Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-22T21:33:18.709Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  05 July 2014

Maarten de Rijke
Affiliation:
Universiteit van Amsterdam
Yde Venema
Affiliation:
Universiteit van Amsterdam
Get access
Type
Chapter
Information
Modal Logic , pp. 524 - 543
Publisher: Cambridge University Press
Print publication year: 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] S., Abramsky, D.M., Gabbay, and T.S.E., Maibaum, editors. Handbook of Logic in Computer Science, volume 2. Clarendon Press, 1992.Google Scholar
[2] P., Aczel. Non-Well-Founded Sets.CSLI Publications, 1988.Google Scholar
[3] M., Aiello and J., van Benthem. A modal walk through space. Journal of Applied Non-Classical Logics, 12:319-364, 2002.Google Scholar
[4] C.E., Alchourrón, P., Gärdenfors, and D., Makinson. On the logic of theory change: partial meet contraction and revision functions. Journal of Symbolic Logic, 50:510-530, 1985.Google Scholar
[5] A., Andréka, A., Kurucz, I., Németi, and I., Sain. Applying algebraic logic to logic. In M., Nivat and M., Wirsing, editors, Algebraic Methodology and Software Technology, pages 201-221. Springer, 1994.Google Scholar
[6] H., Andréka. Complexity of equations valid in algebras of relations. Annals of Pure and Applied Logic, 89:149-229, 1997.Google Scholar
[7] H., Andréka, I.M., Hodkinson, and I., Németi. Finite algebras of relations are repre-sentable on finite sets. Journal of Symbolic Logic, 64:243-267, 1999.Google Scholar
[8] H., Andréka, J.D., Monk, and I., Németi, editors. Algebraic Logic. (Proceedings of the 1988 Budapest Conference), volume 54 of Colloquia Mathematica Societatis Janos Bolyai.North-Holland Publishing Company, 1991.Google Scholar
[9] H., Andréka, J., van Benthem, and I., Németi. Modal languages and bounded fragments of predicate logic. Journal of Philosophical Logic, 27:217-274, 1998.Google Scholar
[10] I.H., Anellis and N., Houser. Nineteenth century roots of algebraiclogic and universal algebra. In Andréka et al. [8], pages 1-36.
[11] L., Åqvist, F., Guenthner, and C., Rohrer. Definability in ITL of some subordinate temporal conjunctions in English. In F., Guenthner and C., Rohrer, editors, Studies in Formal Semantics, pages 201-221. North Holland, 1978.Google Scholar
[12] C., Areces. Logic Engineering: The Case of Description and Hybrid Logics. PhD thesis, ILLC, University of Amsterdam, 2000.Google Scholar
[13] C., Areces, P., Blackburn, and M., Marx. The computational complexity of hybrid temporal logics. Logic Journal of the IGPL, 8(5):653-679, 2000.Google Scholar
[14] C., Areces, P., Blackburn, and M., Marx. Hybrid logics: Characterization, interpolation and complexity. Journal of Symbolic Logic, 66:977-1010, 2001.Google Scholar
[15] C., Areces and M., de Rijke. Description and/or hybrid logic. In Workshop Proceedings AiML-2000, pages 1-14. Institut für Informatik, Universität Leipzig, 2000.Google Scholar
[16] F., Baader and K., Schulz, editors. Frontiers of Combining Systems 1.Kluwer Academic Publishers, 1996.Google Scholar
[17] P., Bailhache. Essai de Logique Deontique. Mathesis, 1991.Google Scholar
[18] P., Balbiani, N.-Y., Suzuki, F., Wolter, and M., Zakharyaschev, editors. Advances in Modal Logic, Volume 4.King's College London Publications, 2003.Google Scholar
[19] Ph., Balbiani, L. Fariñas, del Cerro, T., Tinchev, and D., Vakarelov. Modal logics for incidence geometries. Journal of Logic and Computation, 7:59-78, 1997.Google Scholar
[20] A., Baltag. STS: A Structural Theory of Sets. PhD thesis, Indiana University, Bloomington, Indiana, 1998.Google Scholar
[21] A., Baltag. A logic for suspicious players: epistemic actions and belief updates in games. Bulletin of Economic Research, to appear, 2000. Paper presented at the Fourth Conference on Logic and the Foundations of the Theory of Games and Decisions.
[22] A., Baltag. STS: a structural theory of sets. In Zakharyaschevet al. [469].
[23] B., Banieqbal, H., Barringer, and A., Pnueli, editors. Proc. Colloquium on Temporal Logic in Specification, volume 398 of LNCS.Springer, 1989.Google Scholar
[24] H., Barendregt. The Lambda Calculus: Its Syntax and Semantics.North-Holland Publishing Company, 1984.Google Scholar
[25] J., Barwise. Model-theoretic logics: backgroundandaims. In Barwise and Feferman [26], pages 3-23.
[26] J., Barwise and S., Feferman, editors. Model-Theoretic Logics.Springer, 1985.Google Scholar
[27] J., Barwise and L., Moss. Vicious Circles, volume 60 of Lecture Notes.CSLI Publications, 1996.Google Scholar
[28] J., Barwise and L.S., Moss. Modal correspondence for models. Journal of Philosophical Logic, 27:275-294, 1998.Google Scholar
[29] D., Basin and N., Klarlund. Automata based symbolic reasoning in hardware verification. Journal of Formal Methods in Systems Design, 13:255-288, 1998.Google Scholar
[30] D., Batens. Logicaboek.Garant Leven, Apeldoorn, 1991.Google Scholar
[31] P., Battigalli and G., Bonanno. Recent results on belief, knowledge and the foundations of game theory. Research in Economics, 53:149-225, 1999.Google Scholar
[32] J.L., Bell and M., Machover. A Course in Mathematical Logic.North-Holland Publishing Company, 1977.Google Scholar
[33] J.L., Bell and A.B., Slomson. Models and Ultraproducts.North-Holland Publishing Company, 1969.Google Scholar
[34] B., Bennet, C., Dixon, M., Fisher, E., Franconi, I., Horrocks, U., Hustadt, and M., de Rijke. Combinations of modal logic. Journal of AI Reviews, 17:1-20, 2002.Google Scholar
[35] J., van Benthem. A note on modal formulas and relational properties. Journal of Symbolic Logic, 40:85-88, 1975.Google Scholar
[36] J., van Benthem. Modal Correspondence Theory. PhD thesis, Mathematisch Instituut & Instituut voor Grondslagenonderzoek, University of Amsterdam, 1976.Google Scholar
[37] J., van Benthem. Two simple incomplete modal logics. Theoria, 44:25-37, 1978.Google Scholar
[38] J., van Benthem. Minimal deontic logics. Bulletin of the Section of Logic, 8:36-42, 1979.Google Scholar
[39] J., van Benthem. Syntactical aspects of modal incompleteness theorems. Theoria, 45:63-77, 1979.Google Scholar
[40] J., van Benthem. Canonical modal logics and ultrafilter extensions. Journal of Symbolic Logic, 44:1-8, 1980.Google Scholar
[41] J., van Benthem. Some kinds of modal completeness. Studia Logica, 39:125-141, 1980.Google Scholar
[42] J., van Benthem. Modal Logic and Classical Logic.Bibliopolis, 1983.Google Scholar
[43] J., van Benthem. Correspondence theory. In Gabbay and Guenthner [154], pages 167-247.
