Skip to main content Accessibility help
×
Hostname: page-component-7479d7b7d-k7p5g Total loading time: 0 Render date: 2024-07-09T08:50:18.997Z Has data issue: false hasContentIssue false

7 - On the Relevance of Prenatal Stress to Developmental Psychopathology: A Primate Model

Published online by Cambridge University Press:  10 August 2009

Mary L. Schneider
Affiliation:
Department of Kinesiology and Psychology, University of Wisconsin – Madison
Colleen F. Moore
Affiliation:
Department of Psychology, University of Wisconsin – Madison
Gary W. Kraemer
Affiliation:
Department of Kinesiology, University of Wisconsin – Madison
Dante Cicchetti
Affiliation:
University of Rochester, New York
Elaine F. Walker
Affiliation:
Emory University, Atlanta
Get access

Summary

In this chapter we examine the question of whether psychosocial stress during pregnancy might be one factor predisposing offspring to the development of psychopathology. We review relevant data from nonhuman primates, rodents, other mammals, and some human studies. The impetus for this chapter is derived from several sources. The first is the observation that prenatal stress effects in both humans and animals appear to share similarities with some forms of psychopathology in humans. These similarities include dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis, sleep disturbances, and alterations in brain biogenic amine chemical activity – disturbances that are similar to those found in humans with psychiatric disorders.

The second impetus is the recent move in the field of developmental psychopathology from a deficit model to a risk model. From the perspective of a “deficits” model, a researcher would tend to look for cause-and-effect relationships wherein a specific event, early in life, results in altered developmental outcome (Brown, 1993). Alternately, in a risk model, early life events are not viewed as singular causes of developmental outcomes, but rather they are considered as probabilistic contributors to development along with other events within a dynamic interacting complex process. Also, in a risk model, early life events are viewed as probabilistically associated with a variety of different developmental outcomes; this construct is called multifinality. For example, from a “deficit” viewpoint, preterm delivery can be viewed as a cause of later developmental problems, such as cerebral palsy, subtle neuromotor abnormalities, learning disabilities, and behavior problems (Goldson, 1983; Hertzig, 1981; Koops & Harmon, 1980).

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alonso, S. J., Arevalo, R., Afonso, D., & Rodriguez, M. (1991). Effects of maternal stress during pregnancy on forced swimming test behavior of the offspring. Physiology and Behavior, 50, 511–517CrossRefGoogle ScholarPubMed
Alonso, S. J., Castellano, M. A., Quintero, M., & Navarro, E. (1999). Action of antidepressant drugs on maternal stress-induced hypoactivity in female rats. Methods & Findings in Experimental & Clinical Pharmacology, 21(4), 291–295CrossRefGoogle ScholarPubMed
Alonso, S. J., Navarro, E., Santana, C., & Rodriguez, M. (1997). Motor lateralization, behavioral despair and dopaminergic brain asymmetry after prenatal stress. Pharmacology Biochemistry and Behavior, 58, 443–448CrossRefGoogle ScholarPubMed
Anders, T. F., Sachar, E. J., Kream, J., Roffwarg, H. P., & Hellman, L. (1970). Behavioral state and plasma cortisol response in the human newborn. Pediatrics, 46(4), 532–537Google ScholarPubMed
Andreasen, N. C. (1997). Linking mind and brain in the study of mental illness: A project for a scientific psychopathology. Science, 275, 1586–1593CrossRefGoogle Scholar
Barbazanges, A., Piazza, P. V., Moal, M., & Maccari, S. (1996). Maternal glucocorticoid secretion mediates long-term effects of prenatal stress. Journal of Neuroscience, 16, 3943–3949CrossRefGoogle ScholarPubMed
Barkley, R. A. (1998). Attention-deficit hyperactivity disorder. Scientific American, September, 279, 66–71CrossRefGoogle ScholarPubMed
Benediktsson, R., & Seckl, J. R. (1998). Understanding human parturition. Lancet, 351, 913–914CrossRefGoogle ScholarPubMed
