Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2025-01-03T15:03:47.241Z Has data issue: false hasContentIssue false

18 - Alternative Scaffolds: Expanding the Options of Antibodies

from PART VII - ANTIGEN-BINDING REPERTOIRES OF NON-IMMUNOGLOBULIN PROTEINS

Published online by Cambridge University Press:  15 December 2009

Melvyn Little
Affiliation:
Affimed Therapeutics AG
Get access

Summary

In the language of modern biotechnology, monoclonal antibodies (Köhler & Milstein,1975) were the first “library” of proteins that was available, and the immune system was the first “selection” technology by which a specific binder could be obtained. However, only the subsequent introduction of molecular biology into this field allowed a true control over the molecules (reviewed, e.g., in Plückthun & Moroney, 2005; Weiner & Carter, 2003). This development of technologies was largely driven by the desire to use antibodies therapeutically, since the extraordinarily strong immune response to a nonhuman antibody in humans had put an end to essentially all of these endeavors. As will be illustrated in the following paragraphs, technological developments intended to solve this problem made not only the use of an animal immune system, but, ironically, also the antibody molecule itself dispensable.

Three fundamental approaches have been developed to arrive at antibody molecules that are able to evade the human immune surveillance and which, at least from this perspective, may become potential therapeutics. The first approach, termed “humanization” (Jones et al., 1986), converts an existing murine antibody obtained by immunization into an analogous one with as much human sequence as possible. Another approach, a technical tour de force, was to introduce human antibody genes into a mouse and inactivate or delete the murine loci, such that an immunized mouse would then produce antibodies after immunization that essentially consisted of human sequences (Fishwild et al., 1996; Mendez et al., 1997).

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abedi, M.R., Caponigro, G. & Kamb, A. (1998). Green fluorescent protein as a scaffold for intracellular presentation of peptides. Nucleic Acids Res. 26, 623–630.CrossRefGoogle ScholarPubMed
Almagro, J.C. (2004). Identification of differences in the specificity-determining residues of antibodies that recognize antigens of different size: implications for the rational design of antibody repertoires. J. Mol. Recognit. 17, 132–143.CrossRefGoogle ScholarPubMed
Amstutz, P., Binz, H.K., Parizek, P., Stumpp, M.T., Kohl, A., Grütter, M.G., Forrer, P. & Plückthun, A. (2005). Intracellular kinase inhibitors selected from combinatorial libraries of designed ankyrin repeat proteins. J. Biol. Chem. 280, 24715–24722.CrossRefGoogle ScholarPubMed
Amstutz, P., Koch, H., Binz, H.K., Deuber, S.A. & Plückthun, A. (2006). Rapid selection of specific MAP kinase-binders from designed ankyrin repeat protein libraries. Protein Eng. Des. Sel. 19, 219–229.CrossRefGoogle ScholarPubMed
Attucci, S., Gauthier, A., Korkmaz, B., Delepine, P., Martino, M.F., Saudubray, F., Diot, P. & Gauthier, F. (2006). EPI-hNE4, a proteolysis-resistant inhibitor of human neutrophil elastase and potential anti-inflammatory drug for treating cystic fibrosis. J. Pharmacol. Exp. Ther. 318, 803–809.CrossRefGoogle ScholarPubMed
Bargou, R., Leo, E., Zugmaier, G., Klinger, M., Goebeler, M., Knop, S., Noppeney, R., Viardot, A., Hess, G., Schuler, M., Einsele, H., Brandl, C., Wolf, A., Kirchinger, P., Klappers, P., Schmidt, M., Riethmüller, G., Reinhardt, C., Baeuerle, P.A. & Kufer, P. (2008). Tumor regression in cancer patients by very low doses of a T cell-engaging antibody. Science 321, 974–977.CrossRefGoogle ScholarPubMed
Bass, S., Greene, R. & Wells, J.A. (1990). Hormone phage: an enrichment method for variant proteins with altered binding properties. Proteins 8, 309–314.CrossRefGoogle ScholarPubMed
Baum, R., Orlova, A., Tolmachev, V. & Feldwisch, J. (2006). Receptor PET/CT and SPECT using an affibody molecule for targeting and molecular imaging of HER2 positive cancer in animal xenografts and human breast cancer patients. J. Nucl. Med. 47(suppl. 1), 108P.Google Scholar
Belousova, N., Mikheeva, G., Gelovani, J. & Krasnykh, V. (2008). Modification of adenovirus capsid with a designed protein ligand yields a gene vector targeted to a major molecular marker of cancer. J. Virol. 82, 630–637.CrossRefGoogle Scholar
Bender, N.K., Heilig, C.E., Droll, B., Wohlgemuth, J., Armbruster, F.-P. & Heilig, B. (2007). Immunogenicity, efficacy and adverse events of adalimumab in RA patients. Rheumatol. Int. 27, 269–274.CrossRefGoogle ScholarPubMed
Beste, G., Schmidt, F.S., Stibora, T. & Skerra, A. (1999). Small antibody-like proteins with prescribed ligand specificities derived from the lipocalin fold. Proc. Natl. Acad. Sci. USA 96, 1898–1903.CrossRefGoogle ScholarPubMed
