptomatic carriage in domestic animals can result in the introduction of the bacteria into the food chain.

Interest in understanding the mechanisms of pathogenesis and immunity that operate in S. enterica infections is twofold. Firstly, development of vaccines against salmonellosis has been too empirical due to insufficient understanding of how the host controls these infections, and how the bacteria evade immune surveillance. The fact that S. enterica-based vaccines are also being evaluated as systems to deliver recombinant antigens or DNA vaccines to the immune system and as new tools for the therapy of cancer has further increased the need to study how these vaccines work (Chabalgoity et al., 2002; Mastroeni et al., 2001; Reisfeld et al., 2004).

Secondly, S. enterica provides a model to understand how bacterial pathogens interact with the immune system. S. enterica is an intriguing bacterium in the way it interacts with the immune system and the immunological requirements for host resistance to this bacterium are affected by a very large number of variables.

MODELS FOR THE STUDY OF IMMUNITY TO S. ENTERICA

The study of the immunobiology of S. enterica infections has been facilitated by the availability of reliable models and by improved genetic tools that allow identification of polymorphic differences or mutations in genes involved in immune functions.

Type
Chapter
Information
Salmonella Infections
Clinical, Immunological and Molecular Aspects
, pp. 207 - 254
Publisher: Cambridge University Press
Print publication year: 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adamo, R., Sokol, S., Soong, G., Gomez, M. and Prince, A. (2003). P. aeruginosa flagella activate airway epithelial cells through asialoGM1 and TLR2 as well as TLR5. Am J Respir Cell Mol Biol, 30, 627–34.CrossRefGoogle Scholar
Ramadi, B. K., Al-Dhaheri, M. H., Mustafa, N.et al. (2001). Influence of vector-encoded cytokines on anti-Salmonella immunity: divergent effects of interleukin-2 and tumor necrosis factor alpha. Infect Immun, 69, 3980–8.CrossRefGoogle Scholar
Ramadi, B. K., Meissler, J. J.., Huang, D. and Eisenstein, T. K. (1992). Immunosuppression induced by nitric oxide and its inhibition by interleukin-4. Eur J Immunol, 22, 2249–54.CrossRefGoogle Scholar
Altare, F., Lammas, D., Revy, P.et al. (1998). Inherited interleukin 12 deficiency in a child with bacille Calmette-Guerin and Salmonella enteritidis disseminated infection. J Clin Invest, 102, 2035–40.CrossRefGoogle Scholar
Anand, A. J. and Glatt, A. E. (1994). Salmonella osteomyelitis and arthritis in sickle cell disease. Semin Arthritis Rheum, 24, 211–21.CrossRefGoogle ScholarPubMed
Arai, T., Hiromatsu, K., Nishimura, H.et al. (1995). Effects of in vivo administration of anti-IL10 monoclonal antibody on the host defence mechanism against murine Salmonella infection. Immunology, 85, 381–8.Google Scholar
Ashkenazi, S., Cleary, T. G., Murray, B. E., Wanger, A. and Pickering, L. K. (1988). Quantitative analysis and partial characterization of cytotoxin production by Salmonella strains. Infect Immun, 56, 3089–94.Google ScholarPubMed
Bauer, S., Kirschning, C. J., Hacker, H.et al. (2001). Human TLR9 confers responsiveness to bacterial DNA via species-specific CpG motif recognition. Proc Natl Acad Sci USA, 98, 9237–42.CrossRefGoogle ScholarPubMed
Benjamin, W. H., Jr., Hall, P., Roberts, S. J. and Briles, D. E. (1990). The primary effect of the Ity locus is on the rate of growth of Salmonella typhimurium that are relatively protected from killing. J Immunol, 144, 3143–51.Google ScholarPubMed
Beutler, B., Krochin, N., Milsark, I. W., Luedke, C. and Cerami, A. (1986). Control of cachectin (tumor necrosis factor) synthesis: mechanisms of endotoxin resistance. Science, 232, 977–80.CrossRefGoogle ScholarPubMed
Biozzi, G., Howard, J. G., Halpern, B. N., Stiffel, C. and Mouton, D. (1960). The kinetics of blood clearance of isotopically labelled Salmonella enteritidis by the reticuloendothelial system in mice. Immunology, 3, 74–89.Google Scholar
Blackwell, J. M., Goswami, T., Evans, C. A.et al. (2001). SLC11A1 (formerly NRAMP1) and disease resistance. Cell Microbiol, 3, 773–84.CrossRefGoogle ScholarPubMed
Blander, J. M. and Medzhitov, R. (2004). Regulation of phagosome maturation by signals from Toll-like receptors. Science, 304, 1014–18.CrossRefGoogle ScholarPubMed
Bohnoff, M. and Miller, P. (1962). Enhanced susceptibility to Salmonella infection in streptomycin-treated mice. J Infec Dis, 111, 117–27.CrossRefGoogle Scholar
Bonina, L., Costa, G. B. and Mastroeni, P. (1998). Comparative effect of gentamicin and pefloxacin treatment on the late stages of mouse typhoid. New Microbiol, 21, 9–14.Google ScholarPubMed
Casadevall, A. (1998). Antibody-mediated protection against intracellular pathogens. Trends Microbiol, 6, 102–7.CrossRefGoogle ScholarPubMed
Celum, C. L., Chaisson, R. E., Rutherford, G. W., Barnhart, J. L. and Echenberg, D. F. (1987). Incidence of salmonellosis in patients with AIDS. J Infect Dis, 156, 998–1002.CrossRefGoogle ScholarPubMed
Chabalgoity, J. A., Dougan, G., Mastroeni, P. and Aspinall, R. J. (2002). Live bacteria as the basis for immunotherapies against cancer. Expert Rev Vaccines, 1, 495–505.CrossRefGoogle ScholarPubMed
Cirillo, D. M., Valdivia, R. H., Monack, D. M. and Falkow, S. (1998). Macrophage-dependent induction of the Salmonella pathogenicity island 2 type III secretion system and its role in intracellular survival. Mol Microbiol, 30, 175–88.CrossRefGoogle ScholarPubMed
