Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-21T00:48:37.650Z Has data issue: false hasContentIssue false

5 - Antibodies from IgM Libraries

from PART II - GENERATION AND SCREENING OF ANTIBODY LIBRARIES

Published online by Cambridge University Press:  15 December 2009

Melvyn Little
Affiliation:
Affimed Therapeutics AG
Get access

Summary

IgM antibodies exist both in a pentameric soluble form and as membrane-bound monomers mainly on the surface of naïve B cells, where they are part of the antigen receptor complex. Naïve B cells, constituting 75% of the peripheral blood B cell repertoire in humans (Klein et al., 1997), contain the largest diversity of an individual's rearranged immunoglobulin genes. The naturally occurring antibody repertoire contains specific antibodies against various antigens. In a primary immune response, B cells expressing antigen-specific IgM molecules are activated and differentiate into antibody-producing and -secreting plasma cells. Secreted antigen-specific IgM molecules are the first immunoglobulins occurring during a primary immune response. On the other hand, so-called natural antibodies exist independently of antigenic stimulation and are thought to contribute to the first line of defense against infections (Carsetti et al., 2004; Ochsenbein & Zinkernagel, 2000) as well as malignancy (Brändlein et al., 2003).

In addition to antibody-secreting plasma cells, memory B cells are generated during a primary immune response, a process that includes somatic hypermutation in the germinal centers. Most of the memory B cells have undergone a class switch and do not express IgM. In humans, however, IgM molecules with somatic mutations have been identified (Van Es et al., 1992). These somatically mutated IgM molecules contribute to an individual's immunological memory and constitute about 10% of the total peripheral blood B cell repertoire (Klein et al., 1997). IgM-expressing memory B cells protect against infections by encapsulated bacteria, and develop during the first year of life (Kruetzmann et al., 2003).