Bennington, J. H., & Heller, H. C. (1995). Monoaminergic and cholinergic modulation of REM-sleep timing in rats. Brain Research, 681, 141–146CrossRefGoogle Scholar
Boyce, W. T., Frank, E., Jensen, P. S., Kessler, R. C., Nelson, C. A., Steinberg, L., & The MacArthur Foundation Research Network on Psychopathology and Development. (1998). Social context in developmental psychopathology: Recommendations for future research from the MacArthur Network on Psychopathology and Development. Development and Psychopathology, 10, 143–164CrossRefGoogle ScholarPubMed
Brazelton, T. B. (1984). Neonatal Behavioral Assessment Scale (2d ed.). Clinics in developmental medicine, 88. Philadelphia: Lippincott
Bronfenbrenner, U. (1995). Developmental ecology through space and time: A future perspective. In P. Moen, G. H. Elder, Jr., & K. Luscher (Eds.), Examining lives in context: Perspectives on the ecology of human development (pp. 619–647). Washington, D.C.: American Psychological AssociationCrossRef
Brooke, O. G., Anderson, H. R., Bland, J. M.Peacock, J. L. & Stewart, C. M. (1989). Effects on birth weight of smoking, alcohol, caffeine, socioeconomic factors, and psychosocial stress. British Medical Journal, 298, 795–801CrossRefGoogle ScholarPubMed
Brown, E. R. (1993). Long-term sequelae of preterm birth. In A. Fuchs, F. Fuchs, & P. G. Stubblefield (Eds.), Preterm birth: Causes, prevention and management (2d ed.). New York: McGraw-Hill
Caviness, V. S., & Rakic, P. (1978). Mechanisms of cortical development: A view from mutations in mice. Annual Reviews of Neuroscience, I, 297–326CrossRefGoogle Scholar
Chrousos, G. P., & Gold, P. W. (1992). The concepts of stress and stress system disorders: Overview of physical and behavioral homeostasis. Journal of the American Medical Association, 267, 1244–1252CrossRefGoogle ScholarPubMed
Cicchetti, D., & Tucker, D. (1994). Development and self-regulatory structures of the mind. Development and Psychopathology, 6, 533–549CrossRefGoogle Scholar
Clarke, A. S., & Schneider, M. L. (1993). Prenatal stress has long-term effects on behavioral responses to stress in juvenile rhesus monkeys. Developmental Psychobiology, 26(5), 293–304CrossRefGoogle ScholarPubMed
Clarke, A. S., Soto, A., Bergholz, T., & Schneider, M. L. (1996). Maternal gestational stress alters adaptive and social behavior in adolescent rhesus monkey offspring. Infant Behavior and Development, 19, 453–463CrossRefGoogle Scholar
Clarke, A. S., Wittwer, D. J., Abbott, D. H., & Schneider, M. L. (1994). Long-term effects of prenatal stress on HPA axis activity in juvenile rhesus monkeys. Developmental Psychobiology, 27(5), 257–269CrossRefGoogle ScholarPubMed
Coe, C. L., Mendoza, S. P., Davidson, J., Smith, E. R., Dallman, M., & Levine, S. (1978). Hormonal response to stress in the squirrel monkey. Neuroendocrinology, 26, 367–377CrossRefGoogle ScholarPubMed
Cowen, P. J. (1993). Serotonin receptor subtypes in depression: Evidence from studies in neuroendocrine regulation. Clinical Neuropharmacology, 16(Suppl. 3), S6–18Google ScholarPubMed
Day, J. C., Koehl, M., Deroche, V., Moal, M., & Maccari, S. (1998). Prenatal stress enhances stress- and corticotropin-releasing factor-induced stimulation of hippocampal acetylcholine release in adult rats. Journal of Neuroscience, 18(5), 1886–1892CrossRefGoogle ScholarPubMed
Kloet, E. R., & Reul, J. M. (1987). Feedback action and tonic influence of corticosteroids on brain function: A concept arising from the heterogeneity of brain receptor systems. Psychoneuroendocrinology, 12, 83–105CrossRefGoogle ScholarPubMed
Souza, E. B., Insel, T. R., Perrin, M. H., Rivier, J., Vale, W. W., & Kuhar, M. J. (1985). Corticotropin-releasing factor receptors are widely distributed within the rat central nervous system: An autoradiographic study. Journal of Neuroscience, 5, 3189–3203CrossRefGoogle Scholar
Diamond, A. (1996). Evidence for the importance of dopamine for prefrontal cortex functions early in life. Phil Trans Research Society of London, 351, 1483–1494CrossRefGoogle ScholarPubMed
Drager, U. C. (1981). Observations on the organization of the visual cortex in the reeler mouse. Journal of Comparative Neurology, 201, 555–570CrossRefGoogle ScholarPubMed