Clare, S., Goldin, R., Hale, C.et al. (2003). Intracellular adhesion molecule 1 plays a key role in acquired immunity to salmonellosis. Infect Immun, 71, 5881–91.CrossRefGoogle Scholar
Collins, F. M. (1969). Effect of specific immune mouse serum on the growth of Salmonella enteritidis in non-vaccinated mice challenged by various routes. J Bacteriol, 97, 667–75.Google Scholar
Collins, F. M. (1974). Vaccines and cell-mediated immunity. Bacteriol Rev, 38, 371–402.Google ScholarPubMed
Conlan, J. W. (1997). Critical roles of neutrophils in host defense against experimental systemic infections of mice by Listeria monocytogenes, Salmonella typhimurium, and Yersinia enterocolitica. Infect Immun, 65, 630–5.Google ScholarPubMed
Jong, R., Altare, F., Haagen, I. A.et al. (1998). Severe mycobacterial and Salmonella infections in interleukin-12 receptor-deficient patients. Science, 280, 1435–8.CrossRefGoogle ScholarPubMed
Denich, K., Borlin, P., O', Hanley P. D., Howard, M. and Heath, A. W. (1993). Expression of the murine interleukin-4 gene in an attenuated aroA strain of Salmonella typhimurium: persistence and immune response in BALB/c mice and susceptibility to macrophage killing. Infect Immun, 61, 4818–27.Google Scholar
Doffinger, R., Dupuis, S., Picard, C.et al. (2002). Inherited disorders of IL12- and IFNγ-mediated immunity: a molecular genetics update. Mol Immunol, 38, 903–9.CrossRefGoogle ScholarPubMed
Doffinger, R., Smahi, A., Bessia, C.et al. (2001). X-linked anhidrotic ectodermal dysplasia with immunodeficiency is caused by impaired NF-κB signaling. Nat Genet, 27, 277–85.CrossRefGoogle ScholarPubMed
Doucet, F. and Bernard, S. (1997). In vitro cellular responses from sheep draining lymph node cells after subcutaneous inoculation with Salmonella abortusovis. Vet Res, 28, 165–78.Google ScholarPubMed
Dunlap, N. E., Benjamin, W. H., Jr., Berry, A. K., Eldridge, J. H. and Briles, D. E. (1992). A “safe-site” for Salmonella typhimurium is within splenic polymorphonuclear cells. Microb Pathog, 13, 181–90.CrossRefGoogle ScholarPubMed
Dunstan, S. J., Ho, V. A., Duc, C. M.et al. (2001a). Typhoid fever and genetic polymorphisms at the natural resistance- associated macrophage protein 1. J Infect Dis, 183, 1156–60.CrossRefGoogle Scholar
Dunstan, S. J., Stephens, H. A., Blackwell, J. M.et al. (2001b). Genes of the class II and class III major histocompatibility complex are associated with typhoid fever in Vietnam. J Infect Dis, 183, 261–8.CrossRefGoogle Scholar
Dunstan, S. J., Hawn, T. R., Hue, N. T.et al. (2005). Host susceptibility and clinical outcomes in Toll-like receptor 5-deficient patients with typhoid fever in Vietnam. J Infect Dis, 191, 1068–71.CrossRefGoogle ScholarPubMed
Eisenstein, T. K., Deakins, L. W., Killar, L., Saluk, P. H. and Sultzer, B. M. (1982). Dissociation of innate susceptibility to Salmonella infection and endotoxin responsiveness in C3HeB/FeJ mice and other strains in the C3H lineage. Infect Immun, 36, 696–703.Google ScholarPubMed
Eisenstein, T. K., Killar, L. M. and Sultzer, B. M. (1984). Immunity to infection with Salmonella typhimurium: mouse-strain differences in vaccine- and serum-mediated protection. J Infect Dis, 150, 425–35.CrossRefGoogle ScholarPubMed
Emoto, M., Danbara, H. and Yoshikai, Y. (1992). Induction of gamma/delta T-cells in murine salmonellosis by an avirulent but not by a virulent strain of Salmonella choleraesuis. J Exp Med, 176, 363–72.CrossRefGoogle Scholar
Enomoto, A., Nishimura, H. and Yoshikai, Y. (1997). Predominant appearance of NK1.1+ T-cells producing IL4 may be involved in the increased susceptibility of mice with the beige mutation during Salmonella infection. J Immunol, 158, 2268–77.Google Scholar
Eriksson, S., Bjorkman, J., Borg, S.et al. (2000). Salmonella typhimurium mutants that downregulate phagocyte nitric oxide production. Cell Microbiol, 2, 239–50.CrossRefGoogle ScholarPubMed
Eriksson, S., Lucchini, S., Thompson, A., Rhen, M. and Hinton, J. C. (2003). Unravelling the biology of macrophage infection by gene expression profiling of intracellular Salmonella enterica. Mol Microbiol, 47, 103–18.CrossRefGoogle ScholarPubMed
Everest, P., Allen, J., Papakonstantinopoulou, A.et al. (1997). Salmonella typhimurium infections in mice deficient in interleukin-4 production: role of IL4 in infection-associated pathology. J Immunol, 159, 1820–7.Google Scholar
Everest, P., Roberts, M. and Dougan, G. (1998). Susceptibility to Salmonella typhimurium infection and effectiveness of vaccination in mice deficient in the tumor necrosis factor alpha p55 receptor. Infect Immun, 66, 3355–64.Google ScholarPubMed
Fields, P. I., Swanson, R. V., Haidaris, C. G. and Heffron, F. (1986). Mutants of Salmonella typhimurium that cannot survive within the macrophage are avirulent. Proc Natl Acad Sci USA, 83, 5189–93.CrossRefGoogle ScholarPubMed
Forbes, J. R. and Gros, P. (2001). Divalent-metal transport by NRAMP proteins at the interface of host–pathogen interactions. Trends Microbiol, 9, 397–403.CrossRefGoogle ScholarPubMed
Forrest, B. D., LaBrooy, J. T., Beyer, L., Dearlove, C. E. and Shearman, D. J. (1991). The human humoral immune response to Salmonella typhi Ty21a. J Infect Dis, 163, 336–45.CrossRefGoogle ScholarPubMed
Freudenberg, M. A. and Galanos, C. (1991). Tumor necrosis factor alpha mediates lethal activity of killed Gram-negative and Gram-positive bacteria in D-galactosamine-treated mice. Infect Immun, 59, 2110–15.Google ScholarPubMed