Binz, H.K., Amstutz, P., Kohl, A., Stumpp, M.T., Briand, C., Forrer, P., Grütter, M.G. & Plückthun, A. (2004). High-affinity binders selected from designed ankyrin repeat protein libraries. Nat. Biotechnol. 22, 575–582.CrossRefGoogle ScholarPubMed
Binz, H.K., Amstutz, P. & Plückthun, A. (2005). Engineering novel binding proteins from nonimmunoglobulin domains. Nat. Biotechnol. 23, 1257–1268.CrossRefGoogle ScholarPubMed
Binz, H.K., Stumpp, M.T., Forrer, P., Amstutz, P. & Plückthun, A. (2003). Designing repeat proteins: well-expressed, soluble and stable proteins from combinatorial libraries of consensus ankyrin repeat proteins. J. Mol. Biol. 332, 489–503.CrossRefGoogle ScholarPubMed
Boder, E.T., Midelfort, K.S. & Wittrup, K.D. (2000). Directed evolution of antibody fragments with monovalent femtomolar antigen-binding affinity. Proc. Natl. Acad. Sci. USA 97, 10701–10705.CrossRefGoogle ScholarPubMed
Boder, E.T. & Wittrup, K.D. (1997). Yeast surface display for screening combinatorial polypeptide libraries. Nat. Biotechnol. 15, 553–557.CrossRefGoogle ScholarPubMed
Borghouts, C., Kunz, C. & Groner, B. (2005). Peptide aptamers: recent developments for cancer therapy. Expert Opin. Biol. Ther. 5, 783–797.CrossRefGoogle ScholarPubMed
Burton, D.R., Barbas, C.F., 3rd, Persson, M.A., Koenig, S., Chanock, R.M. & Lerner, R.A. (1991). A large array of human monoclonal antibodies to type 1 human immunodeficiency virus from combinatorial libraries of asymptomatic seropositive individuals. Proc. Natl. Acad. Sci. USA 88, 10134–10137.CrossRefGoogle ScholarPubMed
Butterfoss, G.L. & Kuhlman, B. (2006). Computer-based design of novel protein structures. Annu. Rev. Biophys. Biomol. Struct. 35, 49–65.CrossRefGoogle ScholarPubMed
Caliceti, P. & Veronese, F.M. (2003). Pharmacokinetic and biodistribution properties of poly(ethylene glycol)-protein conjugates. Adv. Drug Deliv. Rev. 55, 1261–1277.CrossRefGoogle ScholarPubMed
Carter, P.J. & Senter, P.D. (2008). Antibody-drug conjugates for cancer therapy. Cancer J. 14, 154–169.CrossRefGoogle ScholarPubMed
Casadevall, N., Eckardt, K.U. & Rossert, J. (2005). Epoetin-induced autoimmune pure red cell aplasia. J. Am. Soc. Nephrol. 16 Suppl. 1, S67–69.CrossRefGoogle ScholarPubMed
Chapman, A.P., Antoniw, P., Spitali, M., West, S., Stephens, S. & King, D.J. (1999). Therapeutic antibody fragments with prolonged in vivo half-lives. Nat. Biotechnol. 17, 780–783.CrossRefGoogle ScholarPubMed
Chaudhury, C., Mehnaz, S., Robinson, J.M., Hayton, W.L., Pearl, D.K., Roopenian, D.C. & Anderson, C.L. (2003). The major histocompatibility complex-related Fc receptor for IgG (FcRn) binds albumin and prolongs its lifespan. J. Exp. Med. 197, 315–322.CrossRefGoogle ScholarPubMed
Cobleigh, M.A., Vogel, C.L., Tripathy, D., Robert, N.J., Scholl, S., Fehrenbacher, L., Wolter, J.M., Paton, V., Shak, S., Lieberman, G. & Slamon, D.J. (1999). Multinational study of the efficacy and safety of humanized anti-HER2 monoclonal antibody in women who have HER2-overexpressing metastatic breast cancer that has progressed after chemotherapy for metastatic disease. J. Clin. Oncol. 17, 2639–2648.CrossRefGoogle ScholarPubMed
Cwirla, S.E., Peters, E.A., Barrett, R.W. & Dower, W.J. (1990). Peptides on phage: a vast library of peptides for identifying ligands. Proc. Natl. Acad. Sci. USA 87, 6378–6382.CrossRefGoogle ScholarPubMed
Dearling, J.L.J. & Pedley, R.B. (2007). Technological advances in radioimmunotherapy. Clin. Oncol. (R. Coll. Radiol). 19, 457–469.CrossRefGoogle ScholarPubMed
Dennis, M.S., Jin, H., Dugger, D., Yang, R., McFarland, L., Ogasawara, A., Williams, S., Cole, M.J., Ross, S. & Schwall, R. (2007). Imaging tumors with an albumin-binding Fab, a novel tumor-targeting agent. Cancer Res. 67, 254–261.CrossRefGoogle ScholarPubMed
Dennis, M.S., Zhang, M., Meng, Y.G., Kadkhodayan, M., Kirchhofer, D., Combs, D. & Damico, L.A. (2002). Albumin binding as a general strategy for improving the pharmacokinetics of proteins. J. Biol. Chem. 277, 35035–35043.CrossRefGoogle ScholarPubMed
Devlin, J.J., Panganiban, L.C. & Devlin, P.E. (1990). Random peptide libraries: a source of specific protein binding molecules. Science 249, 404–406.CrossRefGoogle ScholarPubMed
Di Noia, J.M. & Neuberger, M.S. (2007). Molecular mechanisms of antibody somatic hypermutation. Annu. Rev. Biochem. 76, 1–22.CrossRefGoogle ScholarPubMed
Dimasi, N., Martin, F., Volpari, C., Brunetti, M., Biasiol, G., Altamura, S., Cortese, R., Francesco, R., Steinkühler, C. & Sollazzo, M. (1997). Characterization of engineered hepatitis C virus NS3 protease inhibitors affinity selected from human pancreatic secretory trypsin inhibitor and minibody repertoires. J. Virol. 71, 7461–7469.Google ScholarPubMed
Dincbas-Renqvist, V., Lendel, C., Dogan, J., Wahlberg, E. & Härd, T. (2004). Thermodynamics of folding, stabilization, and binding in an engineered protein-protein complex. J. Am. Chem. Soc. 126, 11220–11230.CrossRefGoogle Scholar
Ebersbach, H., Fiedler, E., Scheuermann, T., Fiedler, M., Stubbs, M.T., Reimann, C., Proetzel, G., Rudolph, R. & Fiedler, U. (2007). Affilin-novel binding molecules based on human gamma- β-crystallin, an all beta-sheet protein. J. Mol. Biol. 372, 172–185.CrossRefGoogle ScholarPubMed