Dugovic, C., Maccari, S., Weibel, L., Turek, F. W., & Reeth, O. (1999). High corticosterone levels in prenatally stressed rats predict persistent paradoxical sleep alterations. Journal of Neuroscience, 19(19), 8656–8664CrossRefGoogle ScholarPubMed
Emde, R., Harmon, R., Metcalf, D., Koenig, K., & Wagonfeld, S. (1971). Stress and neonatal sleep. Psychosomatic Medicine, 33, 491–497CrossRefGoogle ScholarPubMed
Evans, G. W., Hygge, S., & Bullinger, M. (1995). Chronic noise and psychological stress. Psychological Science, 6, 333–338CrossRefGoogle Scholar
File, S. E. (1978). ACTH but not corticosterone impairs habituation and reduces exploration. Pharmacology, Biochemistry, and Behavior, 9, 161–166CrossRefGoogle Scholar
Fleming, A., O'Day, D. H., & Kraemer, G. W. (1999). Neurobiology of mother-infant interactions: Experience and central nervous system plasticity across development and generations. Neuroscience and Biobehavioral Reviews, 25, 673–685CrossRefGoogle Scholar
Floeter, M. K., & Greenough, W. T. (1979). Cerebellar plasticity: Modification of purkinje cell structure by differential rearing in rhesus monkeys. Science, 206, 227–229CrossRefGoogle Scholar
Fride, E., Dan, Y., Feldon, J., Halevy, G., & Weinstock, M. (1986). Effects of prenatal stress on vulnerability to stress in prepubertal and adult rats. Physiology and Behavior, 37, 681–687CrossRefGoogle ScholarPubMed
Fride, E., Dan, Y., Gavish, M., & Weinstock, M. (1985). Prenatal stress impairs maternal behavior in a conflict situation and reduces hippocampal benzodiazepine receptors. Life Science, 36, 2103–2109CrossRefGoogle Scholar
Fride, E., & Weinstock, M. (1988). Prenatal stress increases anxiety related behavior and alters cerebral lateralization of dopamine activity. Life Science, 42, 1059–1065CrossRefGoogle ScholarPubMed
Galaburda, A. M., Rosen, G. D., & Sherman, G. F. (1989). The neural origin of developmental dyslexia: Implications for medicine, neurology, and cognition. In A. M. Galaburda (Ed.), From reading to neurons (pp. 377–404). Cambridge, Mass.: MIT Press
Gipsen, W. H., Poel, A., & Wimersma Greidanus, T. (1973). Pituitary adrenal influences on behavior. Responses to test situations with or without electric footshock. Physiology and Behavior, 10, 345–350Google Scholar
Gitau, R., Cameron, A., Fisk, N. M., & Glover, V. (1998). Fetal exposure to maternal cortisol. The Lancet, 352(9129), 707–708CrossRefGoogle ScholarPubMed
Goldman-Rakic, P. S., & Brown, R. M. (1982). Postnatal development of monoamine content and syntheses in the cerebral cortex of rhesus monkeys. Developmental Brain Research, 256, 339–349CrossRefGoogle Scholar
Goldson, E. (1983). Bronchopulmonary dysplasia: Its relation to two-year developmental functioning in the very low birthweight infant. In T. Field & A. Sostek (Eds.), Infants born at risk (pp. 243–250). New York: Grune & Stratton
Greenough, W. T., & Black, J. E. (1992). Induction of brain structure by experience: Substrates for cognitive development. In M. R. Gunnar & C. A. Nelson (Eds.), Developmental behavioral neuroscience (Vol. 24). Hillsdale, NJ: Erlbaum
Gunnar, M. R., Malone, S., Vance, G., & Fisch, R. O. (1985). Coping with aversive stimulation in the neonatal period: Quiet sleep and plasma cortisol levels during recovery from circumcision. Child Development, 56, 824–834CrossRefGoogle ScholarPubMed
Guralnick, M. J., & Bennett, F. C. (1987). A framework for early intervention. In M. J. Guralnick & F. C. Bennett (Eds.), The effectiveness of early intervention for at-risk and handicapped children (pp. 3–29). New York: Academic Press
Harlow, H. F. (1958). The evolution of learning. In A. Roe & G. Simpson (Eds.), Behavior and evolution (pp. 269–290). New Haven: Yale University Press
Harlow, H. F., & Harlow, M. K. (1965). The affectional systems. In H. Harlow, A. M. Schrier & F. Stollnitz (Eds.), Behavior of nonhuman primates (pp. 287–334). New York: Academic PressCrossRef
Harlow, H. F., & Harlow, M. (1966). Learning to love. American Scientist, 54, 244–272Google ScholarPubMed
Harlow, H. F., Harlow, M. K., & Suomi, S. J. (1971). From thought to therapy: Lessons from a primate laboratory. American Scientist, 59, 538–549Google ScholarPubMed
