Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-21T17:54:51.638Z Has data issue: false hasContentIssue false

4 - Antibody Libraries from Naïve V Gene Sources

from PART II - GENERATION AND SCREENING OF ANTIBODY LIBRARIES

Published online by Cambridge University Press:  15 December 2009

Melvyn Little
Affiliation:
Affimed Therapeutics AG
Get access

Summary

Recombinant human antibody repertoires are now used routinely for the identification of individual antibodies with defined specificities to any conceivable antigen. The generation of large libraries (>1010) has been reported from many commercial and academic laboratories, along with a growing number of examples of isolated antibodies in clinical development for a range of therapeutic applications. Our laboratory has constructed nonimmunized libraries of human scFv antibody fragments with a combined size of >1011 transformants that have been used for more than ten years to successfully isolate antibodies suitable for clinical development.

LIBRARY DESIGN CONSIDERATIONS

Natural Antibody Diversity

The common aim of all nonimmunized recombinant antibody libraries is to mirror the immune system's ability to provide binding specificity to any antigen. For naïve human antibody libraries this is achieved by capturing the full spectrum of antibody sequences available from the human B cell repertoire.

The primary repertoire of variable heavy and light chain DNA sequences is generated by the recombination of V, J, and in case of the heavy chain, also D gene segments, which can recombine to give 7,650 (16,218 considering the use of multiple reading frames for the D segments) different VH and 324 different VL sequences (Corbett et al., 1997; Nossal, 2003).