Gianella, R. A.., Zamcheck, N. (1971). Salmonella enteritis. Role of reduced gastric secretion in pathogenesis. Am J Dig Dis, 16, 1000.Google Scholar
Gohin, I., Olivier, M., Lantier, I., Pepin, M. and Lantier, F. (1997). Analysis of the immune response in sheep efferent lymph during Salmonella abortusovis infection. Vet Immunol Immunopathol, 60, 111–30.CrossRefGoogle ScholarPubMed
Graham, S. M., Hart, C. A., Molyneux, E. M., Walsh, A. L. and Molyneux, M. E. (2000). Malaria and Salmonella infections: cause or coincidence?Trans R Soc Trop Med Hyg, 94, 227.CrossRefGoogle ScholarPubMed
Groisman, E. A., Parra-Lopez, C., Salcedo, M., Lipps, C. J. and Heffron, F. (1992). Resistance to host antimicrobial peptides is necessary for Salmonella virulence. Proc Natl Acad Sci USA, 89, 11939–43.CrossRefGoogle ScholarPubMed
Guilloteau, L., Buzoni-Gatel, D., Bernard, F., Lantier, I. and Lantier, F. (1993). Salmonella abortusovis infection in susceptible BALB/cby mice: importance of Lyt-2+ and L3T4+ T-cells in acquired immunity and granuloma formation. Microb Pathog, 14, 45–55.CrossRefGoogle ScholarPubMed
Haraga, A. and Miller, S. I. (2003). A Salmonella enterica serovar Typhimurium translocated leucine-rich repeat effector protein inhibits NF-κB-dependent gene expression. Infect Immun, 71, 4052–8.CrossRefGoogle Scholar
Harrington, K. A. and Hormaeche, C. E. (1986). Expression of the innate resistance gene Ity in mouse Kupffer cells infected with Salmonella typhimurium in vitro. Microb Pathog, 1, 269–74.CrossRefGoogle ScholarPubMed
Harrison, J. A., Villarreal-Ramos, B., Mastroeni, P., Demarco, Hormaeche R. and Hormaeche, C. E. (1997). Correlates of protection induced by live Aro- Salmonella typhimurium vaccines in the murine typhoid model. Immunology, 90, 618–25.CrossRefGoogle ScholarPubMed
Hart, C. A., Beeching, N. J., Duerden, B. I.et al. (2000). Infections in AIDS. J Med Microbiol, 49, 947–67.CrossRefGoogle Scholar
Hayashi, F., Smith, K. D., Ozinsky, A.et al. (2001). The innate immune response to bacterial flagellin is mediated by Toll-like receptor 5. Nature, 410, 1099–103.CrossRefGoogle ScholarPubMed
Hemmi, H., Takeuchi, O., Kawai, T.et al. (2000). A Toll-like receptor recognizes bacterial DNA. Nature, 408, 740–5.CrossRefGoogle ScholarPubMed
Hermaszewski, R. A. and Webster, A. D. (1993). Primary hypogammaglobulinaemia: a survey of clinical manifestations and complications. Q J Med, 86, 31–42.Google ScholarPubMed
Hess, J., Ladel, C., Miko, D. and Kaufmann, S. H. (1996). Salmonella typhimurium aroA− infection in gene-targeted immunodeficient mice: major role of CD4+ TCR-alpha beta cells and IFNγ in bacterial clearance independent of intracellular location. J Immunol, 156, 3321–6.Google Scholar
Hirose, K., Nishimura, H., Matsuguchi, T. and Yoshikai, Y. (1999). Endogenous IL15 might be responsible for early protection by natural killer cells against infection with an avirulent strain of Salmonella choleraesuis in mice. J Leukoc Biol, 66, 382–90.CrossRefGoogle ScholarPubMed
Hochadel, J. F. and Keller, K. F. (1977). Protective effects of passively transferred immune T- or B-lymphocytes in mice infected with Salmonella typhimurium. J Infect Dis, 135, 813–23.CrossRefGoogle ScholarPubMed
Hopkins, S. A. and Kraehenbuhl, J. P. (1997). Dendritic cells of the murine Peyer's patches colocalize with Salmonella typhimurium avirulent mutants in the subepithelial dome. Adv Exp Med Biol, 417, 105–9.CrossRefGoogle ScholarPubMed
Hormaeche, C. E. (1979). The natural resistance of radiation chimeras to S. typhimurium C5. Immunology, 37, 329–32.Google ScholarPubMed
Hormaeche, C. E. (1980). The in vivo division and death rates of Salmonella typhimurium in the spleens of naturally resistant and susceptible mice measured by the superinfecting phage technique of Meynell. Immunology, 41, 973–9.Google ScholarPubMed
Hormaeche, C. E. (1990). Dead salmonellae or their endotoxin accelerate the early course of a Salmonella infection in mice. Microb Pathog, 9, 213–18.CrossRefGoogle ScholarPubMed
Hormaeche, C. E., Harrington, K. A. and Joysey, H. S. (1985). Natural resistance to salmonellae in mice: control by genes within the major histocompatibility complex. J Infect Dis, 152, 1050–6.CrossRefGoogle ScholarPubMed
Hormaeche, C. E., Mastroeni, P., Arena, A., Uddin, J. and Joysey, H. S. (1990). T-cells do not mediate the initial suppression of a Salmonella infection in the RES. Immunology, 70, 247–50.Google Scholar
Hormaeche, C. E., Mastroeni, P., Harrison, J. A.et al. (1996). Protection against oral challenge three months after i.v. immunization of BALB/c mice with live Aro Salmonella typhimurium and Salmonella enteritidis vaccines is serotype (species)-dependent and only partially determined by the main LPS O antigen. Vaccine, 14, 251–9.CrossRefGoogle ScholarPubMed
House, D., Chinh, N. T., Hien, T. T.et al. (2002). Cytokine release by lipopolysaccharide-stimulated whole blood from patients with typhoid fever. J Infect Dis, 186, 240–5.CrossRefGoogle ScholarPubMed
Hsu, H. S. (1989). Pathogenesis and immunity in murine salmonellosis. Microbiol Rev, 53, 390–409.Google ScholarPubMed
John, B., Rajagopal, D., Pashine, A.et al. (2002). Role of IL12-independent and IL12-dependent pathways in regulating generation of the IFNγ component of T-cell responses to Salmonella typhimurium. J Immunol, 169, 2545–52.CrossRefGoogle Scholar
