Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-22T18:40:46.375Z Has data issue: false hasContentIssue false

2 - Antibiotic resistance in Salmonella infections

Published online by Cambridge University Press:  04 December 2009

Duncan Maskell
Affiliation:
University of Cambridge
Fiona J. Cooke
Affiliation:
Centre for Molecular Microbiology and Infection, Imperial College of Science, Technology and Medicine, University of London, Exhibition Road, South Kensington, London W7 2AZ, UK
John Wain
Affiliation:
Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambs CB10 1SA, UK
Pietro Mastroeni
Affiliation:
University of Cambridge
Get access

Summary

INTRODUCTION

Salmonella infections in humans can range from a self-limiting gastroenteritis, usually associated with non-typhoidal Salmonella (NTS), to typhoid fever with complications such as a fatal intestinal perforation. The World Health Organization (WHO) estimates that the annual global incidence of typhoid fever is about 21 million cases with a mortality of 1% (Crump et al., 2004). This may be an underestimate because typhoid is predominantly a disease of developing countries, where not all cases present to the healthcare services and data collection may be difficult. In addition, financial constraints limit outbreak investigation and antibiotics are often widely available without prescription. Not only does this compound problems with data gathering, but it is likely to add to the burden of resistant disease circulating in the community. The situation is even less clear for NTS because most patients do not need to consult the health services. Despite this, as reported in 1999 in the USA alone there were an estimated 1.4 million cases of NTS infection annually, resulting in approximately 600 deaths (Mead et al., 1999).

There is no doubt that antibiotic resistance in Salmonella infections poses a major threat to human health, especially in cases of invasive NTS in immunocompromised patients and in typhoid fever. The cost of resistance in human terms is shown in Table 2.1. There is also a potential increase in the cost of food production.

Type
Chapter
Information
Salmonella Infections
Clinical, Immunological and Molecular Aspects
, pp. 25 - 56
Publisher: Cambridge University Press
Print publication year: 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahmad, K. (2002). Experts call for surveillance of drug-resistant typhoid at a global level. Lancet, 359, 592.CrossRefGoogle Scholar
Anderson, E. S. (1968). Drug resistance in Salmonella typhimurium and its implications. Br Med J, 3, 333–9.CrossRefGoogle ScholarPubMed
Andersson, D. I. and Levin, B. R. (1999). The biological cost of antibiotic resistance. Curr Opin Microbiol, 2, 489–93.CrossRefGoogle ScholarPubMed
Angulo, F. J., Johnson, K. R., Tauxe, R. V. and Cohen, M. L. (2000). Origins and consequences of antimicrobial-resistant nontyphoidal Salmonella: implications for the use of fluoroquinolones in food animals. Microb Drug Resist, 6, 77–83.CrossRefGoogle ScholarPubMed
,Anonymous (1969). Report of the Joint Committee on the Use of Antibiotics in Animal Husbandry and Veterinary Medicine. London: HMSO.Google Scholar
Bolton, A. J., Osborne, M. P. and Stephen, J. (2000). Comparative study of the invasiveness of Salmonella serotypes Typhimurium, Choleraesuis and Dublin for Caco-2 cells, HEp-2 cells and rabbit ileal epithelia. J Med Microbiol, 49, 503–11.CrossRefGoogle ScholarPubMed