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barbas III, C.F., Hu, D., Dunlop, N., Sawyer, L., Cababa, D., Hendry, R.M., Nara, P.L., and Burton, D.R. (1994). In vitro evolution of a neutralizing human antibody to human immunodeficiency virus type 1 to enhance affinity and broaden strain cross-reactivity. Proc. Natl. Acad. Sci. USA, 91, 3809–3813.CrossRefGoogle Scholar
Bobrzynski, T., Fux, M., Vogel, M., Stadler, M.B., Stadler, B.M., and Miescher, S.M. (2005). A high-affinity natural autoantibody from human cord blood defines a physiologically relevant epitope on the FcepsilonRIalpha. J. Immunol., 175, 6589–6596.CrossRefGoogle ScholarPubMed
Boder, E.T., Midelfort, K.S., and Wittrup, K.D. (2000). Directed evolution of antibody fragments with monovalent femtomolar antigen-binding affinity. Proc. Natl. Acad. Sci. USA, 97(20), 10701–10705.CrossRefGoogle ScholarPubMed
Brändlein, S., Pohle, T., Ruoff, N., Wozniak, E., Müller-Hermelink, H.-K., and Vollmers, H.P. (2003). Natural IgM antibodies and immunosurveillance mechanisms against epithelial cancer cells in humans. Cancer Res, 63, 7995–8005.Google ScholarPubMed
Burton, D.R., Barbas III, C.F., Persson, M.A.A., Koenig, S., Channock, R.M., and Lerner, R.A. (1991). A large array of human monoclonal antibodies to type 1 human immunodeficiency virus from combinatorial libraries of asymptomatic seropositive individuals. Proc. Natl. Acad. Sci. USA, 88, 10134–10137.CrossRefGoogle ScholarPubMed
Carsetti, R., Rosado, M.M., and Wardemann, H. (2004). Peripheral development of B cells in mouse and man. Immunol. Rev., 197, 179–191.CrossRefGoogle ScholarPubMed
Chames, P., Coulon, S., and Baty, D. (1998). Improving the affinity and the fine specificity of an anti-cortisol antibody by parsimonious mutagenesis and phage display. J. Immunol., 161, 5421–5429.Google ScholarPubMed
Daugherty, P.S., Chen, G., Iverson, B.L., and Georgiou, G. (2000). Quantitative analysis of the effect of the mutation frequency on the affinity maturation of single chain Fv antibodies. Proc. Natl. Acad. Sci. USA, 97(5), 2029–2034.CrossRefGoogle ScholarPubMed
Haard, H.J., Neer, N., Reurs, A., Hufton, S.E., Roovers, R.C., Henderikx, P., Bruïne, A.P., Arends, J.-W., and Hoogenboom, H.R. (1999). A large non-immunized human Fab fragment phage library that permits rapid isolation and kinetic analysis of high affinity antibodies. J. Biol. Chem., 274(26), 18218–18230.CrossRefGoogle ScholarPubMed
Pascalis, R., Gonzales, N.R., Padlan, E.A., Schuck, P., Batra, S.K., Schlom, J., and Kashmiri, S.V.S. (2003). In vitro affinity maturation of a specificity-determining region-grafted humanized anticarcinoma antibody: Isolation and characterization of minimally immunogenic high-affinity variants. Clin. Cancer Res., 9, 5521–5531.Google ScholarPubMed
Finnern, R., Pedrollo, E., Fisch, I., Wieslander, J., Marks, J.D., Lockwood, C.M., and Ouwehand, W.H. (1997). Human autoimmune anti-proteinase 3 scFv from a phage display library. Clin. Exp. Immunol., 107, 269–281.CrossRefGoogle ScholarPubMed
Glaser, S.M., Yelton, D.E., and Huse, W.D. (1992). Antibody engineering by codon-based mutagenesis in a filamentous phage vector system. J. Immunol., 149(12), 3903–3913.Google Scholar
Gram, H., Marconi, L.-A., Barbas III, C.F., Collet, T.A., Lerner, R.A., and Kang, A.S. (1992). In vitro selection and affinity maturation of antibodies from a naive combinatorial immunoglobulin library. Proc. Natl. Acad. Sci. USA, 89, 3576–3580.CrossRefGoogle ScholarPubMed
Griffiths, A.D., Malmqvist, M., Marks, J.D., Bye, J.M., Embleton, M.J., McCafferty, J., Baier, M., Holliger, K.P., Gorick, B.D.Hughes-Jones, N.C., Hoogenboom, H.R., and Winter, G. (1993). Human anti-self antibodies with high specificity from phage display libraries. EMBO J., 12(2), 725–734.Google ScholarPubMed
Hershey, G.K.H. (2003). IL-13 receptors and signaling pathways: An evolving web. J. Allergy Clin. Immunol., 111, 677–690.CrossRefGoogle Scholar
Hoogenboom, H.R., Bruïne, A.P., Hufton, S.E., Hoet, R.M., Arens, J.-W., and Roovers, R.C. (1998). Review article: Antibody phage display technology and its applications. Immunotechnology, 4, 1–20.CrossRefGoogle ScholarPubMed