[44] J., van Benthem. A Manual of Intensional Logic, volume 1 of Lecture Notes.CSLI Publications, 1985.Google Scholar
[45] J., van Benthem. The Logic of Time.Kluwer Academic Publishers, second edition, 1991.Google Scholar
[46] J., van Benthem. Modal frame classes revisited. Fundamenta Informaticae, 18:307-317, 1993.Google Scholar
[47] J., van Benthem. Temporal logic. In Gabbayet al. [158], pages 241-351.
[48] J., van Benthem. Exploring Logical Dynamics. Studies in Logic, Language and Information. CSLI Publications, 1996.Google Scholar
[49] J., van Benthem. Dynamic bits and pieces. Technical Report LP-97-01, Institute for Language, Logic and Computation, 1997.Google Scholar
[50] J., van Benthem and W., Meyer Viol. Logical semantics of programming. Unpublished lecture notes. University of Amsterdam, 1993.Google Scholar
[51] J., van Benthem and A., ter Meulen, editors. Handbook of Logic and Language.Elsevier Science, 1997.Google Scholar
[52] R., Berger. The undecidability of the domino problem. Technical Report 66, Mem. Amer. Math. Soc., 1966.Google Scholar
[53] G., Birkhoff. On the structure of abstract algebras. Proceedings of the Cambridge Philosophical Society, 29:441-464, 1935.Google Scholar
[54] P., Blackburn. Nominal tense logic. Notre Dame Journal of Formal Logic, 34:56-83, 1993.Google Scholar
[55] P., Blackburn. Tense, temporal reference, and tense logic. Journal of Semantics, 11:83-101, 1994.Google Scholar
[56] P., Blackburn. Internalizing labelled deduction. Journal of Logic and Computation, 10:137-168, 2000.Google Scholar
[57] P., Blackburn. Representation, reasoning, and relational structures: a hybrid logic manifesto. Logic Journal of the IGPL, 8:339-365, 2000.Google Scholar
[58] P., Blackburn, C., Gardent, and W., Meyer-Viol. Talking about trees. In Proceedings of the 6th Conference of the European Chapter of the Association for Computational Linguistics, pages 21-29, 1993.Google Scholar
[59] P., Blackburn and J., Seligman. Hybrid languages. Journal of Logic, Language and Information, 4:251-272, 1995.Google Scholar
[60] P., Blackburn and J., Seligman. What are hybrid languages? In Krachtet al. [281], pages 41-62.
[61] P., BlackburnandE., Spaan. A modal perspective on the computational complexity of attribute value grammar. Journal of Logic, Language and Information, 2:129-169, 1993.Google Scholar
[62] P., Blackburn and M., Tzakova. Hybridizing concept languages. Annals of Mathematics and Artificial Intelligence, 24:23-49, 1998.Google Scholar
[63] P., Blackburn and M., Tzakova. Hybrid languages and temporal logic. Logic Journal of the IGPL, 7(1):27-54, 1999.Google Scholar
[64] W.J., Blok. An axiomatization of the modal theory of the veiled recession frame. Technical report, Department of Mathematics, University of Amsterdam, 1977.Google Scholar
[65] W.J., Blok. On the degree of incompleteness in modal logic and the covering relations in the lattice of modal logics. Technical Report 78-07, Department of Mathematics, University of Amsterdam, 1978.Google Scholar
[66] W.J., Blok. The lattice of modal algebras: An algebraic investigation. Journal of Symbolic Logic, 45:221-236, 1980.Google Scholar
[67] W.J., Blok and D., Pigozzi. Algebraizable logics. Memoirs of the American Mathematical Society, 77, 396, 1989.Google Scholar
[68] G., Boolos. The Unprovability of Consistency.Cambridge University Press, 1979.Google Scholar
[69] G., Boolos. The Logic of Provability.Cambridge University Press, 1993.Google Scholar
[70] G., Boolos and R., Jeffrey. Computability and Logic.Cambridge University Press, 1989.Google Scholar
[71] E., Börger, E., Gradel, and Y., Gurevich. The Classical Decision Problem.Springer, 1997.Google Scholar
[72] J.R., Büchi. On a decision method in restricted second order arithmetic. In Proceedings International Congress on Logic, Methodology and Philosophy of Science 1960.Stanford University Press, 1962.Google Scholar
[73] R., Bull. Anapproachto tense logic. Theoria, 36:282-300, 1970.Google Scholar
[74] R.A., Bull. That all normal extensions of S4.3 have the finite model property. Zeitschrift für mathemathische Logik und Grundlagen der Mathematik, 12:314-344, 1966.Google Scholar
[75] R.A., Bull and K., Segerberg. Basic modal logic. In Gabbay and Guenthner [154], pages 1-88.
[76] P., Buneman, S., Davidson, M., Fernandez, and D., Suciu. Adding structure to un- structered data. In Proceedings ICDT'97, 1997.Google Scholar
[77] J., Burgess. Decidability for branching time. Studia logica, 39:203-218, 1980.Google Scholar
[78] J., Burgess. Axioms for tense logic I: ‘since’ and ‘until’. Notre Dame Journal of Formal Logic, 23:375-383, 1982.Google Scholar
[79] J.P., Burgess. Basic tense logic. In Gabbayand Guenthner [154], pages 89-133.
[80] J.P., Burgess and Y., Gurevich. The decision problem for linear temporal logic. Notre Dame Journal of Formal Logic, 26:115-128, 1985.Google Scholar
[81] S., Burris and H.P., Sankappanavar. A Course in Universal Algebra. Graduate Texts in Mathematics. Springer, 1981.Google Scholar
[82] R., Burstall. Program proving as hand simulation with a little induction. In Information Processing '74, pages 308-312. North-Holland Publishing Company, 1974.Google Scholar
[83] S.R., Buss, editor. Handbook of Proof Theory.Elsevier Science, 1998.Google Scholar
[84] D., Calvanese, G., De Giacomo, and M., Lenzerini. Modeling and querying semistructured data. Networking and Information Systems, pages 253-273, 1999.Google Scholar
[85] R., Carnap. Modalities and quantification. Journal of Symbolic Logic, 11:33-64, 1946.Google Scholar
[86] R., Carnap. Meaning and Necessity.University of Chicago Press, 1947.Google Scholar
[87] A., Chagrov, F., Wolter, and M., Zakharyaschev. Advanced modal logic. In Handbook of Philosophical Logic, volume 3, pages 83-266. Kluwer Academic Publishers, second edition, 2001.Google Scholar
[88] A., Chagrov and M., Zakharyaschev. Modal Logic, volume 35 of Oxford Logic Guides.Oxford University Press, 1997.Google Scholar
[89] L.A., Chagrova. An undecidable problem in correspondence theory. Journal of Symbolic Logic, 56:1261-1272, 1991.Google Scholar
[90] D., Chalmers. The Conscious Mind.Oxford University Press, 1996.Google Scholar
[91] C.C., Chang and H.J., Keisler. Model Theory.North-Holland Publishing Company, Amsterdam, 1973.Google Scholar
[92] B.F., Chellas. Modal Logic, an Introduction.Cambridge University Press, 1980.Google Scholar
[93] B., Chlebus. Domino-tiling games. Journal of Computer and System Sciences, 32:374-392, 1986.Google Scholar
[94] E.M., Clarke andE.A., Emerson. Design and synthesis of synchronisation skeletons using branching time temporal logic. In D., Kozen, editor, Logics of Programs, pages 52-71. Springer, 1981.Google Scholar
[95] E.M., Clarke, O., Grumberg, and D.A., Peled. Model Checking.The MIT Press, 1999.Google Scholar
[96] E.M., Clarke and B.-H., Schlingloff. Model checking. In Robinson and Voronkov [388].