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Avrameas, S., Ternynck, T., Tsonis, I.A., Lymberi, P., 2007. Naturally occurring B-cell autoreactivity: A critical overview. J. Autoimmun. 29, 213–218.CrossRefGoogle ScholarPubMed
Chen, G., Hayhurst, A., Thomas, J.G., Harvey, B.R., Iversen, B.L., Georgiou, G., 2001. Isolation of high-affinity ligand-binding proteins by periplasmic expression with cytometric screening (PECS). Nat. Biotechnol. 19, 537–542.CrossRefGoogle Scholar
Corbett, S.J., Tomlinson, I.M., Sonnhammer, E.L.L., Buck, D., Winter, G., 1997. Sequence of the human immunoglobulin diversity (D) segment locus: a systematic analysis provides no evidence for the use of DIR segments, inverted D segments, “minor” D segments or D-D recombination. J. Mol. Biol. 270, 587–597.CrossRefGoogle ScholarPubMed
Haard, H.J., Neer, N., Reurs, A., Hufton, S.E., Roovers, R.C., Henderikx, P., Bruine, A.P., Arends, J.W., Hoogenboom, H.R., 1999. A large non-immunized human Fab fragment phage library that permits rapid isolation and kinetic analysis of high affinity antibodies. J. Biol. Chem. 274, 18218–18230.CrossRefGoogle ScholarPubMed
Di Noia, J.M., Neuberger, M.S., 2007. Molecular mechanisms of antibody somatic hypermutation. Annu. Rev. Biochem. 76, 1–22.CrossRefGoogle ScholarPubMed
Dobson, C.L., Edwards, B.M., Main, S.H., Minter, R., Williams, E., Salcedo, T., Choi, G.H., Albert, V.R., Vaughan, T.J., 2002. Generation of human therapeutic anti-TRAIL-R1 agonistic antibodies by phage display. 93rd Annual Meeting AACR, San Francisco, CA, USA.
Edwards, B.M., Barash, S.C., Main, S.H., Choi, G.H., Minter, R., Ullrich, S., Williams, E., Du Fou, L., Wilton, J., Albert, V.R., Ruben, S.M., Vaughan, T.J., 2003. The remarkable flexibility of the human antibody repertoire; isolation of over one thousand different antibodies to a single protein, BLys. J. Mol. Biol. 334, 103–118.CrossRefGoogle ScholarPubMed
Edwards, B.M., 2003. Isolation of agonistic human monoclonal antibodies to TRAIL-R2 that display potent in vitro and in vivo anti-tumour activities. Antibody-based Therapeutics for Cancer, Banff, Alberta, Canada.Google Scholar
Feldhaus, M.J., Siegel, R.W., Opresko, L.K., Coleman, J.R., Weaver Feldhaus, J.M., Yeung, Y.A., Cochran, J.R., Heinzelman, P., Colby, D., Swers, J., Graff, C., Wiley, H.S., Wittrup, K.D., 2003. Flow-cytometric isolation of human antibodies from a nonimmune Saccharomyces cerevisiae surface display library. Nat. Biotechnol. 21, 163–170.CrossRefGoogle ScholarPubMed
Goossens, T., Klein, U., Küppers, R., 1998. Frequent occurrence of deletions and duplications during somatic hypermutation: Implications for oncogene translocations and heavy chain disease. Proc. Natl. Acad. Sci. USA 95, 2463–2468.CrossRefGoogle ScholarPubMed
Griffiths, A.D., Malmqvist, M., Marks, J.D., Bye, J.M., Embleton, M.J., McCafferty, J., Baier, M., Holliger, K.P., Gorick, B.D., Hughes-Jones, N.C., Hoogenboom, H.R., Winter, G., 1993. Human anti-self antibodies with high specificity from phage display libraries. EMBO J. 12, 725–734.Google ScholarPubMed
Griffiths, A.D., Williams, S.C., Hartley, O., Tomlinson, I.M., Waterhouse, P., Crosby, W.L., Kontermann, R.E., Jones, P.T., Low, N.M., Allison, T.J., Prospero, T.D., Hoogenboom, H.R., Nissim, A., Cox, J.P.L., Harrison, J.L., Zaccolo, M., Gherardi, E., Winter, G., 1994. Isolation of high affinity human antibodies directly from large synthetic repertoires. EMBO J. 13, 3245–3260.Google ScholarPubMed
Groves, M.A.T., Osbourn, J.K., 2005. Applications of ribosome display to antibody drug discovery. Expert Opin. Biol. Ther. 5, 125–135.CrossRefGoogle ScholarPubMed
Groves, M., Lane, S., Douthwaite, J., Lowne, D., Rees, D.G., Edwards, B., Jackson, R.H., 2006. Affinity maturation of phage display antibody populations using ribosome display. J. Immunol. Meth. 313, 129–139.CrossRefGoogle ScholarPubMed
Hanes, J., Plückthun, A., 1997. In vitro selection and evolution of functional proteins by using ribosome display. Proc. Natl. Acad. Sci. USA 94, 4937–4942.CrossRefGoogle ScholarPubMed
Hanes, J., Schaffitzel, C., Knappik, A., Plückthun, A., 2000. Picomolar affinity antibodies from a fully synthetic naïve library selected and evolved by ribosome display. Nat. Biotechnol. 18, 1287–1292.CrossRefGoogle ScholarPubMed
Hoet, R.M., Cohen, E.H., Kent, R.B., Rookey, K., Schoonbroodt, S., Hogan, S., Rem, L., Frans, N., Daukandt, M., Pieters, H., Hegelsom, R., Neer, N.C., Nastri, H.G., Rondon, I.J., Leeds, J.A., Hufton, S.E., Huang, L., Kashin, I., Devlin, M., Kuang, G., Steukers, M., Viswanathan, M., Nixon, A.E., Sexton, D.J., Hoogenboom, H.R., Ladner, R.C., 2005. Generation of high-affinity human antibodies by combining donor-derived and synthetic complementarity-determining-region diversity. Nat. Biotechnol. 23, 344–348.CrossRefGoogle ScholarPubMed
Kelley, D.E., Perry, R.P., 1986. Transcriptional and posttranscriptional control of immunoglobulin mRNA production during B lymphocyte development. Nucleic Acids Res. (Online) 14, 5431–5447.CrossRefGoogle ScholarPubMed