Briggs, C. E. and Fratamico, P. M. (1999). Molecular characterization of an antibiotic resistance gene cluster of Salmonella typhimurium DT104. Antimicrob Agents Chemother, 43, 846–9.Google ScholarPubMed
Brown, J. D., Mo, D. H. and Rhoades, E. R. (1975). Chloramphenicol-resistant Salmonella typhi in Saigon. JAMA, 231, 162–6.CrossRefGoogle ScholarPubMed
Chandel, D. S., Chaudhry, R., Dhawan, B., Pandey, A. and Dey, A. B. (2000). Drug-resistant Salmonella enterica serotype paratyphi A in India. Emerg Infect Dis, 6, 420–1.CrossRefGoogle ScholarPubMed
Chiu, C. H., Su, L. H., Chu, C.et al. (2004). Isolation of Salmonella enterica serotype Choleraesuis resistant to ceftriaxone and ciprofloxacin. Lancet, 363, 1285–6.CrossRefGoogle ScholarPubMed
Chu, C., Chiu, C. H., Wu, W. Y.et al. (2001). Large drug resistance virulence plasmids of clinical isolates of Salmonella enterica serovar Choleraesuis. Antimicrob Agents Chemother, 45, 2299–303.CrossRefGoogle ScholarPubMed
Chun, D., Seol, S. Y., Cho, D. T. and Tak, R. (1977). Drug resistance and R plasmids in Salmonella typhi isolated in Korea. Antimicrob Agents Chemother, 11, 209–13.CrossRefGoogle Scholar
Connerton, P., Wain, J., Hien, T. T.et al. (2000). Epidemic typhoid in Vietnam: molecular typing of multiple-antibiotic-resistant Salmonella enterica serotype Typhi from four outbreaks. J Clin Microbiol, 38, 895–7.Google ScholarPubMed
Coovadia, Y. M., Gathiram, V., Bhamjee, A.et al. (1992). An outbreak of multiresistant Salmonella typhi in South Africa. Quarterly J of Med, 82, 91–100.Google ScholarPubMed
Crump, J. A., Barrett, T. J., Nelson, J. T. and Angulo, F. J. (2003). Reevaluating fluoroquinolone breakpoints for Salmonella enterica serotype Typhi and for non-Typhi salmonellae. Clin Infect Dis, 37, 75–81.CrossRefGoogle ScholarPubMed
Crump, J. A., Luby, S. P. and Mintz, E. D. (2004). The global burden of typhoid fever. Bull WHO, 82, 346–53.Google ScholarPubMed
Datta, N. and Olarte, J. (1974). R factors in strains of Salmonella typhi and Shigella dysenteriae 1 isolated during epidemics in Mexico: classification by compatibility. Antimicrob Agents Chemother, 5, 310–17.CrossRefGoogle ScholarPubMed
Drlica, K. (2003). The mutant selection window and antimicrobial resistance. J Antimicrob Chemother, 52, 11–17.CrossRefGoogle ScholarPubMed
Dromigny, J. A. and Perrier-Gros-Claude, J. D. (2003). Antimicrobial resistance of Salmonella enterica serotype Typhi in Dakar, Senegal. Clin Infect Dis, 37, 465–6.CrossRefGoogle ScholarPubMed
Echeita, M. A., Herrera, S. and Usera, M. A. (2001). Atypical, fljB-negative Salmonella enterica subsp. enterica strain of serovar 4,5,12:i:- appears to be a monophasic variant of serovar Typhimurium. J Clin Microbiol, 39, 2981–3.CrossRefGoogle ScholarPubMed
Gales, A. C., Sader, H. S., Mendes, R. E. and Jones, R. N. (2002). Salmonella spp. isolates causing bloodstream infections in Latin America: report of antimicrobial activity from the SENTRY Antimicrobial Surveillance Program (1997–2000). Diagn Microbiol Infect Dis, 44, 313–18.CrossRefGoogle Scholar
Gangarosa, E. J., Bennett, J. V., Wyatt, C.et al. (1972). An epidemic-associated episome?J Infect Dis, 126, 215–18.CrossRefGoogle ScholarPubMed