Kagaya, K., Watanabe, K. and Fukazawa, Y. (1989). Capacity of recombinant gamma interferon to activate macrophages for Salmonella-killing activity. Infect Immun, 57, 609–15.Google ScholarPubMed
Kantele, A., Arvilommi, H. and Jokinen, I. (1986). Specific immunoglobulin-secreting human blood cells after peroral vaccination against Salmonella typhi. J Infect Dis, 153, 1126–31.CrossRefGoogle ScholarPubMed
Kelleher, P. and Misbah, S. A. (2003). What is Good's syndrome? Immunological abnormalities in patients with thymoma. J Clin Pathol, 56, 12–16.CrossRefGoogle ScholarPubMed
Khan, S. A., Everest, P., Servos, S.et al. (1998). A lethal role for lipid A in Salmonella infections. Mol Microbiol, 29, 571–9.CrossRefGoogle ScholarPubMed
Khan, S. A., Strijbos, P. J., Everest, P.et al. (2001). Early responses to Salmonella typhimurium infection in mice occur at focal lesions in infected organs. Microb Pathog, 30, 29–38.CrossRefGoogle ScholarPubMed
Kim, H. S., Yoon, H., Minn, I.et al. (2000). Pepsin-mediated processing of the cytoplasmic histone H2A to strong antimicrobial peptide buforin I. J Immunol, 165, 3268–74.CrossRefGoogle ScholarPubMed
Klein, C., Lisowska-Grospierre, B., LeDeist, F., Fischer, A. and Griscelli, C. (1993). Major histocompatibility complex class II deficiency: clinical manifestations, immunologic features, and outcome. J Pediatr, 123, 921–8.CrossRefGoogle ScholarPubMed
Klugman, K. P., Gilbertson, I. T., Koornhof, H. J.et al. (1987). Protective activity of Vi capsular polysaccharide vaccine against typhoid fever. Lancet, 2, 1165–9.CrossRefGoogle ScholarPubMed
Klugman, K. P., Koornhof, H. J., Robbins, J. B. and Le, Cam N. N. (1996). Immunogenicity, efficacy and serological correlate of protection of Salmonella typhi Vi capsular polysaccharide vaccine three years after immunization. Vaccine, 14, 435–8.CrossRefGoogle ScholarPubMed
Koo, F. C., Peterson, J. W., Houston, C. W. and Molina, N. C. (1984). Pathogenesis of experimental salmonellosis: inhibition of protein synthesis by cytotoxin. Infect Immun, 43, 93–100.Google ScholarPubMed
Landesman, S. H., Rao, S. P. and Ahonkhai, V. I. (1982). Infections in children with sickle cell anemia. Special reference to pneumococcal and Salmonella infections. Am J Pediatr Hematol Oncol, 4, 407–18.CrossRefGoogle ScholarPubMed
Lazarus, G. M. and Neu, H. C. (1975). Agents responsible for infection in chronic granulomatous disease of childhood. J Pediatr, 86, 415–17.CrossRefGoogle ScholarPubMed
Lee, V. T. and Schneewind, O. (1999). Type III secretion machines and the pathogenesis of enteric infections caused by Yersinia and Salmonella spp. Immunol Rev, 168, 241–55.CrossRefGoogle ScholarPubMed
Leen, C. L., Birch, A. D., Brettle, R. P., Welsby, P. D. and Yap, P. L. (1986). Salmonellosis in patients with primary hypogammaglobulinaemia. J Infect, 12, 241–5.CrossRefGoogle ScholarPubMed
Lembo, A., Kalis, C., Kirschning, C. J.et al. (2003). Differential contribution of Toll-like receptors 4 and 2 to the cytokine response to Salmonella enterica serovar Typhimurium and Staphylococcus aureus in mice. Infect Immun, 71, 6058–62.CrossRefGoogle ScholarPubMed
Levine, M. M., Ferreccio, C., Black, R. E., Tacket, C. O. and Germanier, R. (1989). Progress in vaccines against typhoid fever. Rev Infect Dis, 11 (suppl. 3), S552–S567.CrossRefGoogle ScholarPubMed
Levy, J., Espanol-Boren, T., Thomas, C.et al. (1997). Clinical spectrum of X-linked hyper-IgM syndrome. J Pediatr, 131, 47–54.CrossRefGoogle ScholarPubMed
Liang-Takasaki, C. J., Saxen, H., Makela, P. H. and Leive, L. (1983). Complement activation by polysaccharide of lipopolysaccharide: an important virulence determinant of salmonellae. Infect Immun, 41, 563–9.Google ScholarPubMed
Lissner, C. R., Swanson, R. N. and O', Brien A. D. (1983). Genetic control of the innate resistance of mice to Salmonella typhimurium: expression of the Ity gene in peritoneal and splenic macrophages isolated in vitro. J Immunol, 131, 3006–13.Google ScholarPubMed
Lo, W. F., Ong, H., Metcalf, E. S. and Soloski, M. J. (1999). T-cell responses to Gram-negative intracellular bacterial pathogens: a role for CD8+ T-cells in immunity to Salmonella infection and the involvement of MHC class Ib molecules. J Immunol, 162, 5398–406.Google ScholarPubMed
Lo, W. F., Woods, A. S., DeCloux, A.et al. (2000). Molecular mimicry mediated by MHC class Ib molecules after infection with gram-negative pathogens. Nat Med, 6, 215–18.CrossRefGoogle ScholarPubMed
MacFarlane, A. S., Schwacha, M. G. and Eisenstein, T. K. (1999). In vivo blockage of nitric oxide with aminoguanidine inhibits immunosuppression induced by an attenuated strain of Salmonella typhimurium, potentiates Salmonella infection, and inhibits macrophage and polymorphonuclear leukocyte influx into the spleen. Infect Immun, 67, 891–8.Google ScholarPubMed
Maskell, D. J. and Hormaeche, C. E. (1986). Genes within the major histocompatibility complex influence the response to ampicillin therapy and severity of relapse in H-2 congenic, susceptible Itys mice infected with virulent Salmonella typhimurium. J Immunogenet, 13, 451–7.CrossRefGoogle ScholarPubMed
Maskell, D. J., Hormaeche, C. E., Harrington, K. A., Joysey, H. S. and Liew, F. Y. (1987). The initial suppression of bacterial growth in a Salmonella infection is mediated by a localized rather than a systemic response. Microb Pathog, 2, 295–305.CrossRefGoogle Scholar
Mastroeni, P. (2002). Immunity to systemic Salmonella infections. Curr Mol Med, 2, 393–406.CrossRefGoogle ScholarPubMed