Kausmally, L., Waalen, K., Løbersli, I., Hvattum, E., Berntsen, G., Michaelsen, T.E., and Brekke, O.H. (2004). Neutralizing human antibodies to varicella-zoster virus (VZV) derived from a VZV patient recombinant antibody library. J. Gen. Virol., 85, 3493–3500.CrossRefGoogle ScholarPubMed
Kipriyanov, S., Cochlovius, B., Schäfer, H.J., Moldenhauer, G., Bähre, A., LeGall, F., Knackmuss, S., and Little, M. (2002). Synergistic antitumor effect of bispecific CD19xCD3 and CD19xCD16 diabodies in a preclinical model of non-Hodgkin's lymphoma. J. Immunol., 169, 137–144.CrossRefGoogle Scholar
Klein, U., Küppers, R., and Rajewsky, K. (1997). Evidence for a large compartment of IgM-expressing memory B cells in humans. Blood, 89, 1288–1298.Google Scholar
Knackmuss, S., Krause, S., Engel, K., Reusch, U., Virchow, J.C., Mueller, T., Kraich, M., Little, M., Luttmann, W., and Friedrich, K. (2007). Specific inhibition of interleukin-13 activity by a recombinant human single-chain immunoglobulin domain directed against the IL-13 receptor alpha1 chain. Biol. Chem., 388(3), 325–330.CrossRefGoogle ScholarPubMed
Kramer, R.A., Marissen, W.E., Goudsmit, J., Visser, T.J., Clijsters-Van der Horst, M., Bakker, A.Q., Jong, M., Jongeneelen, M., Thijsse, S., Backus, H.H.J., Rice, A.B., Weldon, W.C., Rupprecht, C.E., Dietzschold, B., Bakker, A.B.H., and Kruif, J. (2005). The human antibody repertoire specific for rabies virus glycoprotein as selected from immune libraries. Eur. J. Immunol., 35, 2131–2145.CrossRefGoogle ScholarPubMed
Kruetzmann, S., Rosado, M.M., Weber, H., Germing, U., Tournilhac, O., Peter, H.-H., Berner, R., Peters, A., Boehm, T., Plebani, A., Qzinit, I., and Carsetti, R. (2003). Human immunoglobulin M memory B cells controlling Streptococcus pneumoniae infections are generated in the spleen. J. Exp. Med., 197(7), 939–945.CrossRefGoogle Scholar
Little, M., Welschof, M., Bruanagel, M., Hermes, I., Christ, C., Keller, A., Rohrbach, P., Kürschner, T., Schmidt, S., Kleist, C., and Terness, P. (1999). Generation of a large complex antibody library from multiple donors. J. Immunol. Meth., 231, 3–9.CrossRefGoogle ScholarPubMed
Marks, J.D., Hoogenboom, H.R., Bonnert, T.P., McCafferty, J., Griffiths, A.D., and Winter, G. (1991). By-passing immunization. Human antibodies from V-gene libraries displayed on phage. J. Mol. Biol, 222, 581–597.CrossRefGoogle ScholarPubMed
Marks, J.D., Griffiths, A.D., Malmqvist, M., Clackson, T.P., Bye, J.M., and Winter, G. (1992). By-passing immunization: Building high affinity human antibodies by chain shuffling. Bio/Technology, 10, 779–783.Google ScholarPubMed
Ochsenbein, A.F., and Zinkernagel, R.M. (2000). Natural antibodies and complement link innate and acquired immunity. Immunol. Today, 21(12), 624–630.CrossRefGoogle ScholarPubMed
Pavoni, E., Flego, M., Dupuis, M.L., Barca, S., Petronzelli, F., Anastasi, A.M., D'Alessio, V., Pelliccia, A., Vaccaro, P., Monteriù, G., Ascione, A., Santis, R., Felici, F., Cianfriglia, M., and Minenkova, O. (2006). Selection, affinity maturation, and characterization of a human scFv antibody against CEA protein. BMC Cancer, 6, 41.CrossRefGoogle ScholarPubMed
Pini, A., Viti, F., Santucci, A., Carnemolla, B., Zardi, L., Neri, P., and Neri, D. (1998). Design and use of a phage display library. J. Biol. Chem., 273(34), 21769–21776.CrossRefGoogle ScholarPubMed
Rajpal, A., Beyaz, N., Haber, L., Cappuccilli, G., Yee, H., Bhatt, R.R., Takeuchi, T., Lerner, R.A., and Crea, R. (2005). A general method for greatly improving the affinity of antibodies by using combinatorial libraries. Proc. Natl. Acad. Sci. USA, 102(24), 8466–8471.CrossRefGoogle ScholarPubMed
Riaño-Umbarila, L., Juárez-González, V.R., Olamendi-Portugal, T., Ortíz-León, M., Possani, L.D., and Becerril, B. (2005). A strategy for the generation of specific human antibodies by directed evolution and phage display. An example of a single-chain antibody fragment that neutralizes a major component of scorpion venom. FEBS J., 272(10), 2591–2601.CrossRefGoogle Scholar