Gonzalez Cortes, A., Bessudo, D., Sanchez Leyva, R.et al. (1973). Water-borne transmission of chloramphenicol-resistant Salmonella typhi in Mexico. Lancet, 2, 605–7.CrossRefGoogle ScholarPubMed
Gregorova, D., Pravcova, M., Karpiskova, R. and Rychlik, I. (2002). Plasmid pC present in Salmonella enterica serovar Enteritidis PT14b strains encodes a restriction modification system. FEMS Microbiol Lett, 214, 195–8.CrossRefGoogle ScholarPubMed
Grindley, N. D., Humphreys, G. O. and Anderson, E. S. (1973). Molecular studies of R factor compatibility groups. J Bacteriol, 115, 387–98.Google ScholarPubMed
Guerra, B., Soto, S., Helmuth, R. and Mendoza, M. C. (2002). Characterization of a self-transferable plasmid from Salmonella enterica serotype Typhimurium clinical isolates carrying two integron-borne gene cassettes together with virulence and drug resistance genes. Antimicrob Agents Chemother, 46, 2977–81.CrossRefGoogle ScholarPubMed
Guerra, B., Soto, S. M., Arguelles, J. M. and Mendoza, M. C. (2001). Multidrug resistance is mediated by large plasmids carrying a class 1 integron in the emergent Salmonella enterica serotype [4,5,12:i:-]. Antimicrob Agents Chemother, 45, 1305–8.CrossRefGoogle Scholar
Hampton, M. D., Ward, L. R., Rowe, B. and Threlfall, E. J. (1998). Molecular fingerprinting of multidrug-resistant Salmonella enterica serotype Typhi. Emerg Infect Dis, 4, 317–20.CrossRefGoogle ScholarPubMed
Haneda, T., Okada, N., Nakazawa, N., Kawakami, T. and Danbara, H. (2001). Complete DNA sequence and comparative analysis of the 50-kilobase virulence plasmid of Salmonella enterica serovar Choleraesuis. Infect Immun, 69, 2612–20.CrossRefGoogle ScholarPubMed
Harish, B. N., Madhulika, U. and Parija, S. C. (2004). Isolated high-level ciprofloxacin resistance in Salmonella enterica subsp. enterica serotype Paratyphi A. J Med Microbiol, 53, 819.CrossRefGoogle ScholarPubMed
Harnett, N., McLeod, S., AuYong, Y.et al. (1998). Molecular characterization of multiresistant strains of Salmonella typhi from South Asia isolated in Ontario, Canada. Can J Microbiol, 44, 356–63.CrossRefGoogle ScholarPubMed
Hayes, F. (2003). Toxins–antitoxins: plasmid maintenance, programmed cell death, and cell cycle arrest. Science, 301, 1496–9.CrossRefGoogle ScholarPubMed
Helms, M., Vastrup, P., Gerner-Smidt, P. and Molbak, K. (2002). Excess mortality associated with antimicrobial drug-resistant Salmonella typhimurium. Emerg Infect Dis, 8, 490–5.CrossRefGoogle ScholarPubMed
Herikstad, H., Motarjemi, Y. and Tauxe, R. V. (2002). Salmonella surveillance: a global survey of public health serotyping. Epidemiol Infect, 129, 1–8.CrossRefGoogle ScholarPubMed
Hermans, P. W., Saha, S. K., Leeuwen, W. J.et al. (1996). Molecular typing of Salmonella typhi strains from Dhaka (Bangladesh) and development of DNA probes identifying plasmid-encoded multidrug-resistant isolates. J Clin Microbiol, 34, 1373–9.Google ScholarPubMed
Hirose, K., Tamura, K., Sagara, H. and Watanabe, H. (2001). Antibiotic susceptibilities of Salmonella enterica serovar Typhi and S. enterica serovar Paratyphi A isolated from patients in Japan. Antimicrob Agents Chemother, 45, 956–8.CrossRefGoogle ScholarPubMed
Holmberg, S. D., Solomon, S. L. and Blake, P. A. (1987). Health and economic impacts of antimicrobial resistance. Rev Infect Dis, 9, 1065–78.CrossRefGoogle ScholarPubMed