Mastroeni, P., Arena, A., Costa, G. B.et al. (1991). Serum TNFα in mouse typhoid and enhancement of a Salmonella infection by anti-TNFα antibodies. Microb Pathog, 11, 33–8.CrossRefGoogle Scholar
Mastroeni, P., Chabalgoity, J. A., Dunstan, S. J., Maskell, D. J. and Dougan, G. (2001). Salmonella: immune responses and vaccines. Vet J, 161, 132–64.CrossRefGoogle ScholarPubMed
Mastroeni, P., Clare, S., Khan, S.et al. (1999). Interleukin 18 contributes to host resistance and gamma interferon production in mice infected with virulent Salmonella typhimurium. Infect Immun, 67, 478–83.Google ScholarPubMed
Mastroeni, P., Harrison, J. A., Chabalgoity, J. A. and Hormaeche, C. E. (1996). Effect of interleukin 12 neutralization on host resistance and gamma interferon production in mouse typhoid. Infect Immun, 64, 189–96.Google ScholarPubMed
Mastroeni, P., Harrison, J. A., Robinson, J. H.et al. (1998). Interleukin 12 is required for control of the growth of attenuated aromatic-compound-dependent salmonellae in BALB/c mice: role of gamma interferon and macrophage activation. Infect Immun, 66, 4767–76.Google ScholarPubMed
Mastroeni, P., Simmons, C., Fowler, R., Hormaeche, C. E. and Dougan, G. (2000a). Igh-6−/− (B-cell-deficient) mice fail to mount solid acquired resistance to oral challenge with virulent Salmonella enterica serovar Typhimurium and show impaired Th1 T-cell responses to Salmonella antigens. Infect Immun, 68, 46–53.CrossRefGoogle Scholar
Mastroeni, P., Skepper, J. N. and Hormaeche, C. E. (1995). Effect of anti-tumor necrosis factor alpha antibodies on histopathology of primary Salmonella infections [published erratum appears in Infect Immun (1995 Dec) 63(12), 4966]. Infect Immun, 63, 3674–82.Google Scholar
Mastroeni, P., Vazquez-Torres, A., Fang, F. C.et al. (2000b). Antimicrobial actions of the NADPH phagocyte oxidase and inducible nitric oxide synthase in experimental salmonellosis. II. Effects on microbial proliferation and host survival in vivo. J Exp Med, 192, 237–48.CrossRefGoogle Scholar
Mastroeni, P., Villarreal-Ramos, B., Demarco, Hormaeche R. and Hormaeche, C. E. (1993a). Delayed (footpad) hypersensitivity and Arthus reactivity using protein-rich antigens and LPS in mice immunized with live attenuated aroA Salmonella vaccines. Microb Pathog, 14, 369–79.CrossRefGoogle Scholar
Mastroeni, P., Villarreal-Ramos, B. and Hormaeche, C. E. (1992). Role of T-cells, TNFα and IFNγ in recall of immunity to oral challenge with virulent salmonellae in mice vaccinated with live attenuated aro−Salmonella vaccines. Microb Pathog, 13, 477–91.CrossRefGoogle Scholar
Mastroeni, P., Villarreal-Ramos, B. and Hormaeche, C. E. (1993b). Adoptive transfer of immunity to oral challenge with virulent salmonellae in innately susceptible BALB/c mice requires both immune serum and T-cells. Infect Immun, 61, 3981–4.Google Scholar
Mastroeni, P., Villarreal-Ramos, B. and Hormaeche, C. E. (1993c). Effect of late administration of anti-TNFα antibodies on a Salmonella infection in the mouse model. Microb Pathog, 14, 473–80.CrossRefGoogle Scholar
Matsui, K. and Arai, T. (1989). Protective immunity induced by porin in experimental mouse salmonellosis. Microbiol Immunol, 33, 699–708.CrossRefGoogle ScholarPubMed
McSorley, S. J. and Jenkins, M. K. (2000). Antibody is required for protection against virulent but not attenuated Salmonella enterica serovar Typhimurium. Infect Immun, 68, 3344–8.CrossRefGoogle Scholar
McSorley, S. J., Cookson, B. T. and Jenkins, M. K. (2000). Characterization of CD4+ T-cell responses during natural infection with Salmonella typhimurium. J Immunol, 164, 986–93.CrossRefGoogle ScholarPubMed
Medzhitov, R., Preston-Hurlburt, P. and Janeway, C. A.. (1997). A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature, 388, 394–7.CrossRefGoogle ScholarPubMed
Mitchell, E. K., Mastroeni, P., Kelly, A. P. and Trowsdale, J. (2004). Inhibition of cell surface MHC class II expression by Salmonella. Eur J Immunol, 34, 2559–67.CrossRefGoogle ScholarPubMed
Mittrucker, H. W., Kohler, A. and Kaufmann, S. H. (2002). Characterization of the murine T-lymphocyte response to Salmonella enterica serovar Typhimurium infection. Infect Immun, 70, 199–203.CrossRefGoogle ScholarPubMed
Mittrucker, H. W., Kohler, A., Mak, T. W. and Kaufmann, S. H. (1999). Critical role of CD28 in protective immunity against Salmonella typhimurium. J Immunol, 163, 6769–76.Google ScholarPubMed
Mittrucker, H. W., Raupach, B., Kohler, A. and Kaufmann, S. H. (2000). Cutting edge: role of B lymphocytes in protective immunity against Salmonella typhimurium infection. J Immunol, 164, 1648–52.CrossRefGoogle ScholarPubMed
Mixter, P. F., Camerini, V., Stone, B. J., Miller, V. L. and Kronenberg, M. (1994). Mouse T lymphocytes that express a gamma delta T-cell antigen receptor contribute to resistance to Salmonella infection in vivo. Infect Immun, 62, 4618–21.Google Scholar
Monack, D. M., Hersh, D., Ghori, N.et al. (2000). Salmonella exploits Caspase-1 to colonize Peyer's patches in a murine typhoid model. J Exp Med, 192, 249–58.CrossRefGoogle Scholar
Moors, M. A., Li, L. and Mizel, S. B. (2001). Activation of interleukin 1 receptor-associated kinase by gram-negative flagellin. Infect Immun, 69, 4424–9.CrossRefGoogle ScholarPubMed
Mouy, R., Fischer, A., Vilmer, E., Seger, R. and Griscelli, C. (1989). Incidence, severity, and prevention of infections in chronic granulomatous disease. J Pediatr, 114, 555–60.CrossRefGoogle ScholarPubMed