[97] B.J., Copeland, editor. Logic and Reality. Essays on the Legacy of Arthur Prior.Clarendon Press, 1996.Google Scholar
[98] W., Craig. On axiomatizability within a system. Journal of Symbolic Logic, 18:30-32, 1953.Google Scholar
[99] M.J., Cresswell. A Henkin completeness theorem for T. Notre Dame Journal of Formal Logic, 8:186-90, 1967.Google Scholar
[100] M.J., Cresswell. An incomplete decidable modal logic. Journal of Symbolic Logic, 49:520-527, 1984.Google Scholar
[101] G., Crocco. Fondements Logiques du Raisonnement Contextuel. Une Etude surles Logiques des Conditionnels.Padova Unipress, 1996.Google Scholar
[102] L., Csirmaz, D.M., Gabbay, and M., de Rijke, editors. Logic Colloquium '92, number 1 in Studies in Logic, Language and Information. CSLI Publications, 1995.Google Scholar
[103] N., Cutland. Computability. An Introduction to Recursive Function Theory.Cambridge University Press, 1980.Google Scholar
[104] M., D'Agostino, D.M., Gabbay, R., Hahnle, and J., Posegga, editors. Handbook of Tableau Methods.Kluwer Academic Publishers, 1999.Google Scholar
[105] B.A., Davey and H.A., Priestly. Introduction to Lattices and Order.Cambridge University Press, 1990.Google Scholar
[106] G., De Giacomo. Decidability of Class-Based Knowledge Representation Formalisms. PhD thesis, Università di Roma “La Sapienza”, 1995.Google Scholar
[107] S., Demri. Sequent calculi for nominal tense logics: a step towards mechanization? In Murray [339], pages 140-154.
[108] S., Demri and R., Gore. Cut-free display calculi for nominal tense logics. In Murray [339], pages 155-170.
[109] H., van Ditmarsch. Knowledge Games. PhD thesis, Department of Mathematics and Computer Science, Rijksuniversiteit Groningen, 2000.Google Scholar
[110] H.C., Doets. Completeness and Definability: Applications of the Ehrenfeucht Game in Intensional and Second-Order Logic. PhD thesis, Department of Mathematics and Computer Science, University of Amsterdam, 1987.Google Scholar
[111] K., Doets. Basic Model Theory. Studies in Logic, Language and Information. CSLI Publications, 1996.Google Scholar
[112] K., Doets and J., van Benthem. Higher-orderlogic. In Gabbay and Guenthner [153], pages 275-329.
[113] J., Doner. Tree acceptors and some of their applications. Journal of Computer and System Sciences, 4:406-451, 1970.Google Scholar
[114] F.M., Donini, M., Lenzerini, D., Nardi, and W., Nutt. The complexity of concept languages. Information and Computation, 134:1-58, 1997.Google Scholar
[115] F.M., Donini, M., Lenzerini, D., Nardi, and A., Schaerf. Reasoning in description logics. In G., Brewka, editor, Principles of Knowledge Representation, Studies in Logic, Language and Information, pages 191-236. CSLI Publications, 1996.Google Scholar
[116] J., Dugundji. Note on a property of matrices for Lewis and Langford's calculi of propositions. Journal of Symbolic Logic, 5:150-151, 1940.Google Scholar
[117] M.A.E., Dummett and E.J., Lemmon. Modal logics between S4 and S5. Zeitschrift für mathemathische Logik und Grundlagen der Mathematik, 5:250-264, 1959.Google Scholar
[118] H.-D., Ebbinghaus and J., Flum. Finite Model Theory. Perspectives in Mathematical Logic. Springer, 1995.Google Scholar
[119] A., Ehrenfeucht. An application of games to the completeness problem for formal-izedtheories. Fundamenta Mathematicae, 49:129-141, 1961.Google Scholar
[120] P., van Emde Boas. The convenience of tilings. Technical Report CT-96-01, ILLC, University of Amsterdam, 1996.Google Scholar
[121] E.A., Emerson. Temporal and modal logics. In van Leeuwen [293], pages 995-1072.
[122] H.B., Enderton. A Mathematical Introduction to Logic.Academic Press, New York, 1972.Google Scholar
[123] L.L., Esakia. Topological Kripke models. Soviet Mathematics Doklady, 15:147-151, 1974.Google Scholar
[124] L.L., Esakia and V. Yu., Meskhi. Five critical systems. Theoria, 40:52-60, 1977.Google Scholar
[125] R., Fagin, J.Y., Halpern, Y., Moses, and M.Y., Vardi. Reasoning About Knowledge.The MIT Press, 1995.Google Scholar
[126] T., Fernando. A modal logic for non-deterministic discourse processing. Journal of Logic, Languageand Information, 8:455-468, 1999.Google Scholar
[127] K., Fine. Propositional quantifiers in modal logic. Theoria, 36:331-346, 1970.Google Scholar
[128] K., Fine. The logics containing 54.3. Zeitschrift für mathemathische Logik und Grndlagen der Mathematik, 17:371-376, 1971.Google Scholar
[129] K., Fine. An incomplete logic containing S4. Theoria, 40:23-29, 1974.Google Scholar
[130] K., Fine. Logics extending K 4. Part I. Journal of Symbolic Logic, 39:31-42, 1974.Google Scholar
[131] K., Fine. Normal forms in modal logic. Notre Dame Journal of Formal Logic, 16:229-234, 1975.Google Scholar
[132] K., Fine. Some connections between elementary and modal logic. In Kanger [263].
[133] K., Fine. Modal logics containing K4. Part II. Journal of Symbolic Logic, 50:619-651, 1985.Google Scholar
[134] M., Finger. Handling database updates in two-dimensional temporal logic. Journal of Applied Non-Classical Logics, 2:201-224, 1992.Google Scholar
[135] M.J., Fischer and R.E., Ladner. Propositional dynamic logic of regular programs. Journal of Computer and System Sciences, 18:194-211, 1979.Google Scholar
[136] F., Fitch. A correlation between modal reduction principles and properties of relations. Journal of Philosophical Logic, 2:97-101, 1973.Google Scholar
[137] M., Fitting. Proof Methods for Modal and Intuitionistic Logic.Reidel, 1983.Google Scholar
[138] M., Fitting. Basic modal logic. In Gabbayet al. [157], pages 368-449.