Engfeldt, T., Tran, T., Orlova, A., Widström, C., Feldwisch, J., Abrahmsen, L., Wennborg, A., Karlström, A.E. & Tolmachev, V. (2007). 99mTc-chelator engineering to improve tumour targeting properties of a HER2-specific Affibody molecule. Eur. J. Nucl. Med. Mol. Imaging 34, 1843–1853.CrossRefGoogle ScholarPubMed
Ewert, S., Huber, T., Honegger, A. & Plückthun, A. (2003). Biophysical properties of human antibody variable domains. J. Mol. Biol. 325, 531–553.CrossRefGoogle ScholarPubMed
Falnes, P.O. & Sandvig, K. (2000). Penetration of protein toxins into cells. Curr. Opin. Cell Biol. 12, 407–413.CrossRefGoogle ScholarPubMed
Fellouse, F.A., Li, B., Compaan, D.M., Peden, A.A., Hymowitz, S.G. & Sidhu, S.S. (2005). Molecular recognition by a binary code. J. Mol. Biol. 348, 1153–1162.CrossRefGoogle ScholarPubMed
Fellouse, F.A., Wiesmann, C. & Sidhu, S.S. (2004). Synthetic antibodies from a four-amino-acid code: a dominant role for tyrosine in antigen recognition. Proc. Natl. Acad. Sci. USA 101, 12467–12472.CrossRefGoogle ScholarPubMed
Fischer, N. & Leger, O. (2007). Bispecific antibodies: molecules that enable novel therapeutic strategies. Pathobiology 74, 3–14.CrossRefGoogle ScholarPubMed
Fishwild, D.M., O'Donnell, S.L., Bengoechea, T., Hudson, D.V., Harding, F., Bernhard, S.L., Jones, D., Kay, R.M., Higgins, K.M., Schramm, S.R. & Lonberg, N. (1996 Jul.). High-avidity human IgG kappa monoclonal antibodies from a novel strain of minilocus transgenic mice. Nat. Biotechnol. 14, 845–851.CrossRefGoogle ScholarPubMed
Forrer, P., Binz, H.K., Stumpp, M.T. & Plückthun, A. (2004). Consensus design of repeat proteins. ChemBioChem 5, 183–189.CrossRefGoogle ScholarPubMed
Forrer, P., Stumpp, M.T., Binz, H.K. & Plückthun, A. (2003). A novel strategy to design binding molecules harnessing the modular nature of repeat proteins. FEBS Lett. 539, 2–6.CrossRefGoogle ScholarPubMed
Ghetie, V. & Ward, E.S. (2002). Transcytosis and catabolism of antibody. Immunol. Res. 25, 97–113.CrossRefGoogle ScholarPubMed
Gilbreth, R.N., Esaki, K., Koide, A., Sidhu, S.S. & Koide, S. (2008). A dominant conformational role for amino acid diversity in minimalist protein-protein interfaces. J. Mol. Biol. 381, 407–418.CrossRefGoogle ScholarPubMed
Gillies, S.D., Lan, Y., Brunkhorst, B., Wong, W.K., Li, Y. & Lo, K.M. (2002a). Bi-functional cytokine fusion proteins for gene therapy and antibody-targeted treatment of cancer. Cancer Immunol. Immunother. 51, 449–460.CrossRefGoogle ScholarPubMed
Gillies, S.D., Lo, K.M., Burger, C., Lan, Y., Dahl, T. & Wong, W.K. (2002b). Improved circulating half-life and efficacy of an antibody-interleukin 2 immunocytokine based on reduced intracellular proteolysis. Clin. Cancer Res. 8, 210–216.Google ScholarPubMed
Greenwald, R.B., Choe, Y.H., McGuire, J. & Conover, C.D. (2003). Effective drug delivery by PEGylated drug conjugates. Adv. Drug Deliv. Rev. 55, 217–250.CrossRefGoogle ScholarPubMed
Hanes, J. & Plückthun, A. (1997). In vitro selection and evolution of functional proteins by using ribosome display. Proc. Natl. Acad. Sci. USA 94, 4937–4942.CrossRefGoogle ScholarPubMed
Haraldsson, B., Nyström, J. & Deen, W.M. (2008). Properties of the glomerular barrier and mechanisms of proteinuria. Physiol. Rev. 88, 451–487.CrossRefGoogle ScholarPubMed
Helguera, G., Morrison, S.L. & Penichet, M.L. (2002). Antibody-cytokine fusion proteins: harnessing the combined power of cytokines and antibodies for cancer therapy. Clin. Immunol. 105, 233–246.CrossRefGoogle ScholarPubMed
Hiipakka, M. & Saksela, K. (2002). Capacity of simian immunodeficiency virus strain mac Nef for high-affinity Src homology 3 (SH3) binding revealed by ligand-tailored SH3 domains. J. Gen. Virol. 83, 3147–3152.CrossRefGoogle ScholarPubMed
Högbom, M., Eklund, M., Nygren, P.-Å. & Nordlund, P. (2003). Structural basis for recognition by an in vitro evolved affibody. Proc. Natl. Acad. Sci. USA 100, 3191–3196.CrossRefGoogle Scholar
Hohlbaum, A.M. & Skerra, A. (2007). Anticalins: the lipocalin family as a novel protein scaffold for the development of next-generation immunotherapies. Expert Rev. Clin. Immunol. 3, 491–501.CrossRefGoogle ScholarPubMed
Holliger, P., Prospero, T. & Winter, G. (1993). “Diabodies”: small bivalent and bispecific antibody fragments. Proc. Natl. Acad. Sci. USA 90, 6444–6448.CrossRefGoogle ScholarPubMed
Holt, L.J., Basran, A., Jones, K., Chorlton, J., Jespers, L.S., Brewis, N.D. & Tomlinson, I.M. (2008). Anti-serum albumin domain antibodies for extending the half-lives of short lived drugs. Protein Eng. Des. Sel. 21, 283–288.CrossRefGoogle ScholarPubMed
Hoogenboom, H.R. & Winter, G. (1992). By-passing immunisation. Human antibodies from synthetic repertoires of germline VH gene segments rearranged in vitro. J. Mol. Biol. 227, 381–388.CrossRefGoogle ScholarPubMed