Harlow, H. F., & Suomi, S. J. (1974). Induced depression in monkeys. Behavioral Biology, 12, 273–296CrossRefGoogle ScholarPubMed
Hayashi, A., Nagaoka, M., Yamada, K., Ichitani, Y., Miake, Y., & Okado, N. (1998). Maternal stress induces synaptic loss and developmental disabilities of offspring. International Journal of Developmental Neuroscience, 16, 209–216CrossRefGoogle ScholarPubMed
Henry, C., Guegant, G., Cador, M., Arnauld, E.Arsaut, J., Moal, M., & Demotes-Mainard, J. (1995). Prenatal stress in rats facilitates amphetamine-induced sensitization and induces long-lasting changes in dopamine receptors in the nucleus accumbens. Brain Research, 685, 179–186CrossRefGoogle ScholarPubMed
Henry, C., Kabbaj, M., Simon, H., Moal, M., & Maccari, S. (1994). Prenatal stress increases the hypothalamo-pituitary-adrenal axis response in young and adult rats. Journal of Neuroendocrinology, 6, 341–345CrossRefGoogle Scholar
Hertzig, M. E. (1981). Neurological “soft” signs in low birthweight children. Developmental Medicine & Child Neurology, 23, 778–7913CrossRefGoogle ScholarPubMed
Holsboer, F., & Barden, N. (1996). Antidepressants and hypothalamic-pituitary-adrenocortical regulation. Endocrine Reviews, 17(2), 187–205CrossRefGoogle ScholarPubMed
Huttunen, M. O., & Niskanen, P. (1978). Prenatal loss of father and psychiatric disorders. Archives of General Psychiatry, 35, 429–431CrossRefGoogle ScholarPubMed
Ising, H., Rebentisch, E., Poustka, F., & Curio, I. (1990). Annoyance and health risk caused by military low-altitude flight noise. International Archives of Occupational and Environmental Health, 62, 357–363CrossRefGoogle ScholarPubMed
Jacobs, B. L., Praag, H., & Gage, F. H. (2000). Depression and the birth and death of brain cells. American Scientist, 88, 340–353Google Scholar
Jacobs, H. S. (1991). The hypothalamus and pituitary gland. In F. Hytten & G. Chamberlain (Eds.), Clinical physiology in obstetrics (2d ed.). London: Blackwell Scientific
Johnson, E. O., Kamilaris, T. C., Chrousos, G. P., & Gold, P. W. (1992). Mechanisms of stress: A dynamic overview of hormonal and behavioral homeostasis. Neuroscience and Biobehavioral Reviews, 16, 115–130CrossRefGoogle ScholarPubMed
Kaplan, J. R., Manuck, S. B., & Gatsonis, C. (1990). Heart rate and social status among male cynomolgus monkeys (Macaca fascicularis) housed in disrupted social groupings. American Journal of Primatology, 21, 175–187CrossRefGoogle Scholar
Kaufman, I. C., & Rosenblum, L. A. (1967). The reaction to separation in infant monkeys: Anaclitic depression and conservation-withdrawal. Psychosomatic Medicine, 29, 648–675CrossRefGoogle ScholarPubMed
Keller-Wood, M., & Dallman, M. (1984). Corticosteroid inhibition of ACTH secretion. Endocrine Review, 5, 1–24CrossRefGoogle ScholarPubMed
Koehl, M., Barbazanges, A., Moal, M. L., & Maccari, S. (1997). Prenatal stress induces a phase advance of circadian corticosterone rhythm in adult rats which is prevented by postnatal stress. Brain Research, 759, 317–320CrossRefGoogle ScholarPubMed
Koob, G. F., & Bloom, F. E. (1985). Corticotropin-releasing factor and behavior. Federation Proceedings 44, 259–263Google ScholarPubMed
Koops, B. L., & Harmon, R. J. (1980). Studies on longterm outcome in newborns with birthweights under 1500 g. Advances in Behavioral Pediatrics 1, 1–128Google Scholar
Kotrla, K. J., Sater, A. K., & Weinberger, D. R. (1997). Neuropathology, neurodevelopment and schizophrenia. In M. S. Keshavan & R. B. Murray (Eds.), Neurodevelopment & adult psychopathology (pp. 187–198). Cambridge: Cambridge University Press
Kraemer, G. W. (1982). Neurochemical correlates of stress and depression: Depletion or disorganization? The Behavioral and Brain Sciences, 5, 110CrossRefGoogle Scholar
Kraemer, G. W. (1986). Causes of changes in brain noradrenaline systems and later effects on responses to social stressors in rhesus monkeys: The Cascade Hypothesis. In Antidepressants and receptor function (CIBA Foundation Symposium 123) (pp. 216–233). Chichester: Wiley
Kraemer, G. W. (1992). A psychobiological theory of attachment. Behavioral and Brain Sciences, 15(3), 493–511CrossRefGoogle ScholarPubMed