[139] M., Fitting. Types, Tableaus, and Goedel's God.Kluwer Academic Publishers, 2002.Google Scholar
[140] M., Fitting and R.L., Mendelsohn. First-Order Modal Logic.Kluwer Academic Publishers, 1998.Google Scholar
[141] R., Fraïssé. Sur quelques classifications des systèmes de relations. Publ. Sci. Univ. Alger, 1:35-182, 1954.Google Scholar
[142] N., Friedman and J.Y., Halpern. Modeling beliefindynamic systems, parti: Foundations. Artificial Intelligence, 95:257-316, 1997.Google Scholar
[143] M., Frixione. Logica, Significato e Intelligenza Artificiale.Franco Angeli, Milano, 1994.Google Scholar
[144] A., Fuhrmann. On the modal logic of theory change. In A., Fuhrmann and M., Morreau, editors, LNAI, volume 465, pages 259-281. Springer, 1990.Google Scholar
[145] D.M., Gabbay. Decidability results in non-classical logics. Annals of Mathematical Logic, 10:237-285, 1971.Google Scholar
[146] D.M., Gabbay. On decidable, finitely axiomatizable modal and tense logics without the finite model property I. Israel Journal of Mathematics, 10:478-495, 1971.Google Scholar
[147] D.M., Gabbay. On decidable, finitely axiomatizable modal and tense logics without the finite model property II. Israel Journal of Mathematics, 10:496-503, 1971.Google Scholar
[148] D.M., Gabbay. The separation property of tense logics. Unpublished manuscript, September 1979.Google Scholar
[149] D.M., Gabbay. An irreflexivity lemma with applications to axiomatizations of conditions on linear frames. In U., Moïnnich, editor, Aspects of Philosophical Logic, pages 67-89. Reidel, 1981.Google Scholar
[150] D.M., Gabbay. The declarative past and imperative future: executable temporal logic for interactive systems. In Banieqbalet al. [23], pages 431-448.
[151] D.M., Gabbay. Labelled Deductive Systems.Clarendon Press, Oxford, 1996.Google Scholar
[152] D.M., Gabbay and M., de Rijke, editors. Frontiers of Combining Systems 2.Research Studies Press, 2000.Google Scholar
[153] D.M., Gabbay and F., Guenthner, editors. Handbook of Philosophical Logic, volume 1. Reidel, 1983.
[154] D.M., Gabbay and F., Guenthner, editors. Handbook of Philosophical Logic, volume 2. Reidel, 1984.Google Scholar
[155] D.M., Gabbay and I.M., Hodkinson. An axiomatization of the temporal logic with Since and Until over the real numbers. Journal of Logic and Computation, 1:229-259, 1991.Google Scholar
[156] D.M., Gabbay, I.M., Hodkinson, and M., Reynolds. Temporal Logic: Mathematical Foundations and Computational Aspects.Oxford University Press, 1994.Google Scholar
[157] D.M., Gabbay, C.J., Hogger, and J.A., Robinson, editors. Handbook of Logic in Artificial Intelligence and Logic Programming, volume 1. Oxford University Press, 1993.
[158] D.M., Gabbay, C.J., Hogger, and J.A., Robinson, editors. Handbook of Logic in Artificial Intelligence and Logic Programming, volume 4. Oxford University Press, 1994.
[159] D.M., Gabbay, A., Kurucz, F., Wolter, and M., Zakharyaschev. Many-Dimensional Modal Logics: Theory and Applications, volume 146 of Studies in Logic and the Foundations of Mathematics.Elsevier, 2003.Google Scholar
[160] D.M., Gabbay, A., Pnueli, S., Shelah, and J., Stavi. On the temporal analysis of fairness. In Proc. 7th ACM Symposium on Principles of Programming Languages, pages 163-173, 1980.Google Scholar
[161] J., Gardies. La Logique du Temps.Presses Universitaires de France, Paris, 1975.Google Scholar
[162] J., Gardies. Essai sur les Logiques des Modalités.Presses Universitaires de France, Paris, 1979.Google Scholar
[163] M.R., Garey and D.S., Johnson. Computers and Intractibility. A Guide to the Theory of NP-Completeness.W.H. Freeman, 1979.Google Scholar
[164] G., Gargov and V., Goranko. Modal logic with names. Journal of Philosophical Logic, 22:607-636, 1993.Google Scholar
[165] G., Gargov and S., Passy. A note on Boolean modal logic. In P.P., Petkov, editor, Mathematical Logic. Proceedings of the 1988 Heyting Summerschool, pages 311-321. Plenum Press, 1990.Google Scholar
[166] G., Gargov, S., Passy, and T., Tinchev. Modal environment for Boolean speculations. In D., Skordev, editor, Mathematical Logic and its Applications, pages 253-263. Plenum Press, 1987.Google Scholar
[167] F., Gecseg and M., Steinby. Tree languages. In Rozenberg and Salomaa [395], pages 1-68.
[168] M., Gehrke and J., Harding. Bounded lattice expansions. Journal of Algebra, 238:345-371, 2001.Google Scholar
[169] M., Gehrke and B., Joonsson. Bounded distributive lattices with operators. Mathematica Japonica, 40:207-215, 1994.Google Scholar
[170] J., Gerbrandy and W., Groeneveld. Reasoning about information change. Journal of Logic, Language and Information, 6:147-169, 1997.Google Scholar
[171] S., Ghilardi and G., Meloni. Constructive canonicity in non-classical logics. Annals of Pure and Applied Logic, 86:1-32, 1997.Google Scholar
[172] R., Girle. Modal Logics and Philosophy.Acumen, 2000.Google Scholar
[173] R., van Glabbeek. The linear time-branching time spectrum II; the semantics of sequential processes with silent moves. In Proceedings CONCUR '93, volume 715 of LNCS, pages 66-81. Springer, 1993.Google Scholar
[174] P., Gochet, P., Gribomont, and A., Thayse. Logique. Volume 3. Methodes pour l'intelligence artificielle.Hermes, 2000.Google Scholar
[175] K., Goïdel. Eine Interpretation des intuitionistischen Aussagenkalkuïlus. In Ergebnisse eines mathematischen Kolloquiums 4, pages 34-40, 1933.Google Scholar
[176] R., Goldblatt. Semantic analysis of orthologic. Journal of Philosophical Logic, 3:19-35, 1974.Google Scholar
[177] R., Goldblatt. Logics of Time and Computation, volume 7 of Lecture Notes.CSLI Publications, 1987.Google Scholar
[178] R., Goldblatt. Mathematics of Modality, volume 43 of Lecture Notes.CSLI Publications, 1993.Google Scholar
[179] R., Goldblatt. Saturation and the Hennessy-Milner property. In Ponse et al. [360].
[180] R., Goldblatt. Elementary generation and canonicity for varieties of boolean algebras with operators. Algebra Universalis, 34:551-607, 1995.Google Scholar
[181] R., Goldblatt. Algebraic polymodal logic: a survey. Logic Journal of the IGPL, 8:393-450, 2000.Google Scholar
[182] R., Goldblatt. Mathematical modal logic: a view of its evolution, 2000. To appear. Draft available at http://www.vuw.ac.nz/~rob.