Huber, T., Steiner, D., Röthlisberger, D. & Plückthun, A. (2007). In vitro selection and characterization of DARPins and Fab fragments for the co-crystallization of membrane proteins: The Na(+)-citrate symporter CitS as an example. J. Struct. Biol. 159, 206–221.CrossRefGoogle ScholarPubMed
Hudson, P.J. & Kortt, A.A. (1999). High avidity scFv multimers; diabodies and triabodies. J. Immunol. Methods 231, 177–189.CrossRefGoogle ScholarPubMed
Hussain, S., Plückthun, A., Allen, T.M. & Zangemeister-Wittke, U. (2007). Antitumor activity of an epithelial cell adhesion molecule targeted nanovesicular drug delivery system. Mol. Cancer Ther. 6, 3019–3027.CrossRefGoogle ScholarPubMed
Interlandi, G., Wetzel, S.K., Settanni, G., Plückthun, A. & Caflisch, A. (2008). Characterization and further stabilization of designed ankyrin repeat proteins by combining molecular dynamics simulations and experiments. J. Mol. Biol. 375, 837–854.CrossRefGoogle ScholarPubMed
Jain, M., Venkatraman, G. & Batra, S.K. (2007). Optimization of radioimmunotherapy of solid tumors: biological impediments and their modulation. Clin. Cancer. Res. 13, 1374–1382.CrossRefGoogle ScholarPubMed
Jefferis, R., Lund, J. & Pound, J.D. (1998). IgG-Fc-mediated effector functions: molecular definition of interaction sites for effector ligands and the role of glycosylation. Immunol. Rev. 163, 59–76.CrossRefGoogle Scholar
Jones, P.T., Dear, P.H., Foote, J., Neuberger, M.S. & Winter, G. (1986). Replacing the complementarity-determining regions in a human antibody with those from a mouse. Nature 321, 522–525.CrossRefGoogle Scholar
Junghans, R.P. (1997). Finally! The Brambell receptor (FcRB). Mediator of transmission of immunity and protection from catabolism for IgG. Immunol. Res. 16, 29–57.CrossRefGoogle ScholarPubMed
Junqueira, D., Cilenti, L., Musumeci, L., Sedivy, J.M. & Zervos, A.S. (2003). Random mutagenesis of PDZ(Omi) domain and selection of mutants that specifically bind the Myc proto-oncogene and induce apoptosis. Oncogene 22, 2772–2781.CrossRefGoogle ScholarPubMed
Karatan, E., Merguerian, M., Han, Z., Scholle, M.D., Koide, S. & Kay, B.K. (2004). Molecular recognition properties of FN3 monobodies that bind the Src SH3 domain. Chem. Biol. 11, 835–844.CrossRefGoogle ScholarPubMed
Kawe, M., Forrer, P., Amstutz, P. & Plückthun, A. (2006). Isolation of intracellular proteinase inhibitors derived from designed ankyrin repeat proteins by genetic screening. J. Biol. Chem. 281, 40252–40263.CrossRefGoogle ScholarPubMed
Kipriyanov, S.M. (2002). Generation of bispecific and tandem diabodies. Methods Mol. Biol. 178, 317–331.Google ScholarPubMed
Klevenz, B., Butz, K. & Hoppe-Seyler, F. (2002). Peptide aptamers: exchange of the thioredoxin-A scaffold by alternative platform proteins and its influence on target protein binding. Cell. Mol. Life Sci. 59, 1993–1998.CrossRefGoogle ScholarPubMed
Knappik, A., Ge, L., Honegger, A., Pack, P., Fischer, M., Wellnhofer, G., Hoess, A., Wölle, J., Plückthun, A. & Virnekäs, B. (2000). Fully synthetic human combinatorial antibody libraries (HuCAL) based on modular consensus frameworks and CDRs randomized with trinucleotides. J. Mol. Biol. 296, 57–86.CrossRefGoogle ScholarPubMed
Kobe, B. & Kajava, A.V. (2000). When protein folding is simplified to protein coiling: the continuum of solenoid protein structures. Trends Biochem. Sci. 25, 509–515.CrossRefGoogle ScholarPubMed
Koduri, V. & Blacklow, S.C. (2001). Folding determinants of LDL receptor type A modules. Biochemistry 40, 12801–12807.CrossRefGoogle ScholarPubMed
Kohl, A., Amstutz, P., Parizek, P., Binz, H.K., Briand, C., Capitani, G., Forrer, P., Plückthun, A. & Grütter, M.G. (2005). Allosteric inhibition of aminoglycoside phosphotransferase by a designed ankyrin repeat protein. Structure (Camb) 13, 1131–1141.CrossRefGoogle ScholarPubMed
Kohl, A., Binz, H.K., Forrer, P., Stumpp, M.T., Plückthun, A. & Grütter, M.G. (2003). Designed to be stable: Crystal structure of a consensus ankyrin repeat protein. Proc. Natl. Acad. Sci. USA 100, 1700–1705.CrossRefGoogle ScholarPubMed
Köhler, G. & Milstein, C. (1975). Continuous cultures of fused cells secreting antibody of predefined specificity. Nature 256, 495–497.CrossRefGoogle ScholarPubMed
Koide, A., Abbatiello, S., Rothgery, L. & Koide, S. (2002). Probing protein conformational changes in living cells by using designer binding proteins: application to the estrogen receptor. Proc. Natl. Acad. Sci. USA 99, 1253–1258.CrossRefGoogle ScholarPubMed
Koide, A., Bailey, C.W., Huang, X. & Koide, S. (1998). The fibronectin type III domain as a scaffold for novel binding proteins. J. Mol. Biol. 284, 1141–1151.CrossRefGoogle ScholarPubMed
Koide, A., Gilbreth, R.N., Esaki, K., Tereshko, V. & Koide, S. (2007). High-affinity single-domain binding proteins with a binary-code interface. Proc. Natl. Acad. Sci. USA 104, 6632–6637.CrossRefGoogle ScholarPubMed
Krapp, S., Mimura, Y., Jefferis, R., Huber, R. & Sondermann, P. (2003). Structural analysis of human IgG-Fc glycoforms reveals a correlation between glycosylation and structural integrity. J. Mol. Biol. 325, 979–989.CrossRefGoogle ScholarPubMed