Jacoby, G. A. and Sutton, L. (1991). Properties of plasmids responsible for production of extended-spectrum beta-lactamases. Antimicrob Agents Chemother, 35, 164–9.CrossRefGoogle ScholarPubMed
Jesudason, M. V., John, R. and John, T. J. (1996). The concurrent prevalence of chloramphenicol-sensitive and multi-drug resistant Salmonella typhi in Vellore, S. India. Epidemiol Infect, 116, 225–7.CrossRefGoogle ScholarPubMed
Kamili, M. A., Ali, G., Shah, M. Y., Rashid, S., Khan, S. and Allaqaband, G. Q. (1993). Multiple drug resistant typhoid fever outbreak in Kashmir Valley. Indian J of Med Sci, 47, 147–51.Google ScholarPubMed
Kariuki, S., Gilks, C., Revathi, G. and Hart, C. A. (2000). Genotypic analysis of multidrug-resistant Salmonella enterica serovar Typhi, Kenya. Emerg Infect Dis, 6, 649–51.CrossRefGoogle ScholarPubMed
Komalarini, S., Njotosiswojo, S., Rockhill, R. C. and Lesmana, M. (1980). Chloramphenicol resistant strains in salmonellosis in Jakarta. Southeast Asian J Trop Med Public Health, 11, 539–42.Google ScholarPubMed
Lee, C. A. and Falkow, S. (1994). Isolation of hyperinvasive mutants of Salmonella. Methods Enzymol, 236, 531–45.CrossRefGoogle ScholarPubMed
Lindsay, E. A., Lawson, A. J., Walker, R. A.et al. (2002). Role of electronic data exchange in an international outbreak caused by Salmonella enterica serotype Typhimurium DT204b. Emerg Infect Dis, 8, 732–4.CrossRefGoogle Scholar
Lindstedt, B. A., Heir, E., Nygard, I. and Kapperud, G. (2003). Characterization of class I integrons in clinical strains of Salmonella enterica subsp. enterica serovars Typhimurium and Enteritidis from Norwegian hospitals. J Med Microbiol, 52, 141–9.CrossRefGoogle Scholar
Ling, J. and Chau, P. Y. (1984). Plasmids mediating resistance to chloramphenicol, trimethoprim, and ampicillin in Salmonella typhi strains isolated in the Southeast Asian region. J Infect Dis, 149, 652.CrossRefGoogle ScholarPubMed
Ling, J. M., Chan, E. W., Lam, A. W. and Cheng, A. F. (2003). Mutations in topoisomerase genes of fluoroquinolone-resistant salmonellae in Hong Kong. Antimicrob Agents Chemother, 47, 3567–73.CrossRefGoogle ScholarPubMed
Martínez, J. L., Alonso, A., Gómez-Gómez, J. M. and Baquero, F. (1998). Quinolone resistance by mutations in chromosomal gyrase genes. Just the tip of the iceberg?J Antimicrob Chemother, 42, 683–8.CrossRefGoogle ScholarPubMed
Martínez-Martínez, L., Pascual, A. and Jacoby, G. A. (1998). Quinolone resistance from a transferable plasmid. Lancet, 351, 797–9.CrossRefGoogle ScholarPubMed
Mead, P. S., Slutsker, L., Dietz, V.et al. (1999). Food-related illness and death in the United States. Emerg Infect Dis, 5, 607–25.CrossRefGoogle ScholarPubMed
Mendoza-Medellin, A., Curiel-Quesada, E. and Camacho-Carranza, R. (2004). Escherichia coli R-factors unstable in Salmonella typhi are deleted before being segregated in this host. Plasmid, 51, 75–86.CrossRefGoogle ScholarPubMed
Mendoza-Medellin, A., Rios-Chavez, I. and Amaro-Robles, D. (1993). Behavior of Escherichia coli R factors in Salmonella typhi. Rev Latinoam Microbiol, 35, 77–85.Google ScholarPubMed
Mermin, J. H., Villar, R., Carpenter, J.et al. (1999). A massive epidemic of multidrug-resistant typhoid fever in Tajikistan associated with consumption of municipal water. J Infect Dis, 179, 1416–22.CrossRefGoogle ScholarPubMed