Muotiala, A. and Makela, P. H. (1990). The role of IFNγ in murine Salmonella typhimurium infection. Microb Pathog, 8, 135–41.CrossRefGoogle Scholar
Muotiala, A. and Makela, P. H. (1993). Role of gamma interferon in late stages of murine salmonellosis. Infect Immun, 61, 4248–53.Google ScholarPubMed
Murphy, J. R., Baqar, S., Munoz, C.et al. (1987). Characteristics of humoral and cellular immunity to Salmonella typhi in residents of typhoid-endemic and typhoid-free regions. J Infect Dis, 156, 1005–9.CrossRefGoogle ScholarPubMed
Murphy, J. R., Wasserman, S. S., Baqar, S.et al. (1989). Immunity to Salmonella typhi: considerations relevant to measurement of cellular immunity in typhoid-endemic regions. Clin Exp Immunol, 75, 228–33.Google ScholarPubMed
Naiki, Y., Nishimura, H., Kawano, T.et al. (1999). Regulatory role of peritoneal NK1.1+ alpha beta T-cells in IL12 production during Salmonella infection. J Immunol, 163, 2057–63.Google ScholarPubMed
Nauciel, C. (1990). Role of CD4+ T-cells and T-independent mechanisms in acquired resistance to Salmonella typhimurium infection. J Immunol, 145, 1265–9.Google ScholarPubMed
Nauciel, C. and Espinasse-Maes, F. (1992). Role of gamma interferon and tumor necrosis factor alpha in resistance to Salmonella typhimurium infection. Infect Immun, 60, 450–4.Google ScholarPubMed
Nauciel, C., Ronco, E., Guenet, J. L. and Pla, M. (1988). Role of H-2 and non-H-2 genes in control of bacterial clearance from the spleen in Salmonella typhimurium-infected mice. Infect Immun, 56, 2407–11.Google ScholarPubMed
Nauciel, C., Ronco, E. and Pla, M. (1990). Influence of different regions of the H-2 complex on the rate of clearance of Salmonella typhimurium. Infect Immun, 58, 573–4.Google ScholarPubMed
Netea, M. G., Kullberg, B. J., Joosten, L. A.et al. (2001). Lethal Escherichia coli and Salmonella typhimurium endotoxemia is mediated through different pathways. Eur J Immunol, 31, 2529–38.3.0.CO;2-B>CrossRefGoogle ScholarPubMed
Nishimura, H., Hiromatsu, K., Kobayashi, N.et al. (1996). IL15 is a novel growth factor for murine gamma delta T-cells induced by Salmonella infection. J Immunol, 156, 663–9.Google ScholarPubMed
Nishimura, H., Washizu, J., Naiki, Y.et al. (1999). MHC class II-dependent NK1.1+ gammadelta T-cells are induced in mice by Salmonella infection. J Immunol, 162, 1573–81.Google ScholarPubMed
O', Brien A. D. and Metcalf, E. S. (1982). Control of early Salmonella typhimurium growth in innately Salmonella-resistant mice does not require functional T lymphocytes. J Immunol, 129, 1349–51.Google Scholar
O', Brien A. D., Metcalf, E. S. and Rosenstreich, D. L. (1982). Defect in macrophage effector function confers Salmonella typhimurium susceptibility on C3H/HeJ mice. Cell Immunol, 67, 325–33.Google Scholar
O', Brien A. D., Scher, I. and Formal, S. B. (1979). Effect of silica on the innate resistance of inbred mice to Salmonella typhimurium infection. Infect Immun, 25, 513–20.Google Scholar
Paul, C., Shalala, K., Warren, R. and Smith, R. (1985). Adoptive transfer of murine host protection to salmonellosis with T-cell growth factor-dependent, Salmonella-specific T-cell lines. Infect Immun, 48, 40–3.Google ScholarPubMed
Paul, C. C., Norris, K., Warren, R. and Smith, R. A. (1988). Transfer of murine host protection by using interleukin 2-dependent T- lymphocyte lines. Infect Immun, 56, 2189–92.Google ScholarPubMed
Peel, J. E., Voirol, M. J., Kolly, C., Gobet, D. and Martinod, S. (1990). Induction of circulating tumor necrosis factor cannot be demonstrated during septicemic salmonellosis in calves. Infect Immun, 58, 439–42.Google ScholarPubMed
Picard, C., Fieschi, C., Altare, F.et al. (2001). Inherited Interleukin 12 deficiency: IL12B genotype and clinical phenotype of 13 patients from six kindreds. Am J Hum Genet, 70, 2.Google ScholarPubMed
Pie, S., Matsiota-Bernard, P., Truffa-Bachi, P. and Nauciel, C. (1996). Gamma interferon and interleukin 10 gene expression in innately susceptible and resistant mice during the early phase of Salmonella typhimurium infection. Infect Immun, 64, 849–54.Google ScholarPubMed
Pie, S., Truffa-Bachi, P., Pla, M. and Nauciel, C. (1997). Th1 response in Salmonella typhimurium-infected mice with a high or low rate of bacterial clearance. Infect Immun, 65, 4509–14.Google ScholarPubMed
Poltorak, A., Smirnova, I., He, X.et al. (1998). Genetic and physical mapping of the lps locus: identification of the Toll-4 receptor as a candidate gene in the critical region. Blood Cells Mol Dis, 24, 340–55.CrossRefGoogle ScholarPubMed
Pope, M., Kotlarski, I. and Doherty, K. (1994). Induction of Lyt-2+ cytotoxic T lymphocytes following primary and secondary Salmonella infection. Immunology, 81, 177–82.Google ScholarPubMed
Qureshi, S. T., Lariviere, L., Leveque, G.et al. (1999). Endotoxin-tolerant mice have mutations in Toll-like receptor 4 (Tlr4). J Exp Med, 189, 615–25.CrossRefGoogle Scholar
Ramarathinam, L., Niesel, D. W. and Klimpel, G. R. (1993). Salmonella typhimurium induces IFNγ production in murine splenocytes. Role of natural killer cells and macrophages. J Immunol, 150, 3973–81.Google Scholar
Reisfeld, R. A., Niethammer, A. G., Luo, Y. and Xiang, R. (2004). DNA vaccines suppress tumor growth and metastases by the induction of anti-angiogenesis. Immunol Rev, 199, 181–90.CrossRefGoogle ScholarPubMed
Reitmeyer, J. C., Peterson, J. W. and Wilson, K. J. (1986). Salmonella cytotoxin: a component of the bacterial outer membrane. Microb Pathog, 1, 503–10.CrossRefGoogle ScholarPubMed