Sblattero, D., and Bradbury, A. (1998). A definitive set of oligonucleotide primers for amplifying human V regions. Immunotechnology, 3, 271–278.CrossRefGoogle ScholarPubMed
Schier, R., Bye, J., Apell, G., McCall, A., Adams, G.P., Malmqvist, M., Weiner, L.M. and Marks, J.D. (1996a). Isolation of high-affinity monomeric human anti-c-erbB-2 single chain Fv using affinity-driven selection. J. Mol. Biol., 255, 28–43.CrossRefGoogle ScholarPubMed
Schier, R., McCall, A., Adams, G.P., Marshall, K.W., Merritt, H., Yim, M., Crawford, R.S., Weiner, L.M., Marks, C., and Marks, J.D. (1996b). Isolation of picomolar affinity anti-c-erbB-2 single-chain Fv by molecular evolution of the complementarity determining regions in the center of the antibody binding site. J. Mol. Biol., 263, 551–567.CrossRefGoogle ScholarPubMed
Schwarz, M., Röttgen, P., Takada, Y., Gall, F., Knackmuss, S., Bassler, N., Büttner, C., Little, M., Bode, C., and Peter, K. (2004). Single-chain antibodies for the conformation-specific blockade of activated platelet integrin alphaIIbbeta3 designed by subtractive selection from naïve human phage libraries. FASEB J., 18, 1704–1706.CrossRefGoogle ScholarPubMed
Sheets, M.D., Amersdorfer, P., Finnern, R., Sargent, P., Lindqvist, E., Schier, R., Hemingsen, G., Wong, C., Gerhart, J.C., and Marks, J.D. (1998). Efficient construction of a large nonimmune phage antibody library: The production of high-affinity human single-chain antibodies to protein antigens. Proc. Natl. Acad. Sci. USA, 95, 6157–6162.CrossRefGoogle ScholarPubMed
Tachibana, H., Matsumoto, N., Cheng, X.-J., Tsukamoto, H., and Yoshihara, E. (2004). Improved affinity of a human anti-Entamoeba histolytica Gal/GalNAc lectin Fab fragment by a single amino acid modification of the light chain. Clin. Diagn. Lab. Immunol., 11(6), 1085–1088.Google ScholarPubMed
Winkel, J.G., and Capel, P.J. (1993). Human IgG Fc receptor heterogeneity: molecular aspects and clinical implications. Immunol. Today, 14(5), 215–221.CrossRefGoogle ScholarPubMed
Es, J.H., Meyling, F.H., and Logtenberg, T. (1992). High frequency of somatically mutated IgM molecules in the human adult blood B cell repertoire. Eur. J. Immunol., 22, 2761–2764.Google ScholarPubMed
Vaughan, T.J., Williams, A.J., Pritchard, K., Osbourn, J.K., Pope, A.R., Earnshaw, J.C., McCafferty, J., Hodits, R.A., Wilton, J., and Johnson, K.S. (1996). Human antibodies with sub-nanomolar affinities isolated from a large non-immunized phage display library. Nat. Biotechnol., 14, 309–314.CrossRefGoogle ScholarPubMed
Wardemann, H., Yurasov, S., Schaefer, A., Young, J.W., Meffre, E., and Nussenzweig, M.C. (2003). Predominant autoantibody production by early human B cell precursors. Science, 301, 1374–1377.CrossRefGoogle ScholarPubMed
Welschof, M., Terness, P., Kolbinger, F., Zewe, M., Dübel, S., Dörsam, H., Hain, C., Finger, M., Jung, M., Moldenhauer, G., Hayashi, N., Little, M., and Opelz, G. (1995). Amino acid sequence based PCR primers for amplification of rearranged human heavy and light chain immunoglobulin variable region genes. J. Immunol. Meth., 179, 203–214.CrossRefGoogle ScholarPubMed
Wu, H., Beuerlein, G., Nie, Y., Smith, H., Lee, B.A., Hensler, M., Huse, W.D., and Watkins, J.D. (1998). Stepwise in vitro affinity maturation of Vitaxin, an alphav beta3-specific humanized mAb. Proc. Natl. Acad. Sci. USA, 95(11), 6037–6042.CrossRefGoogle ScholarPubMed
Yelton, D.E., Rosok, M.J., Cruz, G., Cosand, W.L., Bajorath, J., Hellström, I., Hellström, K.E., Huse, W.D., and Glaser, S.M. (1995). Affinity maturation of the BR96 anti-carcinoma antibody by codon-based mutagenesis. J. Immunol., 155, 1994–2004.Google ScholarPubMed
Zuber, C., Knackmuss, S., Rey, C., Reusch, U., Röttgen, P., Fröhlich, T., Arnold, G.J., Pace, C., Mitteregger, G., Kretzschmar, H.A., Little, M., and Weiss, S. (2008). Single chain Fv antibodies directed against the 37 kDa/67 kDa laminin receptor as therapeutic tools in prion diseases. Mol. Immunol., 45(1), 144–151.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×