Kraemer, G. W., & Bachevalier, J. (1998). Cognitive changes associated with persisting behavioral effects of early psychosocial stress in rhesus monkeys: The view from psychobiology. In Adversity, stress, and psychopathology. Peer-reviewed monograph. Series editor B. Dohrenwend (Columbia University)(pp. 438–462). Oxford: Oxford University Press
Kraemer, G. W., Ebert, M. H., Schmidt, D. E., & McKinney, W. T. (1989). A longitudinal study of the effects of different rearing environments on cerebrospinal fluid norepinephrine and biogenic amine metabolites in rhesus monkeys. Neuropsychopharmacology, 2, 175–189CrossRefGoogle Scholar
Kraemer, G. W., Ebert, M. H., Schmidt, D. E., & McKinney, W. T. (1991). Strangers in a strange land: A psychobiological study of mother-infant separation in rhesus monkeys. Child Development, 62, 548–566CrossRefGoogle Scholar
Kraemer, G. W., & McKinney, W. T. (1979). Interactions of pharmacological agents which alter biogenic amine metabolism and depression: An analysis of contributing factors within a primate model of depression. Journal of Affective Disorders, 1, 33–54CrossRefGoogle Scholar
Kryter, K. D. (1990). Aircraft noise and social factors in psychiatric hospital admission rates: A re-examination of some data. Psychological Medicine, 20, 395–411CrossRefGoogle ScholarPubMed
Kupfer, D. J. (1995). Sleep research in depressive illness: Clinical implications – a tasting menu. Biological Psychiatry, 38, 391–403CrossRefGoogle ScholarPubMed
LaHoste, et al . (1996). Dopamine D4 receptor gene polymorphism is associated with Attention Deficit Hyperactivity Disorder. Molecular Psychiatry 1, 121–124Google ScholarPubMed
Lauder, J. M., & Krebs, H. (1978). Serotonin as a differentiation signal in early neurogenesis. Developmental Neuroscience, 1, 15–30CrossRefGoogle ScholarPubMed
Maccari, S., Piazza, P. V., Kabbaj, M., Barbazanges, A., Simon, H., & Moal, M. (1995). Adoption reverses the long-term impairment in glucocorticoid feedback induced by prenatal stress. Journal of Neuroscience, 15, 110–115CrossRefGoogle ScholarPubMed
McCormick, C. M., Smythe, J. W., Sharma, S., & Meaney, M. J. (1995). Sex-specific effects of prenatal stress on hypothalamic-pituitary-adrenal responses to stress and brain glucocorticoid receptor density in adult rats. Developmental Brain Research, 84, 55–61CrossRefGoogle ScholarPubMed
McEwen, B. S., Kloet, E. R., & Rostene, W. (1986). Adrenal steroid receptors and actions in the nervous system. Physiology Review, 66, 1121–1188CrossRefGoogle Scholar
McIntosh, D. E., Mulkins, R. S., & Dean, R. S. (1995). Utilization of maternal perinatal risk indicators in the differential diagnosis of ADHD and UADD children. International Journal of Neuroscience, 81, 35–46CrossRefGoogle ScholarPubMed
McKinney, W. T., & Bunney, W. E. (1969). Animal model of depression. I. Review of evidence: Implications for research. Archives of General Psychiatry, 21, 240–248CrossRefGoogle ScholarPubMed
Meijer, A. (1985). Child psychiatric sequelae of maternal war stress. Acta Psychiatry Scandinavia, 72, 505–511CrossRefGoogle ScholarPubMed
Mendoza, S., Coe, C. L., & Levine, S. (1979). Physiological response to group formation in the squirrel monkey. Psychoendocrinology, 3, 221–229CrossRefGoogle Scholar
Mineka, S., & Suomi, S. J. (1978). Social separation in monkeys. Psychological Bulletin, 85, 1376–1400CrossRefGoogle ScholarPubMed
Mitchell, J. B., Rowe, W., Boska, P., & Meaney, M. J. (1990). Serotonin regulates type II corticosteroid receptor binding in hippocampal cell culture. Journal of Neuroscience, 10, 1745–1752CrossRefGoogle Scholar
Moyer, J. A., Herrenkohl, L. R., & Jacobowitz, D. M. (1978). Effects of stress during pregnancy on catecholamines in discrete brain regions. Brain Research, 121, 385–393CrossRefGoogle Scholar
Murphy, B. E. (1978). Cortisol economy in the human fetus. In M. H. T. James, M. Serio, G. Guisli, & L. Martini (Eds.), Endocrine function of the human adrenal cortex (p. 509). London: Academic Press
Murphy, B. E. (1991). Steroids and depression. Journal of Steriod Biochem Molecular Biology, 38, 537–559CrossRefGoogle ScholarPubMed
Murphy, B. E., & Branchaud, C. L. (1994). The fetal adrenal. In D. Tulchinsky & A. B. Little (Eds.), Maternal-fetal endocrinology (2d ed.) (pp. 275–295). Philadelphia: WB Saunders