Rescigno, M., Urbano, M., Valzasina, B.et al. (2001). Dendritic cells express tight junction proteins and penetrate gut epithelial monolayers to sample bacteria. Nat Immunol, 2, 361–7.CrossRefGoogle ScholarPubMed
Richter-Dahlfors, A., Buchan, A. M. J. and Finlay, B. B. (1997). Murine salmonellosis studied by confocal microscopy: Salmonella typhimurium resides intracellularly inside macrophages and exerts a cytotoxic effect on phagocytes in vivo. J Exp Med, 186, 569–80.CrossRefGoogle ScholarPubMed
Robbins, J. D. and Robbins, J. B. (1984). Reexamination of the protective role of the capsular polysaccharide (Vi antigen) of Salmonella typhi. J Infect Dis, 150, 436–49.CrossRefGoogle ScholarPubMed
Robertsson, J. A., Fossum, C., Svenson, S. B. and Lindberg, A. A. (1982). Salmonella typhimurium infection in calves: specific immune reactivity against O-antigenic polysaccharide detectable in in vitro assays. Infect Immun, 37, 728–36.Google ScholarPubMed
Rosenberger, C. M., Scott, M. G., Gold, M. R., Hancock, R. E. and Finlay, B. B. (2000). Salmonella typhimurium infection and lipopolysaccharide stimulation induce similar changes in macrophage gene expression. J Immunol, 164, 5894–904.CrossRefGoogle ScholarPubMed
Royle, M. C., Totemeyer, S., Alldridge, L. C., Maskell, D. J. and Bryant, C. E. (2003). Stimulation of Toll-like receptor 4 by lipopolysaccharide during cellular invasion by live Salmonella typhimurium is a critical but not exclusive event leading to macrophage responses. J Immunol, 170, 5445–54.CrossRefGoogle Scholar
Salcedo, S. P., Noursadeghi, M., Cohen, J. and Holden, D. W. (2001). Intracellular replication of Salmonella typhimurium strains in specific subsets of splenic macrophages in vivo. Cell Microbiol, 3, 587–97.CrossRefGoogle ScholarPubMed
Salerno-Goncalves, R., Pasetti, M. F. and Sztein, M. B. (2002). Characterization of CD8+ effector T-cell responses in volunteers immunized with Salmonella enterica serovar Typhi strain Ty21a typhoid vaccine. J Immunol, 169, 2196–203.CrossRefGoogle ScholarPubMed
Salerno-Goncalves, R., Wyant, T. L., Pasetti, M. F.et al. (2003). Concomitant induction of CD4+ and CD8+ T-cell responses in volunteers immunized with Salmonella enterica serovar Typhi strain CVD 908-htrA. J Immunol, 170, 2734–41.CrossRefGoogle ScholarPubMed
Salzman, N. H., Ghosh, D., Huttner, K. M., Paterson, Y. and Bevins, C. L. (2003). Protection against enteric salmonellosis in transgenic mice expressing a human intestinal defensin. Nature, 422, 522–6.CrossRefGoogle ScholarPubMed
Saxen, H., Reima, I. and Makela, P. H. (1987). Alternative complement pathway activation by Salmonella O polysaccharide as a virulence determinant in the mouse. Microb Pathog, 2, 15–28.CrossRefGoogle ScholarPubMed
Schwacha, M. G. and Eisenstein, T. K. (1997). Interleukin 12 is critical for induction of nitric oxide-mediated immunosuppression following vaccination of mice with attenuated Salmonella typhimurium. Infect Immun, 65, 4897–903.Google ScholarPubMed
Sebastiani, G., Leveque, G., Lariviere, L.et al. (2000). Cloning and characterization of the murine Toll-like receptor 5 (Tlr5) gene: sequence and mRNA expression studies in Salmonella-susceptible MOLF/Ei mice. Genomics, 64, 230–40.CrossRefGoogle ScholarPubMed
Segall, T. and Lindberg, A. A. (1993). Oral vaccination of calves with an aromatic-dependent Salmonella dublin (O9,12) hybrid expressing O4,12 protects against S. dublin (O9,12) but not against Salmonella typhimurium (O4,5,12). Infect Immun, 61, 1222–31.Google Scholar
Senterfitt, V. C. and Shands, J. W.. (1968). Salmonellosis in mice infected with Mycobacterium tuberculosis BCG. I. Role of endotoxin in infection. J Bacteriol, 96, 287–92.Google Scholar
Sheppard, M., Webb, C., Heath, F.et al. (2003). Dynamics of bacterial growth and distribution within the liver during Salmonella infection. Cell Microbiol, 5, 593–600.CrossRefGoogle ScholarPubMed
Sinha, K., Mastroeni, P., Harrison, J., and Hormaeche, C. E. (1997). Salmonella typhimurium aroA, htrA, and aroD htrA mutants cause progressive infections in athymic (nu/nu) BALB/c mice. Infect Immun, 65, 1566–9.Google ScholarPubMed
Skeen, M. J. and Ziegler, H. K. (1993). Induction of murine peritoneal gamma/delta T-cells and their role in resistance to bacterial infection. J Exp Med, 178, 971–84.CrossRefGoogle ScholarPubMed
Srinivasan, A., Foley, J . and McSorley, S. J. (2004). Massive number of antigen-specific CD4 T-cells during vaccination with live attenuated Salmonella causes interclonal competition. J Immunol, 172, 6884–93.CrossRefGoogle ScholarPubMed
Svenson, S. B., Nurminen, M. and Lindberg, A. A. (1979). Artificial Salmonella vaccines: O-antigenic oligosaccharide-protein conjugates induce protection against infection with Salmonella typhimurium. Infect Immun, 25, 863–72.Google ScholarPubMed
Svensson, M., Johansson, C. and Wick, M. J. (2000). Salmonella enterica serovar Typhimurium-induced maturation of bone marrow-derived dendritic cells. Infect Immun, 68, 6311–20.CrossRefGoogle ScholarPubMed
Sztein, M. B., Tanner, M. K., Polotsky, Y., Orenstein, J. M. and Levine, M. M. (1995). Cytotoxic T lymphocytes after oral immunization with attenuated vaccine strains of Salmonella typhi in humans. J Immunol, 155, 3987–93.Google ScholarPubMed
Sztein, M. B., Wasserman, S. S., Tacket, C. O.et al. (1994). Cytokine production patterns and lymphoproliferative responses in volunteers orally immunized with attenuated vaccine strains of Salmonella typhi. J Infect Dis, 170, 1508–17.CrossRefGoogle ScholarPubMed