[183] R.I., Goldblatt. First-order definability in modal logic. Journal of Symbolic Logic, 40:35-40, 1975.Google Scholar
[184] R.I., Goldblatt. Metamathematics of modal logic I. Reports on Mathematical Logic, 6:41-78, 1976.Google Scholar
[185] R.I., Goldblatt. Metamathematics of modal logic II. Reports on Mathematical Logic, 7:21-52, 1976.Google Scholar
[186] R.I., Goldblatt. Varieties of complex algebras. Annals of Pure and Applied Logic, 38:173-241, 1989.Google Scholar
[187] R.I., Goldblatt. The McKinsey axiom is not canonical. Journal of Symbolic Logic, 56:554-562, 1991.Google Scholar
[188] R.I., Goldblatt and S.K., Thomason. Axiomatic classes in propositional modal logic. In J., Crossley, editor, Algebra and Logic, pages 163-173. Springer, 1974.Google Scholar
[189] V., Goranko. Modal definability in enriched languages. Notre Dame Journal of Formal Logic, 31:81-105, 1990.Google Scholar
[190] V., Goranko. Hierarchies of modal and temporal logics with reference pointers. Journal of Logic, Language and Information, 5:1-24, 1996.Google Scholar
[191] V., Goranko and B., Kapron. The modal logic of the countable random frame. Archive for Mathematical Logic, 42:221-243, 2003.Google Scholar
[192] V., Goranko and S., Passy. Using the universal modality: Gains and questions. Journal of Logic and Computation, 2:5-30, 1992.Google Scholar
[193] R., Goré. Tableau methods for modal and temporal logics. In D'Agostino et al. [104].
[194] E., Grädel. On the restraining power of guards. Journal of Symbolic Logic, 64:1719-1742, 1999.Google Scholar
[195] E., Grädel, P., Kolaitis, and M.Y., Vardi. On the decision problem for two-variable first-order logic. Bulletin of Symbolic Logic, 3:53-69, 1997.Google Scholar
[196] E., Grädel, M., Otto, and E., Rosen. Two-variable logic with counting is decidable. In Proceedings 12th IEEE Symposium on Logic in Computer Science LICS'97, 1997.Google Scholar
[197] E., Grädel and I., Walukiewicz. Guarded fixed point logic. In Proceedings 14th IEEE Symposium on Logic in Computer Science LICS'99, 1999.Google Scholar
[198] G., Graïtzer. Universal Algebra.Springer, 1979.Google Scholar
[199] A.J., Grove, J.Y., Halpern, and D., Koller. Asymptotic conditional probabilities: the non-unarycase. Journal of Symbolic Logic, 61:250-275, 1996.Google Scholar
[200] A.J., Grove, J.Y., Halpern, and D., Koller. Asymptotic conditional probabilities: the unarycase. SIAM Journal on Computing, 25:1-51, 1996.Google Scholar
[201] Y., Gurevich and S., Shelah. The decision problem for branching time logic. Journal of Symbolic Logic, 50:669-681, 1985.Google Scholar
[202] P., R. Halmos. Algebraic Logic.Chelsea Publishing Company, 1962.Google Scholar
[203] J.Y., Halpern. The effect of bounding the number of primitive propositions and the depth of nesting on the complexity of modal logic. Artificial Intelligence, 75:361-372, 1995.Google Scholar
[204] J.Y., Halpern and B.M., Kapron. Zero-onelaws formodallogic. Annals of Pure and Applied Logic, 69:157-193, 1994.Google Scholar
[205] J.Y., Halpern and Y.O., Moses. A guide to the completeness and complexity for modal logics of knowledge and belief. Artificial Intelligence, 54:319-379, 1992.Google Scholar
[206] J.Y., Halpern and M.Y., Vardi. The complexity of reasoning about knowledge and time, I: Lower bounds. Journal of Computer and System Sciences, 38:195-237, 1989.Google Scholar
[207] J.Y., Halpern and M.Y., Vardi. Model checking vs. theorem proving: a manifesto. In J.A., Allen, R., Fikes, and E., Sandewall, editors, Principles of Knowledge Representation and Reasoning: Proc. Second International Conference (KR'91), pages 325-334. Morgan Kaufmann, 1991.Google Scholar
[208] D., Harel. Recurring dominoes: making the highly undecidable highly understandable. In Proc. of the Conference on Foundations of Computing Theory, volume 158 of LNCS, pages 177-194. Springer, 1983.Google Scholar
[209] D., Harel. Dynamic logic. In Gabbay and Guenthner [154], pages 497-604.
[210] D., Harel. Recurring dominoes: making the highly undecidable highly understandable. Annals of Discrete Mathematics, 24:51-72, 1985.Google Scholar
[211] D., Harel. Effective transformations on infinite trees, with applications to high undecidability. Journal of the ACM, 33:224-248, 1986.Google Scholar
[212] D., Harel, D., Kozen, andJ., Tiuryn. Dynamic Logic.The MIT Press, 2000.Google Scholar
[213] R., Harrop. On the existence of finite models and decision procedures for propositional calculi. Proceedings of the Cambridge Philosophical Society, 54:1-13, 1958.Google Scholar
[214] T., Hayashi. Finite automata on infinite objects. Math. Res. Kyushu University, 15:13-66, 1985.Google Scholar
[215] E., Hemaspaandra. The price of universality. Notre Dame Journal of Formal Logic, 37:174-203, 1996.Google Scholar
[216] L., Henkin. Logical systems containing only a finite number of symbols. Seminiare de Mathematique Superieures 21, Les Presses de l'Universite de Montreal, Montreal, 1967.Google Scholar
[217] L., Henkin. Completeness in the theory of types. Journal of Symbolic Logic, 15:81-91, 1950.Google Scholar
[218] L., Henkin, J.D., Monk, and A., Tarski. Cylindric Algebras. Part 1. Part 2.North-Holland Publishing Company, Amsterdam, 1971, 1985.Google Scholar
[219] M., Hennessy and R., Milner. Algebraic laws for indeterminism and concurrency. Journal of the ACM, 32:137-162, 1985.Google Scholar
[220] J.G., Henriksen, J., Jensen, M., Jørgensen, N., Klarlund, R., Paige, T., Rauhe, and A., Sandhol. MONA: Monadic second-order logic in practice. In Proceedings TACAS'95, LNCS, pages 479-506. Springer, 1995.Google Scholar
[221] M., Henzinger, T., Henzinger, and P., Kopke. Computing simulations on finite and infinite graphs. In Proceedings 20th Symposium on Foundations of Computer Science, pages 453-462, 1995.Google Scholar
[222] B., Herwig. Extending partial isomorphisms on finite structures. Combinatorica, 15:365-371, 1995.Google Scholar
[223] J., Hindley and J., Seldin. Introduction to Combinators and the Lambda Calculus. London Mathematical Society Student Texts vol. 1. Cambridge University Press, 1986.Google Scholar
[224] J., Hintikka. Knowledge and Belief.Cornell University Press, 1962.Google Scholar
[225] R., Hirsch and I.M., Hodkinson. Step by step — building representations in algebraic logic. Journal of Symbolic Logic, 62:225-279, 1997.Google Scholar
[226] R., Hirsch and I.M., Hodkinson. Relation Algebras by Games. Number 147 in Studies in Logic. Elsevier, Amsterdam, 2002.Google Scholar
[227] R., Hirsch, I.M., Hodkinson, M., Marx, Sz., Mikulás, and M., Reynolds. Mosaics and step-by-step. Remarks on ‘A modal logic of relations’. In Orøowska [349], pages 158-167.