Kreitman, R.J. (2006). Immunotoxins for targeted cancer therapy. AAPS J. 8, E532–551.CrossRefGoogle ScholarPubMed
Lee, C.V., Liang, W.C., Dennis, M.S., Eigenbrot, C., Sidhu, S.S. & Fuh, G. (2004). High-affinity human antibodies from phage-displayed synthetic Fab libraries with a single framework scaffold. J. Mol. Biol. 340, 1073–1093.CrossRefGoogle ScholarPubMed
Lendel, C., Dincbas-Renqvist, V., Flores, A., Wahlberg, E., Dogan, J., Nygren, P.-Å. & Härd, T. (2004). Biophysical characterization of Z(SPA-1) – a phage-display selected binder to protein A. Protein Sci. 13, 2078–2088.CrossRefGoogle Scholar
Levin, A.M. & Weiss, G.A. (2006). Optimizing the affinity and specificity of proteins with molecular display. Molecular Biosystems 2, 49–57.CrossRefGoogle ScholarPubMed
Li, J., Mahajan, A. & Tsai, M.-D. (2006). Ankyrin repeat: a unique motif mediating protein-protein interactions. Biochemistry 45, 15168–15178.CrossRefGoogle ScholarPubMed
Lipovsek, D., Lippow, S.M., Hackel, B.J., Gregson, M.W., Cheng, P., Kapila, A. & Wittrup, K.D. (2007). Evolution of an interloop disulfide bond in high-affinity antibody mimics based on fibronectin type III domain and selected by yeast surface display: molecular convergence with single-domain camelid and shark antibodies. J. Mol. Biol. 368, 1024–1041.CrossRefGoogle ScholarPubMed
Luginbühl, B., Kanyo, Z., Jones, R.M., Fletterick, R.J., Prusiner, S.B., Cohen, F.E., Williamson, R.A., Burton, D.R. & Plückthun, A. (2006). Directed evolution of an anti-prion protein scFv fragment to an affinity of 1 pM and its structural interpretation. J. Mol. Biol. 363, 75–97.CrossRefGoogle Scholar
Magnusson, M.K., Henning, P., Myhre, S., Wikman, M., Uil, T.G., Friedman, M., Andersson, K.M., Hong, S.S., Hoeben, R.C., Habib, N.A., Stahl, S., Boulanger, P. & Lindholm, L. (2007). Adenovirus 5 vector genetically re-targeted by an Affibody molecule with specificity for tumor antigen HER2/neu. Cancer Gene Ther. 14, 468–479.CrossRefGoogle ScholarPubMed
Malabarba, M.G., Milia, E., Faretta, M., Zamponi, R., Pelicci, P.G. & Di Fiore, P.P. (2001). A repertoire library that allows the selection of synthetic SH2s with altered binding specificities. Oncogene 20, 5186–5194.CrossRefGoogle ScholarPubMed
Markland, W., Ley, A.C., Lee, S.W. & Ladner, R.C. (1996). Iterative optimization of high-affinity proteases inhibitors using phage display. 1. Plasmin. Biochemistry 35, 8045–8057.CrossRefGoogle ScholarPubMed
Marks, J.D., Hoogenboom, H.R., Bonnert, T.P., McCafferty, J., Griffiths, A.D. & Winter, G. (1991). By-passing immunization. Human antibodies from V-gene libraries displayed on phage. J. Mol. Biol. 222, 581–597.CrossRefGoogle ScholarPubMed
Marvin, J.S. & Zhu, Z. (2005). Recombinant approaches to IgG-like bispecific antibodies. Acta Pharmacol. Sin. 26, 649–658.CrossRefGoogle ScholarPubMed
McCafferty, J., Griffiths, A.D., Winter, G. & Chiswell, D.J. (1990). Phage antibodies: filamentous phage displaying antibody variable domains. Nature 348, 552–554.CrossRefGoogle ScholarPubMed
Mendez, M.J., Green, L.L., Corvalan, J.R., Jia, X.C., Maynard-Currie, C.E., Yang, X.D., Gallo, M.L., Louie, D.M., Lee, D.V., Erickson, K.L., Luna, J., Roy, C.M., Abderrahim, H., Kirschenbaum, F., Noguchi, M., Smith, D.H., Fukushima, A., Hales, J.F., Klapholz, S., Finer, M.H., Davis, C.G., Zsebo, K.M. & Jakobovits, A. (1997). Functional transplant of megabase human immunoglobulin loci recapitulates human antibody response in mice. Nat. Genet. 15, 146–156.CrossRefGoogle ScholarPubMed
Mercader, J.V. & Skerra, A. (2002). Generation of anticalins with specificity for a nonsymmetric phthalic acid ester. Anal. Biochem. 308, 269–277.CrossRefGoogle ScholarPubMed
Milovnik, P., Ferrari, P., Sarkar, C.A. & Plückthun, A. (2009). Selection and characterization of DARPins specific for the neurotensin receptor 1.Protein Eng. Des. Sel., in press.CrossRefGoogle ScholarPubMed
Mondon, P., Dubreuil, O., Bouayadi, K. & Kharrat, H. (2008). Human antibody libraries: a race to engineer and explore a larger diversity. Front. Biosci. 13, 1117–1129.CrossRefGoogle ScholarPubMed
Monsellier, E. & Bedouelle, H. (2006). Improving the stability of an antibody variable fragment by a combination of knowledge-based approaches: validation and mechanisms. J. Mol. Biol. 362, 580–593.CrossRefGoogle ScholarPubMed
Müller, D. & Kontermann, R.E. (2007). Recombinant bispecific antibodies for cellular cancer immunotherapy. Curr. Opin. Mol. Ther. 9, 319–326.Google ScholarPubMed
Nahta, R. & Esteva, F.J. (2006). HER2 therapy: molecular mechanisms of trastuzumab resistance. Breast Cancer Res. 8, 215.CrossRefGoogle ScholarPubMed
Nimmerjahn, F. & Ravetch, J.V. (2007a). Fc-receptors as regulators of immunity. Adv. Immunol. 96, 179–204.CrossRefGoogle Scholar
Nimmerjahn, F. & Ravetch, J.V. (2007b). Antibodies, Fc receptors and cancer. Curr. Opin. Immunol. 19, 239–245.CrossRefGoogle ScholarPubMed