Mills-Robertson, F., Addy, M. E., Mensah, P. and Crupper, S. S. (2002). Molecular characterization of antibiotic resistance in clinical Salmonella typhi isolated in Ghana. FEMS Microbiol Lett, 215, 249–53.CrossRefGoogle ScholarPubMed
Mirza, S., Kariuki, S., Mamun, K. Z., Beeching, N. J. and Hart, C. A. (2000). Analysis of plasmid and chromosomal DNA of multidrug-resistant Salmonella enterica serovar Typhi from Asia. J Clin Microbiol, 38, 1449–52.Google ScholarPubMed
Mirza, S. H. and Hart, C. A. (1993). Plasmid encoded multi-drug resistance in Salmonella typhi from Pakistan. Ann Trop Med Parasitol, 87, 373–7.CrossRefGoogle ScholarPubMed
Mirza, S. H., Beeching, N. J. and Hart, C. A. (1996). Multi-drug resistant typhoid: a global problem. J Med Microbiol, 44, 317–19.CrossRefGoogle ScholarPubMed
Mukhtar, E. D. and Mekki, M. O. (1981). Trimethoprim-sulphamethoxazole in the treatment of enteric fever in the Sudan. Trans R Soc Trop Med Hyg, 75, 771–3.CrossRefGoogle ScholarPubMed
Murray, B. E. (1989). Problems and mechanisms of antimicrobial resistance. Infect Dis Clin North Am, 3, 423–39.Google ScholarPubMed
Murray, B. E., Levine, M. M., Cordano, A. M.et al. (1985). Survey of plasmids in Salmonella typhi from Chile and Thailand. J Infect Dis, 151, 551–5.CrossRefGoogle ScholarPubMed
Nath, M. L. and Singh, J. (1966). Antibiotic sensitivity of Salmonella typhi. Indian J Med Res, 54, 217–19.Google ScholarPubMed
Brien, O' T. F. (2002). Emergence, spread, and environmental effect of antimicrobial resistance: how use of an antimicrobial anywhere can increase resistance to any antimicrobial anywhere else. Clin Infect Dis, 34(suppl. 3), S78–84.CrossRefGoogle Scholar
Olarte, J. and Galindo, E. (1973). Salmonella typhi resistant to chloramphenicol, ampicillin, and other antimicrobial agents: strains isolated during an extensive typhoid fever epidemic in Mexico. Antimicrob Agents Chemother, 4, 597–601.CrossRefGoogle ScholarPubMed
Oyofo, B. A., Lesmana, M., Subekti, D.et al. (2002). Surveillance of bacterial pathogens of diarrhea disease in Indonesia. Diagn Microbiol Infect Dis, 44, 227–34.CrossRefGoogle ScholarPubMed
Pai, H., Byeon, J. H., Yu, S., Lee, B. K. and Kim, S. (2003). Salmonella enterica serovar Typhi strains isolated in Korea containing a multidrug resistance class 1 integron. Antimicrob Agents Chemother, 47, 2006–8.CrossRefGoogle ScholarPubMed
Paniker, C. K. and Vimala, K. N. (1972). Transferable chloramphenicol resistance in Salmonella typhi. Nature, 239, 109–10.CrossRefGoogle ScholarPubMed
Parkhill, J., Dougan, G., James, K. D.et al. (2001). Complete genome sequence of a multiple drug resistant Salmonella enterica serovar Typhi CT18. Nature, 413, 848–52.CrossRefGoogle ScholarPubMed
Parry, C., Wain, J., Chinh, N. T., Vinh, H. and Farrar, J. J. (1998). Quinolone-resistant Salmonella typhi in Vietnam. Lancet, 351, 1289.CrossRefGoogle ScholarPubMed
Parry, C. M. (1998). Untreatable infections? – The challenge of the 21st century. Southeast Asian J Trop Med Public Health, 29, 416–24.Google ScholarPubMed
Partridge, S. R. and Hall, R. M. (2003). In34, a complex In5 family class 1 integron containing orf513 and dfrA10. Antimicrob Agents Chemother, 47, 342–9.CrossRefGoogle ScholarPubMed
Phillips, I., Casewell, M., Cox, T.et al. (2004). Does the use of antibiotics in food animals pose a risk to human health? A critical review of published data. J Antimicrob Chemother, 53, 28–52.CrossRefGoogle Scholar