[228] W., Hodges. Elementary predicate logic. In Gabbay and Guenthner [153], pages 1-131.
[229] W., Hodges. Model Theory.Cambridge University Press, 1993.Google Scholar
[230] I.M., Hodkinson. Atom structures of cylindric algebras and relation algebras. Annals of Pure and Applied Logic, 89:117-148, 1997.Google Scholar
[231] I.M., Hodkinson. Loosely guarded fragment has finite model property. Studia Logica, 70:205-240, 2002.Google Scholar
[232] M., Hollenberg. Safety for bisimulation in general modal logic. In Proceedings 10th Amsterdam Colloquium, 1996.Google Scholar
[233] M.J., Hollenberg. Hennessy-Milner classes and process algebra. In Ponse et al. [360].
[234] G., Hughes andM.J., Cresswell. ACompanionto Modal Logic.Methuen, 1984.Google Scholar
[235] G., Hughes and M.J., Cresswell. A New Introduction to Modal Logic.Routledge, 1996.Google Scholar
[236] I., Humberstone. Inaccessible worlds. Notre Dame Journal of Formal Logic, 24:346-352, 1983.Google Scholar
[237] U., Hustadt. Resolution-Based Decision Procedures for Subclasses of First-Order Logic. PhD thesis, Universitaït des Saarlandes, Saarbruïcken, Germany, 1999.Google Scholar
[238] U., Hustadt and R., A. Schmidt. Issues of decidability for description logics in the framework of resolution. In R., Caferra and G., Salzer, editors, First-order Theorem Proving—FTP'98, pages 152-161. Technical Report E1852-GS-981, Technische Universitaït Wien, 1998.Google Scholar
[239] M.R.A., Huth and M.D., Ryan. Logic in Computer Science.Cambridge University Press, 2000.Google Scholar
[240] N., Immerman and D., Kozen. Definability with bounded number of bound variables. In Proceedings 4th IEEE Symposium on Logic in Computer Science LICS'87.Computer Society Press, 1987.Google Scholar
[241] B., Jacobs. The temporal logic of coalgebras via Galois algebras. Mathematical Structure in Computer Science, 12:875-903, 2002.Google Scholar
[242] B., Jacobs and J., Rutten. A tutorial on (co)algebras and (co)induction. Bulletin of the European Association for Theoretical Computer Science, 62:222-259, 1997.Google Scholar
[243] D., Janin and I., Walukiewicz. On the expressive completeness of the propositional μ-calculus w.r.t. monadic second-order logic. In Proceedings CONCUR '96, 1996.Google Scholar
[244] R., Jansana. Una Introducción a la Lógica Modal.Editorial Tecnos, Madrid, 1990.Google Scholar
[245] G., Japaridze and D., de Jongh. The logic of provability. In Buss [83], pages 475-546.
[246] He, Jifeng. Process simulation and refinement. Formal Aspects of Computing, 1:229-241, 1989.Google Scholar
[247] P., Jipsen. Discriminator varieties of boolean algebras with residuated operators. In C., Rauszer, editor, Algebraic Methods in Logic and Computer Science, volume 28 of Banach Center Publications, pages 239-252. Polish Academy of Sciences, 1993.Google Scholar
[248] P.J., Johnstone. Stone Spaces, volume 3 of Cambridge Studies in Advanced Mathematics.Cambridge University Press, Cambridge, 1982.Google Scholar
[249] D., de Jongh and A., Troelstra. On the connection between partially ordered sets and some pseudo-booleanalgebras. Indigationes Mathematicae, 28:317-329, 1966.Google Scholar
[250] D., de Jongh and F., Veltman. Intensional logic, 1986. Course notes.Google Scholar
[251] B., Jónsson. Varieties of relation algebras. Algebra Universalis, 15:273-298, 1982.Google Scholar
[252] B., Jonsson. The theory of binary relations. In Andreka et al. [8], pages 241-292.
[253] B., Jónsson. A survey of boolean algebras with operators. In Algebras and Orders, pages 239-286. Kluwer Academic Publishers, 1993.Google Scholar
[254] B., Jónsson. On the canonicity of Sahlqvist identities. Studia Logica, 4:473-491, 1994.Google Scholar
[255] B., Jonsson and A., Tarski. Boolean algebras with operators, Part I. American Journal of Mathematics, 73:891-939, 1952.Google Scholar
[256] B., Jónsson and A., Tarski. Boolean algebras with operators, Part II. American Journal of Mathematics, 74:127-162, 1952.Google Scholar
[257] G., Kalinowski. La Logique Deductive.Presses Universitaires de France, 1996.Google Scholar
[258] H., Kamp. Tense Logic and the Theory of Linear Order. PhD thesis, University of California, Los Angeles, 1968.Google Scholar
[259] H., Kamp. Formal properties of ‘Now’. Theoria, 37:227-273, 1971.Google Scholar
[260] M., Kaneko and T., Nagashima. Game logic and its applications. Studia Logica, 57:325-354, 1998.Google Scholar
[261] S., Kanger. The morning star paradox. Theoria, pages 1-11, 1957.Google Scholar
[262] S., Kanger. Provability in Logic.Almqvist & Wiksell, 1957.Google Scholar
[263] S., Kanger, editor. Proceedings of the Third Scandinavian Logic Symposium. Uppsala 1973.North-Holland Publishing Company, 1975.Google Scholar
[264] D., Kaplan. Dthat. In P., Cole, editor, Syntax and Semantics Volume 9, pages 221-253. Academic Press, 1978.Google Scholar
[265] D., Kaplan. On the logic of demonstratives. Journal of Philosophical Logic, 8:81-98, 1978.Google Scholar
[266] R., Kasper and W., Rounds. The logic of unification in grammar. Linguistics and Philosophy, 13:33-58, 1990.Google Scholar
[267] H.J., Keisler. Model Theory for Infinitary Logic.North-Holland Publishing Company, 1971.Google Scholar
[268] H., Kirchner and C., Ringeissen, editors. Frontiers of Combining Systems 3.Springer, 2000.
[269] B., Konikowska. A formal language for reasoning about indiscernibility. Bulletin of the Polish Academy of Sciences, 35:239-249, 1987.Google Scholar
[270] B., Konikowska. A logic for reasoning about relative similarity. Studia Logica, 58:185-226, 1997.Google Scholar
[271] R., Koymans. Specifying Message Passing and Time-Critical Systems with Temporal Logic, volume 651 of LNCS. Springer, 1992.Google Scholar
[272] D., Kozen. A completeness theorem for Kleene algebras and the algebra of regular events. In Proceedings 6th IEEE Symposium on Logic in Computer Science LICS'91, pages 214-225, 1991.Google Scholar
[273] D., Kozen and R., Parikh. An elementary proof of the completeness of PDL. Theoretical Computer Science, 14:113-118, 1981.Google Scholar
[274] D., Kozen and J., Tiuryn. Logics of programs. Invan Leeuwen [293], pages 789-840.