Noble, C.O., Kirpotin, D.B., Hayes, M.E., Mamot, C., Hong, K., Park, J.W., Benz, C.C., Marks, J.D. & Drummond, D.C. (2004). Development of ligand-targeted liposomes for cancer therapy. Expert Opin. Ther. Targets 8, 335–353.CrossRefGoogle ScholarPubMed
Nord, K., Gunneriusson, E., Ringdahl, J., Ståhl, S., Uhlén, M. & Nygren, P.-Å. (1997). Binding proteins selected from combinatorial libraries of an α-helical bacterial receptor domain. Nat. Biotechnol. 15, 772–777.CrossRefGoogle ScholarPubMed
Norman, T.C., Smith, D.L., Sorger, P.K., Drees, B.L., O'Rourke, S.M., Hughes, T.R., Roberts, C.J., Friend, S.H., Fields, S. & Murray, A.W. (1999). Genetic selection of peptide inhibitors of biological pathways. Science 285, 591–595.CrossRefGoogle ScholarPubMed
North, C.L. & Blacklow, S.C. (1999). Structural independence of ligand-binding modules five and six of the LDL receptor. Biochemistry 38, 3926–3935.CrossRefGoogle ScholarPubMed
Nygren, P.-Å. (2008). Alternative binding proteins: affibody binding proteins developed from a small three-helix bundle scaffold. FEBS J. 275, 2668–2676.CrossRefGoogle ScholarPubMed
Orlova, A., Magnusson, M., Eriksson, T.L., Nilsson, M., Larsson, B., Hoiden-Guthenberg, I., Widström, C., Carlsson, J., Tolmachev, V., Stahl, S. & Nilsson, F.Y. (2006). Tumor imaging using a picomolar affinity HER2 binding affibody molecule. Cancer Res. 66, 4339–4348.CrossRefGoogle ScholarPubMed
Orlova, A., Tran, T., Widström, C., Engfeldt, T., Eriksson Karlström, A. & Tolmachev, V. (2007). Pre-clinical evaluation of [111In]-benzyl-DOTA-Z(HER2:342), a potential agent for imaging of HER2 expression in malignant tumors. Int. J. Mol. Med. 20, 397–404.Google Scholar
Osenga, K.L., Hank, J.A., Albertini, M.R., Gan, J., Sternberg, A.G., Eickhoff, J., Seeger, R.C., Matthay, K.K., Reynolds, C.P., Twist, C., Krailo, M., Adamson, P.C., Reisfeld, R.A., Gillies, S.D. & Sondel, P.M. (2006). A phase I clinical trial of the hu14.18-IL2 (EMD 273063) as a treatment for children with refractory or recurrent neuroblastoma and melanoma: a study of the Children's Oncology Group. Clin. Cancer Res. 12, 1750–1759.CrossRefGoogle ScholarPubMed
Pancer, Z., Amemiya, C.T., Ehrhardt, G.R., Ceitlin, J., Gartland, G.L. & Cooper, M.D. (2004). Somatic diversification of variable lymphocyte receptors in the agnathan sea lamprey. Nature 430, 174–180.CrossRefGoogle ScholarPubMed
Pancer, Z. & Cooper, M.D. (2006). The evolution of adaptive immunity. Annu. Rev. Immunol. 24, 497–518.CrossRefGoogle ScholarPubMed
Panni, S., Dente, L. & Cesareni, G. (2002). In vitro evolution of recognition specificity mediated by SH3 domains reveals target recognition rules. J. Biol. Chem. 277, 21666–21674.CrossRefGoogle ScholarPubMed
Park, J.W., Benz, C.C. & Martin, F.J. (2004). Future directions of liposome- and immunoliposome-based cancer therapeutics. Semin. Oncol. 31, 196–205.CrossRefGoogle ScholarPubMed
Parker, M.H., Chen, Y., Danehy, F., Dufu, K., Ekstrom, J., Getmanova, E., Gokemeijer, J., Xu, L. & Lipovsek, D. (2005). Antibody mimics based on human fibronectin type three domain engineered for thermostability and high-affinity binding to vascular endothelial growth factor receptor two. Protein Eng. Des. Sel. 18, 435–444.CrossRefGoogle ScholarPubMed
Pearce, K.H., Cunningham, B.C., Fuh, G., Teeri, T. & Wells, J.A. (1999). Growth hormone binding affinity for its receptor surpasses the requirements for cellular activity. Biochemistry 38, 81–89.CrossRefGoogle ScholarPubMed
Peled, J.U., Kuang, F.L., Iglesias-Ussel, M.D., Roa, S., Kalis, S.L., Goodman, M.F. & Scharff, M.D. (2008). The biochemistry of somatic hypermutation. Annu. Rev. Immunol. 26, 481–511.CrossRefGoogle ScholarPubMed
Perentesis, J.P., Miller, S.P. & Bodley, J.W. (1992). Protein toxin inhibitors of protein synthesis. BioFactors 3, 173–184.Google ScholarPubMed
Plückthun, A. & Moroney, S.E. (2005). Modern antibody technology: The impact on drug development. In Modern Biopharmaceuticals (Knäblein, J., ed.), Vol. 3, pp. 1147–1186. Wiley-VCH, Weinheim.Google Scholar
Plückthun, A. & Pack, P. (1997). New protein engineering approaches to multivalent and bispecific antibody fragments. Immunotechnology 3, 83–105.CrossRefGoogle ScholarPubMed
Presta, L.G. (2008). Molecular engineering and design of therapeutic antibodies. Curr. Opin. Immunol. 20, 460–470.CrossRefGoogle ScholarPubMed
Ramsland, P.A. & Farrugia, W. (2002). Crystal structures of human antibodies: a detailed and unfinished tapestry of immunoglobulin gene products. J. Mol. Recognit. 15, 248–259.CrossRefGoogle ScholarPubMed
Reina, J., Lacroix, E., Hobson, S.D., Fernandez-Ballester, G., Rybin, V., Schwab, M.S., Serrano, L. & Gonzalez, C. (2002). Computer-aided design of a PDZ domain to recognize new target sequences. Nat. Struct. Biol. 9, 621–627.Google ScholarPubMed
Ridgway, J.B., Presta, L.G. & Carter, P. (1996). “Knobs-into-holes” engineering of antibody CH3 domains for heavy chain heterodimerization. Protein Eng. 9, 617–621.CrossRefGoogle ScholarPubMed
Roberts, R.W. & Szostak, J.W. (1997). RNA-peptide fusions for the in vitro selection of peptides and proteins. Proc. Natl. Acad. Sci. USA 94, 12297–12302.CrossRefGoogle ScholarPubMed