Poirel, L., Naas, T., Guibert, M.et al. (1999). Molecular and biochemical characterization of VEB-1, a novel class A extended-spectrum beta-lactamase encoded by an Escherichia coli integron gene. Antimicrob Agents Chemother, 43, 573–81.Google Scholar
Poppe, C., Ziebell, K., Martin, L. and Allen, K. (2002). Diversity in antimicrobial resistance and other characteristics among Salmonella typhimurium DT104 isolates. Microb Drug Resist, 8, 107–22.CrossRefGoogle ScholarPubMed
Rahman, M., Ahmad, A. and Shoma, S. (2002). Decline in epidemic of multidrug resistant Salmonella typhi is not associated with increased incidence of antibiotic-susceptible strain in Bangladesh. Epidemiol Infect, 129, 29–34.CrossRefGoogle Scholar
Rodrigues, C., Mehta, A. and Joshi, V. R. (2002). Salmonella typhi in the past decade: learning to live with resistance. Clin Infect Dis, 34, 126.CrossRefGoogle ScholarPubMed
Rowe, B., Threlfall, E. J., Ward, L. R. and Ashley, A. S. (1979). International spread of multiresistant strains of Salmonella typhimurium phage types 204 and 193 from Britain to Europe. Vet Rec, 105, 468–9.CrossRefGoogle Scholar
Saha, S. K., Talukder, S. Y., Islam, M. and Saha, S. (1999). A highly ceftriaxone-resistant Salmonella typhi in Bangladesh. Pediatr Infects Dis J, 18, 387.CrossRefGoogle ScholarPubMed
Shanahan, P. M., Jesudason, M. V., Thomson, C. J. and Amyes, S. G. (1998). Molecular analysis of and identification of antibiotic resistance genes in clinical isolates of Salmonella typhi from India. J Clin Microbiol, 36, 1595–600.Google ScholarPubMed
Shanahan, P. M., Karamat, K. A., Thomson, C. J. and Amyes, S. G. (2000). Characterization of multi-drug resistant Salmonella typhi isolated from Pakistan. Epidemiol Infect, 124, 9–16.CrossRefGoogle ScholarPubMed
Shannon, K. and French, G. (1998). Multiple-antibiotic-resistant Salmonella. Lancet, 352, 490.CrossRefGoogle ScholarPubMed
Sherburne, C. K., Lawley, T. D., Gilmour, M. W.et al. (2000). The complete DNA sequence and analysis of R27, a large IncHI plasmid from Salmonella typhi that is temperature sensitive for transfer. Nucleic Acids Res, 28, 2177–86.CrossRefGoogle ScholarPubMed
Smith, D. L., Harris, A. D., Johnson, J. A., Silbergeld, E. K. and Morris, J. G. (2002). Animal antibiotic use has an early but important impact on the emergence of antibiotic resistance in human commensal bacteria. Proc Natl Acad Sci USA, 99, 6434–9.CrossRefGoogle ScholarPubMed
Sood, S., Kapil, A., Das, B., Jain, Y. and Kabra, S. K. (1999a). Re-emergence of chloramphenicol-sensitive Salmonella typhi. Lancet, 353, 1241–2.CrossRefGoogle Scholar
Sood, S., Kapil, A., Dash, N.et al. (1999b). Paratyphoid fever in India: an emerging problem. Emerg Infect Dis, 5, 483–4.CrossRefGoogle Scholar
Summers, A., Wireman, J., Vimy, M.et al. (1993). Mercury released from dental ‘silver’ fillings provokes an increase in mercury- and antibiotic-resistant bacteria in oral and intestinal floras of primates. Antimicrob Agents Chemother, 37, 825–34.CrossRefGoogle ScholarPubMed
Tassios, P. T., Vatopoulos, A. C., Mainas, E.et al. (1997). Molecular analysis of ampicillin-resistant sporadic Salmonella typhi and Salmonella paratyphi B clinical isolates. Clin Microbiol Infect, 3, 317–23.CrossRefGoogle ScholarPubMed