[275] M., Kracht. Even more about the lattice of tense logics. Archive of Mathematical Logic, 31:243-357, 1992.Google Scholar
[276] M., Kracht. How completeness and correspondence theory got married. In de Rijke [379], pages 175-214.
[277] M., Kracht. Splittings and the finite model property. Journal of Symbolic Logic, 58:139-157, 1993.Google Scholar
[278] M., Kracht. Lattices of modal logics and their groups of automorphisms. Journal of Pure and Applied Logic, 100:99-139, 1999.Google Scholar
[279] M., Kracht. Tools and Techniques in Modal Logic. Number 142 in Studies in Logic. Elsevier, Amsterdam, 1999.Google Scholar
[280] M., Kracht. Logic and syntax — a personal perspective. In Zakharyaschev et al. [469], pages 355-384.
[281] M., Kracht, M., de Rijke, H., Wansing, and M., Zakharyaschev, editors. Advances in Modal Logic, Volume 1, volume 87 of Lecture Notes.CSLI Publications, 1998.
[282] M., Kracht and F., Wolter. Simulation and transfer results in modal logic: A survey. Studia Logica, 59:149-177, 1997.Google Scholar
[283] S., Kripke. A completeness theorem in modal logic. Journal of Symbolic Logic, 24:1-14, 1959.Google Scholar
[284] S., Kripke. Semantic analysis of modal logic I, normal propositional calculi. Zeitschrift für mathemathische Logik und Grundlagen der Mathematik, 9:67-96, 1963.Google Scholar
[285] S., Kripke. Semantical considerations on modal logic. Acta Philosophica Fennica, 16:83-94, 1963.Google Scholar
[286] S., Kuhn. Quantifiers as diamonds. Studia Logica, 39:173-195, 1980.Google Scholar
[287] N., Kurtonina. Frames and Labels. PhD thesis, OTS, Utrecht University, 1996.Google Scholar
[288] N., Kurtonina and M., de Rijke. Bisimulations for temporal logic. Journal of Logic, Language and Information, 6:403-425, 1997.Google Scholar
[289] N., Kurtonina and M., de Rijke. Expressiveness of concept expressions in first-order description logics. Artificial Intelligence, 107:303-333, 1999.Google Scholar
[290] A., Kurz. A co-variety-theorem for modal logic. In Zakharyaschev et al. [469].
[291] A.H., Lachlan. A note on Thomason's refined structures for tense logics. Theoria, 40:117-120, 1970.Google Scholar
[292] R., Ladner. The computational complexity of provability in systems of modal logic. SIAM Journal on Computing, 6:467-480, 1977.Google Scholar
[293] J., van Leeuwen, editor. Handbook of Theoretical Computer Science, volume B: Formal Models and Semantics. Elsevier, 1990.
[294] A., Leitsch, C., Fermuïller, and T., Tammet. Resolution decision procedures. In Robinson and Voronkov [388].
[295] E.J., Lemmon. Algebraic semantics for modal logics, Parts I & II. Journal of Symbolic Logic, pages 46-65 & 191-218, 1966.Google Scholar
[296] E.J., Lemmon and D.S., Scott. The ‘Lemmon Notes’: An Introduction to Modal Logic.Blackwell, 1977.Google Scholar
[297] O., Lemon and I., Pratt. On the incompleteness of modal logics of space: advancing complete modal logics of space. In Kracht et al. [281].
[298] W., Lenzen. Glauben, Wissen und Wahrscheinlichkeit. Systeme der Epistemischen Logik.Springer, 1980.Google Scholar
[299] C.I., Lewis. A Survey of Symbolic Logic.University of California Press, 1918.Google Scholar
[300] C.I., Lewis and C.H., Langford. Symbolic Logic.Dover, 1932.Google Scholar
[301] H.R., Lewis and C.H., Papadimitriou. Elements of the Theory of Computation.Prentice-Hall, 1981.Google Scholar
[302] P., Lindstroïm. On extensions of elementary logic. Theoria, 35:1-11, 1969.Google Scholar
[303] C., Lutz and U., Sattler. The complexity of reasoning with boolean Modal Logics. In Workshop Proceedings AiML-2000, pages 175-184. Institut fuïr Informatik, Universitaït Leipzig, 2000.Google Scholar
[304] R.C., Lyndon. The representation of relation algebras. Annals of Mathematics, 51:707-729, 1950.Google Scholar
[305] H., MacColl. Symbolic Logic and its Applications.Longmans, Green, and Co., London, 1906.Google Scholar
[306] R., Maddux. Introductory course on relation algebras, finite-dimensional cylindric algebras, and their interconnections. In Andréka et al. [8], pages 361-392.
[307] D.C., Makinson. On some completeness theorems in modal logic. Zeitschrift für mathemathische Logik und Grndlagen der Mathematik, 12:379-84, 1966.Google Scholar
[308] D.C., Makinson. A generalization of the concept of relational model. Theoria, pages 331-335, 1970.Google Scholar
[309] D.C., Makinson. Some embedding theorems for modal logic. Notre Dame Journal of Formal Logic, pages 252-254, 1971.Google Scholar
[310] L., Maksimova. Interpolation theorems in modal logic and amalgable varieties of topological boolean algebras. Algebra and Logic, 18:348-370, 1979.Google Scholar
[311] L.L., Maksimova. Pretabular extensions of Lewis S4. Algebra and Logic, 14:16-33, 1975.Google Scholar
[312] Z., Manna and A., Pnueli. The Temporal Logic of Reactive and Concurrent Systems. Vol. 1 Specification.Springer, 1992.Google Scholar
[313] Z., Manna and A., Pnueli. Temporal Verification of Reactive Systems: Safety.Springer, 1995.Google Scholar
[314] M., Manzano. Extensions of First Order Logic, volume 19 of Tracts in Theoretical Computer Science.Cambridge University Press, 1996.Google Scholar
[315] R., Martin. Pour une Logique du Sens.Presses Universitaires de France Paris, 1983.Google Scholar
[316] M., Marx. Complexity of modal logics of relations. Technical Report ML–97–02, Institute for Language, Logic and Computation, May 1997.
[317] M., Marx. Tolerance logic. Journal of Logic, Language and Information, 10:353-373, 2001.Google Scholar
[318] M., Marx, L., Poolos, and M., Masuch, editors. Arrow Logic and Multi-Modal Logic. Studies in Logic, Language and Information. CSLI Publications, 1996.
[319] M., Marx, S., Schlobach, and Sz., Mikulas. Labelled deduction for the guarded fragment. In D., Basin et al., editor, Labelled Deduction, Applied Logic Series, pages 193-214. Kluwer Academic Publishers, 2000.Google Scholar
[320] M., Marx and Y., Venema. Multidimensional Modal Logic, volume 4 of Applied Logic Series.Kluwer Academic Publishers, 1997.Google Scholar
[321] R., McKenzie, G., McNulty, and W., Taylor. Algebras, Lattices, Varieties, volume I. Wadsworth & Brooks/Cole, 1987.Google Scholar
[322] J.C.C., McKinsey. A solution to the decision problems for the Lewis systems S2 and S4 with an application to topology. Journal of Symbolic Logic, 6:117-134, 1941.Google Scholar
[323] J.C.C., McKinsey. On the syntactical construction of systems of Modal Logic. Journal of Symbolic Logic, 10:83-96, 1945.Google Scholar
[324] J.C.C., McKinsey and A., Tarski. The algebra of topology. Annals of Mathematics, pages 141-191, 1944.Google Scholar
[325] J.C.C., McKinsey and A., Tarski. Some theorems about the sentential calculi of Lewis and Heyting. Journal of Symbolic Logic, 13:1-15, 1948.Google Scholar
[326] K., McMillan. Symbolic Model Checking.Kluwer Academic Publishers, 1993.Google Scholar
[327] C., Meredith and A., Prior. Interpretations of different modal logics in the ‘property calculus’, 1956. Mimeographed manuscript. Philosophy Department, Canterbury University College.