Klein, U., Küppers, R., Rajewsky, K., 1997. Evidence for a large compartment of IgM-expressing memory B cells in humans. Blood 89, 1288–1298.Google Scholar
Klein, U., Rajewsky, K., Küppers, R., 1998. Human immunoglobulin (Ig)M+IgD+ peripheral blood B cells expressing the CD27 cell surface antigen carry somatically mutated variable region genes: CD27 as a general marker for somatically mutated (memory) B cells. J. Exp. Med. 188, 1679–1689.CrossRefGoogle Scholar
Marks, J.D., Hoogenboom, H.R., Bonnert, T.P., McCafferty, J., Griffiths, A.D., Winter, G., 1991. By-passing immunization. Human antibodies from V-gene libraries displayed on phage. J. Mol. Biol. 222, 581–597.CrossRefGoogle ScholarPubMed
Marks, J.D., Tristem, M., Karpas, A., Winter, G., 1991. Oligonucleotide primers for polymerase chain reaction amplification of human immunoglobulin variable genes and design of family-specific oligonucleotide probes. Eur. J. Immunol. 21, 985–991.CrossRefGoogle ScholarPubMed
Marks, J.D., Griffiths, A.D., Malmqvist, M., Clackson, T., Bye, J.M., Winter, G., 1992. By-passing immunization: building high affinity human antibodies by chain shuffling. Biotechnology 10, 779–783.Google ScholarPubMed
Matthes, T., Kindler, V., Zubler, R.H., 1994. Semiquantitative, nonradioactive RT-PCR detection of immunoglobulin mRNA in human B cells and plasma cells. DNA Cell. Biol. 13, 429–436.CrossRefGoogle Scholar
McCafferty, J., 1996. Phage display: factors affecting panning efficiency. In Kay, B., Winter, L., McCafferty, J., eds. Display of Peptides and Proteins. San Diego, 261–276.CrossRefGoogle Scholar
McCafferty, J., Fitzgerald, K.J., Earnshaw, J., Chiswell, D.J., Link, J., Smith, R., Kenten, J., 1994. Selection and rapid purification of murine antibody fragments that bind a transition-state analog by phage display. Appl. Biochem. Biotechn. 47, 157–173.CrossRefGoogle ScholarPubMed
McCafferty, J., Griffiths, A.D., Winter, G., Chiswell, D.J., 1990. Phage antibodies: filamentous phage displaying antibody variable domains. Nature 348, 552–554.CrossRefGoogle ScholarPubMed
Nossal, G.J., 1989. Immunologic tolerance: collaboration between antigen and lymphokines. Science 245, 147–153.CrossRefGoogle ScholarPubMed
Nossal, G.J.V., 2003. The double helix and immunology. Nature 421, 440–444.CrossRefGoogle ScholarPubMed
Perelson, A.S., Oster, G.F., 1979. Theoretical studies of clonal selection: minimal antibody repertoire size and reliability of self-non-self discrimination. J. Theor. Biol. 81, 645–670.CrossRefGoogle ScholarPubMed
Perelson, A.S. 1989. Immune network theory. Immunol. Rev. 110, 5–33.CrossRefGoogle ScholarPubMed
Sblattero, D., Bradbury, A., 2000. Exploiting recombination in single bacteria to make large phage antibody libraries. Nat. Biotechnol. 18, 75–80.CrossRefGoogle ScholarPubMed
Sheets, M.D., Amersdorfer, P., Finnern, R., Sargent, P., Lindquist, E., Schier, R., Hemingsen, G., Wong, C., Gerhart, J.C., Marks, J.D., 1998. Efficient construction of a large nonimmune phage antibody library: the production of high-affinity human single-chain antibodies to protein antigens. Proc. Natl. Acad. Sci. USA 95, 6157–6162.CrossRefGoogle ScholarPubMed
Söderlind, E., Strandberg, L., Jirholt, P., Kobayashi, N., Alexeiva, V., Aberg, A.M., Nilsson, A., Jansson, B., Ohlin, M., Wingren, C., Danielsson, L., Carlsson, R., Borrebaeck, C.A., 2000. Recombining germline-derived CDR sequences for creating diverse single-framework antibody libraries. Nat. Biotechnol. 18, 852–856.CrossRefGoogle ScholarPubMed
Tomlinson, I.M., Walter, G., Marks, J.D., Llewelyn, M.B., Winter, G., 1992. The repertoire of human germline VH sequences reveals about fifty groups of VH segments with different hypervariable loops. J. Mol. Biol. 227, 776–798.CrossRefGoogle ScholarPubMed
Tomlinson, I.M., Walter, G., Jones, P.T., Dear, P.H., Sonnhammer, E.L., Winter, G., 1996. The imprint of somatic hypermutation on the repertoire of human germline V genes. J. Mol. Biol. 256, 813–817.CrossRefGoogle ScholarPubMed
Vaughan, T.J., Williams, A.J., Pritchard, K., Osbourn, J.K., Pope, A.R., Earnshaw, J.C., McCafferty, J., Hodits, R.A., Wilton, J., Johnson, K.S. 1996. Human antibodies with sub-nanomolar affinities isolated from a large non-immunized phage display library. Nat. Biotechnol. 14, 309–314.CrossRefGoogle ScholarPubMed
Villemagne, D., Jackson, R., Douthwaite, J.A., 2006. Highly efficient ribosome display selection by use of purified components for in vitro translation. J. Immunol. Meth. 313, 140–148.CrossRefGoogle ScholarPubMed
Yan, X.H., Xu, Z.R., 2005. Production of human single-chain variable fragment (scFv) antibody specific for digoxin by ribosome display. Indian J. Biochem. Biophys. 42, 350–357.Google ScholarPubMed
Yau, K.Y.F., Groves, M.A.T., Li, S., Sheedy, C., Lee, H., Tanha, J., MacKenzie, C.R., Jermutus, L., Hall, J.C., 2003. Selection of hapten-specific single-domain antibodies from a non-immunized llama ribosome display library. J. Immunol. Meth. 281, 161–175.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×