Taylor, D. E. (1983). Transfer-defective and tetracycline-sensitive mutants of the incompatibility group HI plasmid R27 generated by insertion of transposon 7. Plasmid, 9, 227–39.CrossRefGoogle ScholarPubMed
Taylor, D. E. and Brose, E. C. (1985). Characterization of incompatibility group HI1 plasmids from Salmonella typhi by restriction endonuclease digestion and hybridization of DNA probes for Tn3, Tn9, and Tn10. Can J Microbiol, 31, 721–9.CrossRefGoogle ScholarPubMed
Thong, K. L., Cheong, Y. M., Puthucheary, S., Koh, C. L. and Pang, T. (1994). Epidemiologic analysis of sporadic Salmonella typhi isolates and those from outbreaks by pulsed-field gel electrophoresis. J Clin Microbiol, 32, 1135–41.Google ScholarPubMed
Threlfall, E. J., Lawson, A. J., Walker, R. A. and Ward, L. R. (2001). Salmonella typhimurium DT104: the rise and fall of a multiresistant epoizootic clone. SCIEH Weekly Report, 35, 142–4.Google Scholar
Threlfall, E. J., Teale, C. J., Davies, R. H.et al. (2003). A comparison of antimicrobial susceptibilities in nontyphoidal salmonellas from humans and food animals in England and Wales in 2000. Microb Drug Resist, 9, 183–9.CrossRefGoogle ScholarPubMed
Tran, J. H. and Jacoby, G. A. (2002). Mechanism of plasmid-mediated quinolone resistance. Proc Natl Acad Sci USA, 99, 5638–42.CrossRefGoogle ScholarPubMed
Travers, K. and Barza, M. (2002). Morbidity of infections caused by antimicrobial-resistant bacteria. Clin Infect Dis, 34(suppl. 3), S131–4.CrossRefGoogle ScholarPubMed
Verdet, C., Arlet, G., Barnaud, G., Lagrange, P. H. and Philippon, A. (2000). A novel integron in Salmonella enterica serovar Enteritidis, carrying the bla(DHA-1) gene and its regulator gene ampR, originated from Morganella morganii. Antimicrob Agents Chemother, 44, 222–5.CrossRefGoogle ScholarPubMed
Vinh, H., Wain, J., Vo, T. N.et al. (1996). Two or three days of ofloxacin treatment for uncomplicated multidrug-resistant typhoid fever in children. Antimicrob Agents Chemother, 40, 958–61.Google ScholarPubMed
Wain, J., Diem Nga, L. T., Kidgell, C.et al. (2003). Molecular analysis of incHI1 antimicrobial resistance plasmids from Salmonella serovar Typhi strains associated with typhoid fever. Antimicrob Agents Chemother, 47, 2732–9.CrossRefGoogle ScholarPubMed
Wain, J., Diep, T. S., Ho, V. A.et al. (1998). Quantitation of bacteria in blood of typhoid fever patients and relationship between counts and clinical features, transmissibility, and antibiotic resistance. J Clin Microbiol, 36, 1683–7.Google ScholarPubMed
Wain, J., Hoa, N. T., Chinh, N. T.et al. (1997). Quinolone-resistant Salmonella typhi in Viet Nam: molecular basis of resistance and clinical response to treatment. Clin Infect Dis, 25, 1404–10.CrossRefGoogle ScholarPubMed
Walker, R. A., Lindsay, E., Woodward, M. J., Ward, L. R. and Threlfall, E. J. (2001). Variation in clonality and antibiotic-resistance genes among multiresistant Salmonella enterica serotype Typhimurium phage-type U302 (MR U302) from humans, animals, and foods. Microb Drug Resist, 7, 13–21.CrossRefGoogle ScholarPubMed
Wall, P. G., Morgan, D., Lamden, K.et al. (1994). A case control study of infection with an epidemic strain of multiresistant Salmonella typhimurium DT104 in England and Wales. Commun Dis Rep CDR Rev, 4, R130–5.Google ScholarPubMed