Röttgen, P. & Collins, J. (1995). A human pancreatic secretory trypsin inhibitor presenting a hypervariable highly constrained epitope via monovalent phagemid display. Gene 164, 243–250.CrossRefGoogle ScholarPubMed
Ryan, M.H., Heavner, G.A., Brigham-Burke, M., McMahon, F., Shanahan, M.F., Gunturi, S.R., Sharma, B. & Farrell, F.X. (2006). An in vivo model to assess factors that may stimulate the generation of an immune reaction to erythropoietin. Int. Immunopharmacol. 6, 647–655.CrossRefGoogle Scholar
Sandström, K., Xu, Z., Forsberg, G. & Nygren, P.-Å. (2003). Inhibition of the CD28-CD80 co-stimulation signal by a CD28-binding affibody ligand developed by combinatorial protein engineering. Protein Eng. 16, 691–697.CrossRefGoogle ScholarPubMed
Schier, R., Bye, J., Apell, G., McCall, A., Adams, G.P., Malmqvist, M., Weiner, L.M. & Marks, J.D. (1996). Isolation of high-affinity monomeric human anti-c-erbB-2 single chain Fv using affinity-driven selection. J. Mol. Biol. 255, 28–43.CrossRefGoogle ScholarPubMed
Schlehuber, S., Beste, G. & Skerra, A. (2000). A novel type of receptor protein, based on the lipocalin scaffold, with specificity for digoxigenin. J. Mol. Biol. 297, 1105–1120.CrossRefGoogle ScholarPubMed
Schlehuber, S. & Skerra, A. (2005). Lipocalins in drug discovery: from natural ligand-binding proteins to “anticalins.”Drug Discov. Today 10, 23–33.CrossRefGoogle ScholarPubMed
Schneider, S., Buchert, M., Georgiev, O., Catimel, B., Halford, M., Stacker, S.A., Baechi, T., Moelling, K. & Hovens, C.M. (1999). Mutagenesis and selection of PDZ domains that bind new protein targets. Nat. Biotechnol. 17, 170–175.CrossRefGoogle ScholarPubMed
Schweizer, A., Roschitzki-Voser, H., Amstutz, P., Briand, C., Gulotti-Georgieva, M., Prenosil, E., Binz, H.K., Capitani, G., Baici, A., Plückthun, A. & Grütter, M.G. (2007). Inhibition of caspase-2 by a designed ankyrin repeat protein: specificity, structure, and inhibition mechanism. Structure 15, 625–636.CrossRefGoogle ScholarPubMed
Scott, J.K. & Smith, G.P. (1990). Searching for peptide ligands with an epitope library. Science 249, 386–390.CrossRefGoogle ScholarPubMed
Sennhauser, G., Amstutz, P., Briand, C., Storchenegger, O. & Grütter, M.G. (2007). Drug export pathway of multidrug exporter AcrB revealed by DARPin inhibitors. PLoS Biol. 5, e7.CrossRefGoogle ScholarPubMed
Silverman, J., Liu, Q., Bakker, A., To, W., Duguay, A., Alba, B.M., Smith, R., Rivas, A., Li, P., Le, H., Whitehorn, E., Moore, K.W., Swimmer, C., Perlroth, V., Vogt, M., Kolkman, J. & Stemmer, W.P. (2005). Multivalent avimer proteins evolved by exon shuffling of a family of human receptor domains. Nat. Biotechnol. 23, 1556–1561.CrossRefGoogle ScholarPubMed
Skerra, A. & A, Plückthun. (1988). Assembly of a functional immunoglobulin Fv fragment inEscherichia coli. Science 240, 1038–1041.Google Scholar
Smith, G.P. (1985). Filamentous fusion phage: novel expression vectors that display cloned antigens on the virion surface. Science 228, 1315–1317.CrossRefGoogle ScholarPubMed
Sondel, P.M., Hank, J.A., Gan, J., Neal, Z. & Albertini, M.R. (2003). Preclinical and clinical development of immunocytokines. Curr. Opin. Investig. Drugs 4, 696–700.Google ScholarPubMed
Steiner, D., Forrer, P. & Plückthun, A. (2008). Efficient Selection of DARPins with Sub-nanomolar Affinities using SRP Phage Display. J. Mol. Biol 382, 1211–1227.CrossRefGoogle ScholarPubMed
Steiner, D., Forrer, P., Stumpp, M.T. & Plückthun, A. (2006). Signal sequences directing cotranslational translocation expand the range of proteins amenable to phage display. Nat. Biotechnol. 24, 823–831.CrossRefGoogle ScholarPubMed
Steipe, B., Schiller, B., Plückthun, A. & Steinbacher, S. (1994). Sequence statistics reliably predict stabilizing mutations in a protein domain. J. Mol. Biol. 240, 188–192.CrossRefGoogle Scholar
Stirpe, F. (2004). Ribosome-inactivating proteins. Toxicon 44, 371–383.CrossRefGoogle ScholarPubMed
Stumpp, M.T., Forrer, P., Binz, H.K. & Plückthun, A. (2003). Designing repeat proteins: modular leucine-rich repeat protein libraries based on the mammalian ribonuclease inhibitor family. J. Mol. Biol. 332, 471–487.CrossRefGoogle ScholarPubMed
Tanaka, A.S., Silva, M.M., Torquato, R.J., Noguti, M.A., Sampaio, C.A., Fritz, H. & Auerswald, E.A. (1999). Functional phage display of leech-derived tryptase inhibitor (LDTI): construction of a library and selection of thrombin inhibitors. FEBS Lett. 458, 11–16.CrossRefGoogle ScholarPubMed
Telleman, P. & Junghans, R.P. (2000). The role of the Brambell receptor (FcRB) in liver: protection of endocytosed immunoglobulin G (IgG) from catabolism in hepatocytes rather than transport of IgG to bile. Immunology 100, 245–251.CrossRefGoogle Scholar
Tolmachev, V., Orlova, A., Pehrson, R., Galli, J., Baastrup, B., Andersson, K., Sandstrom, M., Rosik, D., Carlsson, J., Lundqvist, H., Wennborg, A. & Nilsson, F.Y. (2007). Radionuclide therapy of HER2-positive microxenografts using a 177Lu-labeled HER2-specific Affibody molecule. Cancer Res. 67, 2773–2782.CrossRefGoogle ScholarPubMed