Tacket, C. O., Hone, D. M., Curtiss, R. IIIet al. (1992). Comparison of the safety and immunogenicity of ΔaroC ΔaroD and Δcya Δcrp Salmonella typhi strains in adult volunteers. Infect Immun, 60, 536–41.Google Scholar
Takeshita, F., Leifer, C. A., Gursel, I.et al. (2001). Cutting edge: role of Toll-like receptor 9 in CpG DNA-induced activation of human cells. J Immunol, 167, 3555–8.CrossRefGoogle ScholarPubMed
Takeuchi, O., Hoshino, K., Kawai, T.et al. (1999). Differential roles of TLR2 and TLR4 in recognition of Gram-negative and Gram-positive bacterial cell wall components. Immunity, 11, 443–51.CrossRefGoogle ScholarPubMed
Tarr, P. E., Sneller, M. C., Mechanic, L. J.et al. (2001). Infections in patients with immunodeficiency with thymoma (Good syndrome). Report of 5 cases and review of the literature. Medicine (Baltimore), 80, 123–33.CrossRefGoogle ScholarPubMed
Thatte, J., Rath, S. and Bal, V. (1993). Immunization with live versus killed Salmonella typhimurium leads to the generation of an IFNγ-dominant versus an IL4-dominant immune response. Int Immunol, 5, 1431–6.CrossRefGoogle Scholar
Totemeyer, S., Foster, N., Kaiser, P., Maskell, D. J. and Bryant, C. E. (2003). Toll-like receptor expression in C3H/HeN and C3H/HeJ mice during Salmonella enterica serovar Typhimurium infection. Infect Immun, 71, 6653–7.CrossRefGoogle ScholarPubMed
Ugrinovic, S., Menager, N., Goh, N. and Mastroeni, P. (2003). Characterization and development of T-cell immune responses in B-cell-deficient (Igh−6−/−) mice with Salmonella enterica serovar Typhimurium infection. Infect Immun, 71, 6808–19.CrossRefGoogle ScholarPubMed
Van, Amersfoort E. S., Van, Berkel T. J. and Kuiper, J. (2003). Receptors, mediators, and mechanisms involved in bacterial sepsis and septic shock. Clin Microbiol Rev, 16, 379–414.Google Scholar
Velasquez, M. and Starnbach, M. N. (2003). Salmonella rapidly kill dendritic cells via a Caspase-1-dependent mechanism. J Immunol, 171, 6742–9.Google Scholar
Vazquez-Torres, A., Fantuzzi, G., Edwards, C. K. III, Dinarello, C. A. and Fang, F. C. (2001). Defective localization of the NADPH phagocyte oxidase to Salmonella-containing phagosomes in tumor necrosis factor p55 receptor-deficient macrophages. Proc Natl Acad Sci USA, 98, 2561–5.CrossRefGoogle ScholarPubMed
Vazquez-Torres, A., Jones-Carson, J., Baumler, A. J.et al. (1999). Extraintestinal dissemination of Salmonella by CD18-expressing phagocytes. Nature, 401, 804–8.Google ScholarPubMed
Vazquez-Torres, A., Jones-Carson, J., Mastroeni, P., Ischiropoulos, H. and Fang, F. C. (2000a). Antimicrobial actions of the NADPH phagocyte oxidase and inducible nitric oxide synthase in experimental salmonellosis. I. Effects on microbial killing by activated peritoneal macrophages in vitro. J Exp Med, 192, 227–36.CrossRefGoogle Scholar
Vazquez-Torres, A., Xu, Y., Jones-Carson, J.et al. (2000b). Salmonella pathogenicity island 2-dependent evasion of the phagocyte NADPH oxidase. Science, 287, 1655–8.CrossRefGoogle Scholar
Vidal, S. M., Malo, D., Vogan, K., Skamene, E. and Gros, P. (1993). Natural resistance to infection with intracellular parasites: isolation of a candidate for Bcg. Cell, 73, 469–85.CrossRefGoogle ScholarPubMed
Villarreal, B., Mastroeni, P., Hormaeche, R. D. and Hormaeche, C. E. (1992). Proliferative and T-cell specific interleukin (IL2/IL4) production responses in spleen cells from mice vaccinated with aroA live attenuated Salmonella vaccines. Microb Pathog, 13, 305–15.CrossRefGoogle Scholar
Villarreal-Ramos, B., Manser, J., Collins, R. A.et al. (1998). Immune responses in calves immunised orally or subcutaneously with a live Salmonella typhimurium aro vaccine. Vaccine, 16, 45–54.CrossRefGoogle ScholarPubMed
Vogel, S. N., Johnson, D., Perera, P. Y.et al. (1999). Cutting edge: functional characterization of the effect of the C3H/HeJ defect in mice that lack an lpsn gene: in vivo evidence for a dominant negative mutation. J Immunol, 162, 5666–70.Google ScholarPubMed
Warren, J., Mastroeni, P., Dougan, G.et al. (2002). Increased susceptibility of C1q-deficient mice to Salmonella enterica serovar Typhimurium infection. Infect Immun, 70, 551–7.CrossRefGoogle ScholarPubMed
Weinberger, M. and Pizzo, P. (1992). The evaluation and management of neutropenic patients with unexplained fever. In Infections in immunocompromised infants and children, ed. Patrich, C. C.. New York: Churchill Livingstone, pp. 338–41.
Wyant, T. L., Tanner, M. K. and Sztein, M. B. (1999). Salmonella typhi flagella are potent inducers of proinflammatory cytokine secretion by human monocytes. Infect Immun, 67, 3619–24.Google ScholarPubMed
Xu, H. R., Hsu, H. S., Moncure, C. W. and King, R. A. (1993). Correlation of antibody titres induced by vaccination with protection in mouse typhoid. Vaccine, 11, 725–9.CrossRefGoogle ScholarPubMed
Yrlid, U., Svensson, M., Hakansson, A.et al. (2001). In vivo activation of dendritic cells and T-cells during Salmonella enterica serovar Typhimurium infection. Infect Immun, 69, 5726–35.CrossRefGoogle ScholarPubMed
Zasloff, M. (2002). Trypsin, for the defense. Nat Immunol, 3, 508–10.CrossRefGoogle ScholarPubMed
Zhang, S., Adams, L. G., Nunes, J.et al. (2003). Secreted effector proteins of Salmonella enterica serotype Typhimurium elicit host-specific chemokine profiles in animal models of typhoid fever and enterocolitis. Infect Immun, 71, 4795–803.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×