Wang, M., Sahm, D. F., Jacoby, G. A. and Hooper, D. C. (2004). Emerging plasmid-mediated quinolone resistance associated with the qnr gene in Klebsiella pneumoniae clinical isolates in the United States. Antimicrob Agents Chemother, 48, 1295–9.CrossRefGoogle ScholarPubMed
Wasfy, M. O., Frenck, R., Ismail, T. F.et al. (2002). Trends of multiple-drug resistance among Salmonella serotype Typhi isolates during a 14-year period in Egypt. Clin Infect Dis, 35, 1265–8.CrossRefGoogle ScholarPubMed
Webber, M. and Piddock, L. J. (2001). Quinolone resistance in Escherichia coli. Vet Res, 32, 275–84.CrossRefGoogle ScholarPubMed
Wegener, H. C., Hald, T., Lo Fo Wong, D.et al. (2003). Salmonella control programs in Denmark. Emerg Infect Dis, 9, 774–80.CrossRefGoogle ScholarPubMed
Woodward, T. E., Smadel, J. E., Lay, H. L.., Green, R. and Marnkihar, D. S. (1948 / Fall 2004). Preliminary report on the beneficial effect of chloromycetin in the treatment of typhoid fever. Wilderness Environ Med, 15 (3), 218–20; discussion 216–17.CrossRefGoogle ScholarPubMed
Zahurul Haque Asna, S. M. and Ashraful Haq, J. (2000). Decrease of antibiotic resistance in Salmonella typhi isolated from patients attending hospitals of Dhaka City over a 3 year period. Int J Antimicrob Agents, 16, 249–51.CrossRefGoogle Scholar
Zansky, S., Wallace, B., Schoonmaker-Bopp, D.et al. (2002). From the Centers for Disease Control and Prevention. Outbreak of multi-drug resistant Salmonella Newport – United States, January–April 2002. Jama, 288, 951–3.Google ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Antibiotic resistance in Salmonella infections
    • By Fiona J. Cooke, Centre for Molecular Microbiology and Infection, Imperial College of Science, Technology and Medicine, University of London, Exhibition Road, South Kensington, London W7 2AZ, UK, John Wain, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambs CB10 1SA, UK
  • Edited by Pietro Mastroeni, University of Cambridge
  • Duncan Maskell, University of Cambridge
  • Book: Salmonella Infections
  • Online publication: 04 December 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511525360.003
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Antibiotic resistance in Salmonella infections
    • By Fiona J. Cooke, Centre for Molecular Microbiology and Infection, Imperial College of Science, Technology and Medicine, University of London, Exhibition Road, South Kensington, London W7 2AZ, UK, John Wain, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambs CB10 1SA, UK
  • Edited by Pietro Mastroeni, University of Cambridge
  • Duncan Maskell, University of Cambridge
  • Book: Salmonella Infections
  • Online publication: 04 December 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511525360.003
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Antibiotic resistance in Salmonella infections
    • By Fiona J. Cooke, Centre for Molecular Microbiology and Infection, Imperial College of Science, Technology and Medicine, University of London, Exhibition Road, South Kensington, London W7 2AZ, UK, John Wain, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambs CB10 1SA, UK
  • Edited by Pietro Mastroeni, University of Cambridge
  • Duncan Maskell, University of Cambridge
  • Book: Salmonella Infections
  • Online publication: 04 December 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511525360.003
Available formats
×