Trail, P.A., King, H.D. & Dubowchik, G.M. (2003). Monoclonal antibody drug immunoconjugates for targeted treatment of cancer. Cancer Immunol. Immunother. 52, 328–337.Google ScholarPubMed
Neut Kolfschoten, M., Schuurman, J., Losen, M., Bleeker, W.K., Martinez-Martinez, P., Vermeulen, E., Bleker, T.H., Wiegman, L., Vink, T., Aarden, L.A., Baets, M.H., Winkel, J.G.J., Aalberse, R.C. & Parren, P.W.H.I. (2007). Anti-inflammatory activity of human IgG4 antibodies by dynamic Fab arm exchange. Science 317, 1554–1557.CrossRefGoogle ScholarPubMed
Vaughan, T.J., Williams, A.J., Pritchard, K., Osbourn, J.K., Pope, A.R., Earnshaw, J.C., McCafferty, J., Hodits, R.A., Wilton, J. & Johnson, K.S. (1996). Human antibodies with sub-nanomolar affinities isolated from a large non-immunized phage display library. Nat. Biotechnol. 14, 309–314.CrossRefGoogle ScholarPubMed
Virnekäs, B., Ge, L., Plückthun, A., Schneider, K.C., Wellnhofer, G. & Moroney, S.E. (1994). Trinucleotide phosphoramidites: Ideal reagents for the synthesis of mixed oligonucleotides for random mutagenesis. Nucleic Acids Res. 22, 5600–5607.CrossRefGoogle ScholarPubMed
Vogt, M. & Skerra, A. (2004). Construction of an artificial receptor protein (“anticalin”) based on the human apolipoprotein D. ChemBioChem 5, 191–199.CrossRefGoogle ScholarPubMed
Voutsadakis, I.A. (2002). Gemtuzumab Ozogamicin (CMA-676, Mylotarg) for the treatment of CD33+ acute myeloid leukemia. Anti-Cancer Drugs 13, 685–692.CrossRefGoogle ScholarPubMed
Wahlberg, E., Lendel, C., Helgstrand, M., Allard, P., Dincbas-Renqvist, V., Hedqvist, A., Berglund, H., Nygren, P.-Å. & Härd, T. (2003). An affibody in complex with a target protein: structure and coupled folding. Proc. Natl. Acad. Sci. USA 100, 3185–3190.CrossRefGoogle ScholarPubMed
Waibel, R., Alberto, R., Willuda, J., Finnern, R., Schibli, R., Stichelberger, A., Egli, A., Abram, U., Mach, J.P., Plückthun, A. & Schubiger, P.A. (1999). Stable one-step technetium-99m labeling of His-tagged recombinant proteins with a novel Tc(I)-carbonyl complex. Nat. Biotechnol. 17, 897–901.CrossRefGoogle ScholarPubMed
Wang, S.Y. & Weiner, G. (2008). Complement and cellular cytotoxicity in antibody therapy of cancer. Expert Opin. Biol. Ther. 8, 759–768.CrossRefGoogle ScholarPubMed
Weiner, L.M. & Carter, P. (2003). The rollercoaster ride to anti-cancer antibodies. Nat. Biotechnol. 21, 510–511.CrossRefGoogle ScholarPubMed
Wetzel, S.K., Settanni, G., Kenig, M., Binz, H.K. & Plückthun, A. (2008). Folding and unfolding mechanism of highly stable full-consensus ankyrin repeat proteins. J. Mol. Biol. 376, 241–257.CrossRefGoogle ScholarPubMed
Wiberg, F.C., Rasmussen, S.K., Frandsen, T.P., Rasmussen, L.K., Tengbjerg, K., Coljee, V.W., Sharon, J., Yang, C.Y., Bregenholt, S., Nielsen, L.S., Haurum, J.S. & Tolstrup, A.B. (2006). Production of target-specific recombinant human polyclonal antibodies in mammalian cells. Biotechnol. Bioeng. 94, 396–405.CrossRefGoogle ScholarPubMed
Williams, A. & Baird, L.G. (2003). DX-88 and HAE: a developmental perspective. Transfus. Apher. Sci. 29, 255–258.CrossRefGoogle ScholarPubMed
Wörn, A. & Plückthun, A. (2001). Stability engineering of antibody single-chain Fv fragments. J. Mol. Biol. 305, 989–1010.CrossRefGoogle ScholarPubMed
Xu, L., Aha, P., Gu, K., Kuimelis, R.G., Kurz, M., Lam, T., Lim, A.C., Liu, H., Lohse, P.A., Sun, L., Weng, S., Wagner, R.W. & Lipovsek, D. (2002). Directed evolution of high-affinity antibody mimics using mRNA display. Chem. Biol. 9, 933–942.CrossRefGoogle ScholarPubMed
Yang, K., Basu, A., Wang, M., Chintala, R., Hsieh, M.C., Liu, S., Hua, J., Zhang, Z., Zhou, J., Li, M., Phyu, H., Petti, G., Mendez, M., Janjua, H., Peng, P., Longley, C., Borowski, V., Mehlig, M. & Filpula, D. (2003). Tailoring structure-function and pharmacokinetic properties of single-chain Fv proteins by site-specific PEGylation. Protein Eng. 16, 761–770.CrossRefGoogle ScholarPubMed
Zahnd, C., Amstutz, P. & Plückthun, A. (2007a). Ribosome display: selecting and evolving proteins in vitro that specifically bind to a target. Nat. Methods 4, 269–279.CrossRefGoogle ScholarPubMed
Zahnd, C., Pécorari, F., Straumann, N., Wyler, E. & Plückthun, A. (2006). Selection and characterization of Her2 binding-designed ankyrin repeat proteins. J. Biol. Chem. 281, 35167–35175.CrossRefGoogle ScholarPubMed
Zahnd, C., Spinelli, S., Luginbühl, B., Amstutz, P., Cambillau, C. & Plückthun, A. (2004). Directed in vitro evolution and crystallographic analysis of a peptide binding scFv antibody with low picomolar affinity. J. Biol. Chem. 279, 18870–18877.CrossRefGoogle ScholarPubMed
Zahnd, C., Wyler, E., Schwenk, J.M., Steiner, D., Lawrence, M.C., McKern, N.M., Pecorari, F., Ward, C.W., Joos, T.O. & Plückthun, A. (2007b). A designed ankyrin repeat protein evolved to picomolar affinity to Her2. J. Mol. Biol. 369, 1015–1028.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×