Nelson, C. A., & Bloom, F. E. (1997). Child development and neuroscience. Child Development, 68(5), 970–987CrossRefGoogle ScholarPubMed
Newell-Morris, L., & Fahrenbruch, C. E. (1985). Practical and evolutionary considerations for use of the nonhuman primate model in prenatal research. In E. S. Watts (Ed.), Nonhuman primate models for human growth and development (pp. 9–40). New York: Liss
Nowakowski, R. S., & Hayes, N. L. (1999). CNS development: An overview. Development and Psychopathology, 11, 395–417CrossRefGoogle ScholarPubMed
Ogilvie, A. D., Battersby, S., Bubb, V. J., Fink, G., Harmar, A. J., Goodwin, G. M., & Smith, C. A. (1996). Polymorphism in serotonin transporter gene associated with susceptibility to major depression. Lancet, 347, 731–733CrossRefGoogle ScholarPubMed
Opp, M. R. (1998). Rat strain differences suggest a role for corticotropin-releasing hormone in modulating sleep. Physiology and Behavior, 63, 67–74CrossRefGoogle Scholar
Otake, M., & Schull, W. J. (1984). In utero exposure to A-bomb radiation and mental retardation. British Journal of Radiology, 57, 409–414CrossRefGoogle ScholarPubMed
Paarlberg, K. M., Vingerhoets, J. P., Dekker, G. A., & Geijn, H. P. (1995). Psychosocial factors and pregnancy outcome: A review with emphasis on methodological issues. Journal of Psychosomatic Research, 39, 563–595CrossRefGoogle ScholarPubMed
Peters, D. A. (1982). Prenatal stress effects of brain biogenic amine and plasma corticosterone levels. Pharmacology, Biochemistry & Behavior, 17, 721–725CrossRefGoogle ScholarPubMed
Peters, D. A. (1990). Maternal stress increases fetal brain and neonatal cerebral cortex 5-hydroxytryptamine synthesis in rats: A possible mechanism by which stress influences brain development. Pharmacology, Biochemistry & Behavior, 35, 943–947CrossRefGoogle ScholarPubMed
Plotsky, P. M., & Meaney, M. J. (1993). Early postnatal experience alters hypothalamic corticotropin releasing factor (CRF), mRNA, median eminence CRF content and stress-induced release in adult rats. Molecular Brain Research, 18, 195–200CrossRefGoogle Scholar
Post, R. M. (1992). Transduction of psychosocial stress into the neurobiology of recurrent affective disorder. American Journal of Psychiatry, 149(8), 999–1010Google ScholarPubMed
Rakic, P. (1985). Limits of neurogenesis in primates. Science, 227, 154–156CrossRefGoogle ScholarPubMed
Rakic, P. (1988). Defects of neuronal migration and pathogenesis of cortical malformations. Progressive Brain Research, 73, 15–37CrossRefGoogle ScholarPubMed
Rakic, P. (1995). Development of cerebral cortex in human and nonhuman primates. In M. Lewis (Ed.), Child and adolescent psychiatry, (2d ed.) (pp. 9–29). Baltimore: Williams & Wilkins
Rao, U., McGinty, D. J., Shinde, A., McCracken, J. T., & Poland, R. E. (1999). Prenatal stress is associated with depression-related electroencephalographic sleep changes in adult male rats: A preliminary report. Progress in NeuroPsychopharmacology, and Biological Psychiatry, 23, 929–939CrossRefGoogle ScholarPubMed
Rees L. H., & Lowry P. J. (1978). ACTH and related peptides. In M. H. T. James, M. Serio, G. Guisli, & L. Martini (Eds.), Endocrine function of the human adrenal cortex (p. 33). London: Academic Press
Roberts, A. D., DeJesus, O. J., Schneider, M. L., Schueller, M. J., Shelton, S., & Nickles, R. J. (June, 1999). Dopamine system characterization of rhesus monkeys exposed to moderate dose alcohol in utero. Society of Nuclear Medicine 46thAnnual Meeting, Los Angeles
Roughton, E. C., Schneider, M. L., Bromley, L. J., & Coe, C. L. (1998). Maternal endocrine activation during pregnancy alters neurobehavioral state in primate infants. American Journal of Occupational Therapy, 52, 90–98CrossRefGoogle Scholar
Rutter, M. (1983). Statistical and personal interactions: Facets and perspectives. In D. Magnusson & V. Allen (Eds.), Human development: An interactional perspective (pp. 295–319). New York: Academic Press
Rutter, M., & Quinton, D. (1977). Psychiatric disorder – Ecological factors and concepts of causation. In H. McGurk (Ed.), Ecological factors in human development. Amsterdam: North-Holland
Sackett, G. P. (1981). A nonhuman primate model for studying causes and effects of poor pregnancy outcomes. In S. Friedman & M. Sigman (Eds.), Preterm birth and psychological development (pp. 41–63). New York: Academic Press
Sameroff, A. J., (1975). Early influences on development: Fact or fancy? Merrill-Palmer Quarterly, 21, 267–294Google Scholar
Sapolsky, R. (1992). Stress, the aging brain, and the mechanisms of neuron death. Cambridge, Mass.: MIT Press
Sapolsky, R., Krey, L., & McEwen, B. (1985). Prolonged glucocorticoid exposure reduces hippocampal neural number: Implications for aging. Journal of Neuroscience, 5, 1222–1227CrossRefGoogle Scholar
Schneider, M. L. (1992a). The effect of mild stress during pregnancy on birth weight and neuromotor maturation in rhesus monkey infants (Macaca mulatta). Infant Behavior and Development, 15, 389–403CrossRefGoogle Scholar
Schneider, M. L. (1992b). Delayed object permanence development in prenatally stressed rhesus monkey infants (Macaca mulatta). Occupational Therapy Journal of Research, 12(2), 96–110CrossRefGoogle Scholar
Schneider, M. L. (1992c). Prenatal stress exposure alters postnatal behavioral expression under conditions of novelty challenge in rhesus monkey infants. Developmental Psychobiology, 25(7), 529–540CrossRefGoogle Scholar
Schneider, M. L., Clarke, A. S., Kraemer, G. W., Roughton, E. C., Lubach, G. R., Rimm-Kaufman, S. E., Schmidt, D., & Ebert, M. (1998). Prenatal stress alters brain biogenic amine levels in primates. Development and Psychopathology, 10, 427–440CrossRefGoogle ScholarPubMed
Schneider, M. L., & Coe, C. L. (1993). Repeated social stress during pregnancy impairs neuromotor development of the primate infant. Journal of Developmental and Behavioral Pediatrics, 14(2), 81–87CrossRefGoogle ScholarPubMed
Schneider, M. L., Coe, C. L., & Lubach, G. R. (1992). Endocrine activation mimics the adverse effects of prenatal stress on the neuromotor development of the infant primate. Developmental Psychobiology, 25(6), 427–439CrossRefGoogle ScholarPubMed
Schneider, M. L., & Moore, C. F. (2000). Effect of prenatal stress on development: A nonhuman primate model. In C. Nelson (Ed.), Minnesota Symposium on Child Psychology (pp. 201–243). Mahwah, NJ: Erlbaum
Schneider, M. L., Moore, C. F., & Becker, E. F. (2001). Timing of moderate alcohol exposure during pregnancy and neonatal outcome in rhesus monkeys (Macaca mulatta). Alcoholism: Clinical and Experimental Research 25(8), 1238–1246CrossRefGoogle Scholar
Schneider, M. L., Moore, C., Suomi, S. J., & Champoux, M. (1991). Laboratory assessment of temperament and environmental enrichment in rhesus monkey infants (Macaca mulatta). American Journal of Primatology, 25, 137–155CrossRefGoogle Scholar
Schneider, M. L., Roughton, E. C., Koehler, A., & Lubach, G. R. (1999). Growth and development following prenatal stress in primates: An examination of ontogenetic vulnerability. Child Development, 70, 263–274CrossRefGoogle ScholarPubMed
Schneider, M. L., Roughton, E. C., & Lubach, G. R. (1997). Moderate alcohol consumption and psychological stress during pregnancy induces attention and neuromotor impairments in primate infants. Child Development, 68, 747–759CrossRefGoogle Scholar
Schneider, M. L., & Suomi, S. J. (1992). Neurobehavioral assessment in rhesus monkey neonates (Macaca mulatta): Developmental changes, behavioral stability, and early experience. Infant Behavior and Development, 15(2), 155–177CrossRefGoogle Scholar
Schwartz, L. B. (1997). Understanding human parturition. Lancet, 350, 1792–1793CrossRefGoogle ScholarPubMed
Seligman, M. E. P. (1975). Helplessness: On depression, development and death. San Francisco: W. H. Freeman
Selye, H. (1936). A syndrome produced by severe noxious agents. Nature (London), 138, 32–41CrossRefGoogle Scholar
Sharpley, A. L., Elliot, J. M., & Attenburrow, M. J. (1994). Slow-wave sleep in humans: Role of 5-HT2a and 5-HT2c receptors. Neuropharmacology, 33, 467–471CrossRefGoogle ScholarPubMed
Stanfield, B. B., Caviness, V. S., & Cowan, W. M. (1979). The organization of certain afferents to the hippocampus and dentate gyrus in normal and reeler mice. Journal of Comparative Neurology, 185, 461–483CrossRefGoogle ScholarPubMed
Sutton, R. E., Koob, G. F., Moal, M., Rivier, J., & Vale, W. (1982). Corticotropin releasing factor (CRF) produces behavioral activation in rats. Nature, 297, 331–333CrossRefGoogle Scholar
Swanson, J. M., McBurnett, K., Christian, D. L., & Wigal, T. (1995). Stimulant medications and the treatment of children with ADHD. In T. H. Ollendick & J. Prinz (Eds.), Advances in clinical child psychology (pp. 265–315). New York: PlenumCrossRef
Takahashi, L. K., & Kalin, N. H. (1991). Early developmental and temporal characteristics of stress-induced secretion of pituitary-adrenal hormones in prenatally stressed pups. Brain Research, 558, 75–78CrossRefGoogle ScholarPubMed
Takahashi, L. K., Kalin, N. H., Barksdale, C. M., Vanden Burgt, J. A., & Brownfield, M. S. (1988). Stressor controllability during pregnancy influences pituitary-adrenal hormone concentrations and analgesic responsiveness in offspring. Physiology & Behavior, 42, 323–329CrossRefGoogle ScholarPubMed
Takahashi, L. K., Turner, J. G., & Kalin, N. H. (1992). Prenatal stress alters brain catecholaminergic activity and potentiates stress-induced behavior in adult rats. Brain Research, 574, 131–137CrossRefGoogle ScholarPubMed
Tennes, K., & Carter, D. (1973). Plasma cortisol levels and behavioral states in early infancy. Psychosomatic Medicine, 35, 121–128CrossRefGoogle ScholarPubMed
Thompson, W. R. (1957). Influence of prenatal maternal anxiety on emotionality in young rats. Science, 15, 698–699CrossRefGoogle Scholar
Tortella, F. C., Echevarria, E., Pastel, R. H., Cox, B., & Blackburn, T. P. (1989). Suppressant effects of selective 5-HT2 antagonists on rapid eye movement sleep in rats. Brain Research, 485, 294-300CrossRefGoogle ScholarPubMed
Uno, H., Lohmiller, L., Thieme, C., Kemnitz, J. W., Engle, M. J., Roecker, E. B., & Farrell, P. M. (1990). Brain damage induced by prenatal exposure to dexamethasone in fetal rhesus macaques: I. Hippocampus. Developmental Brain Research 53, 157–167CrossRefGoogle ScholarPubMed
Virkkunen, M., Goldman, D., Nielsen, D. A., & Linnoila, M. (1995). Low brain serotonin turnover rate (low CSF 5-HIAA) and impulsive violence. Journal of Psychiatry & Neuroscience, 20(4), 271–275Google ScholarPubMed
Wadhwa, P. D. (1998). Prenatal stress and life-span development. In H. S. Friedman (Ed.), Encyclopedia of Mental Health (Vol. 3, pp. 265–280). San Diego, Calif.: Academic Press
Wadhwa, P. D., Dunkel-Schetter, C., Chicz-DeMet, A., Porto, M., & Sandman, C. A. (1996). Prenatal psychosocial factors and the neuroendocrine axis in human pregnancy. Psychosomatic Medicine, 58, 432–446CrossRefGoogle ScholarPubMed
Ward, A. J. (1990). A comparison and analysis of the presence of family problems during pregnancy of mothers of “autistic” children and mothers of normal children. Child Psychiatry and Human Development, 20, 279–288CrossRefGoogle ScholarPubMed
Ward, A. J. (1991). Prenatal stress and childhood psychopathology. Child Psychiatry and Human Development, 22, 97–110CrossRefGoogle ScholarPubMed
Weinstock, M. (1997). Does prenatal stress impair coping and regulation of hypothalamic-pituitary-adrenal axis? Neuroscience & Biobehavioral Reviews, 21, 1–10CrossRefGoogle ScholarPubMed
Weir, R. J.Paintin, D. B., Brown, J. J., Fraser, R., Lever, A. F., Robertson, J. I., & Young, J. (1971). A serial study in pregnancy of the plasma concentration of renin, corticosteroids, electrolytes and proteins and of haematocrit and plasma volume. Journal of Obstetrics and Gynaecology of the British Commonwealth, 78, 590–602CrossRefGoogle ScholarPubMed
Williams, M. T., Hennessy, M. B., & Davis, H. N. (1995). CRF administered to pregnant rats alters offspring behavior and morphology. Pharmacology Biochemistry & Behavior, 52, 161–167CrossRefGoogle ScholarPubMed
Wyatt, R. J., Apud, J. A., & Potkins, S. (1996). New directions in the prevention and treatment of schizophrenia: A biological perspective. Psychiatry, 59(4), 357–370CrossRefGoogle ScholarPubMed
Zecevic, N., & Rakic, P. (1991). Synaptogenesis in monkey somatosensory cortex. Cerebral Cortex, 1, 510–523CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×