[328] J.J.-Ch., Meyer and W., van der Hoek. Epistemic Logic for AI and Computer Science.Cambridge University Press, 1995.Google Scholar
[329] Sz., Mikulas. Taming Logics. PhD thesis, Institute for Language, Logic and Computation, University of Amsterdam, 1995. ILLC Dissertation Series 95-12.Google Scholar
[330] G., Mints. A Short Introduction to Modal Logic, volume 30 of Lecture Notes.CSLI Publications, 1992.Google Scholar
[331] J.L., Moens. Forcing et Sémantique de Kripke-Joyal.Cabay, 1982.Google Scholar
[332] G., Moisil. Essais sur les Logiques non Chrysipiennes. Editions de l'Academie de la Republique Socialiste de Roumanie, 1972.Google Scholar
[333] F., Moller and A., Rabinovich. On the expressive power of CTL *.In Proceedings 14th IEEE Symposium on Logic in Computer Science LICS'99, 1999.Google Scholar
[334] J.D., Monk. On representable relation algebras. Michigan Mathematical Journal, 11:207-210, 1964.
[335] R., Montague. Logical necessity, physical necessity, ethics, and quantifiers. Inquiry, 4:259-269, 1960.Google Scholar
[336] R., Montague. Universal grammar. Theoria, 36:373-398, 1970.Google Scholar
[337] M., Mortimer. On languages with two variables. Zeitschrift für mathemathische Logikund Grundlagen der Mathematik, 21:135-140, 1975.Google Scholar
[338] D.E., Muller, A., Saoudi, and P.E., Schupp. Weak alternating automata give a simple explanation of why most temporal and dynamic logics are decidable in exponential time. In Proceedings 3rd IEEE Symposium on Logic in Computer Science LICS'88, pages 422-427, 1988.Google Scholar
[339] N., Murray, editor. Conference on Tableaux Calculi and Related Methods (TABLEAUX), Saratoga Springs, USA, volume 1617 of LNAI.Springer, 1999.
[340] I., Németi. Free algebras and decidability in algebraic logic, 1986. Thesis for D.Sc. (a post-habilitation degree) with Math. Inst. Hungar. Ac. Sci. Budapest. In Hungarian, the English version is [342].
[341] I., Németi. Algebraizations of quantifier logics: an overview. Studia Logica, 50:485-569, 1991.Google Scholar
[342] I., Németi. Decidability of weakened versions of first-order logic. In Csirmazet al. [102], pages 177-242.
[343] P., Odifreddi. Classical Recursion Theory.North-Holland Publishing Company, 1989.Google Scholar
[344] H.J., Ohlbach, D.M., Gabbay, and D., Plaisted. Killer transformations. In Wansing [454].
[345] H.J., Ohlbach, A., Nonnengart, M., de Rijke, and D.M., Gabbay. Encoding non-classical logics in classical logic. In Robinson and Voronkov [388].
[346] H.J., Ohlbach and R.A., Schmidt. Functional translation and second-order frame properties of Modal Logics. Journal of Logic and Computation, 7:581-603, 1997.
[347] P., Øhrstrom and P, Hasle. Temporal Logic.Kluwer Academic Publishers, 1995.Google Scholar
[348] H., Ono andA., Nakamura. On the size of refutation Kripke models forsome linear modal and tense logics. Studia Logica, 39:325-333, 1980.Google Scholar
[349] E., Orøowska, editor. Logic at Work: Essays Dedicated to the Memory of Elena Rasiowa. Studies in Fuzziness and Soft Computing. Springer, 1999.
[350] M.J., Osborne and A., Rubinstein. A Course in Game Theory.The MIT Press, 1994.Google Scholar
[351] M., Otto. Bounded Variable Logics and Counting—A Study in Finite Models, volume 9 of Lecture Notes in Logic.Springer, 1997.Google Scholar
[352] C.H., Papadimitriou. Computational Complexity.Addison-Wesley, 1994.Google Scholar
[353] R., Parikh. The completeness of propositional dynamic logic. In Mathematical Foundations of Computer Science 1978, volume 51 of LNCS, pages 403-415. Springer, 1978.Google Scholar
[354] D., Park. Concurrency and automata on infinite sequences. In Proceedings 5th GI Conference, pages 167-183. Springer, 1981.Google Scholar
[355] W.T., Parry. The postulates for strict implication. Mind, 43:78-80, 1934.Google Scholar
[356] S., Passy and T., Tinchev. PDL with data constants. Information Processing Letters, 20:35-41, 1985.Google Scholar
[357] S., Passy and T., Tinchev. Quantifiers in combinatory PDL: completeness, definability, incompleteness. In Fundamentals of Computation Theory FCT 85, volume 199 of LNCS, pages 512-519. Springer, 1985.Google Scholar
[358] S., Passy and T., Tinchev. An essay in combinatory dynamic logic. Information and Computation, 93:263-332, 1991.Google Scholar
[359] A., Pnueli. The temporal logic of programs. In Proc. 18th Symp. Foundations of Computer Science, pages 46-57, 1977.Google Scholar
[360] A., Ponse, M., de Rijke, and Y., Venema, editors. Modal Logic and Process Algebra: ABisimulation Perspective, volume 53 of Lecture Notes.CSLI Publications, 1995.
[361] S., Popkorn. First Stepsin Modal Logic.Cambridge University Press, 1992.Google Scholar
[362] V.R., Pratt. Semantical considerations on Floyd-Hoare logic. In Proc. 17th IEEE Symposium on Computer Science, pages 109-121, 1976.Google Scholar
[363] V.R., Pratt. Models of program logics. In Proc. 20th IEEE Symp. Foundations of Computer Science, pages 115-222, 1979.Google Scholar
[364] A.N., Prior. Time and Modality.Oxford University Press, 1957.Google Scholar
[365] A.N., Prior. Past, Present and Future.Oxford University Press, 1967.Google Scholar
[366] A.N., Prior. Papers on Time and Tense.Oxford University Press, Newedition, 2003. Edited by Hasle, Øhrstrom, Braüner, and Copeland.
[367] A.N., Prior and K., Fine. Worlds, Times and Selves.University of Massachusetts Press, 1977.Google Scholar
[368] M.O., Rabin. Decidability of second-order theories and automata on infinite trees. Transactions of the American Mathematical Society, 141:1-35, 1969.Google Scholar
[369] S., Rahman. Hugh MacColl: Eine bibliographische Erschließung seiner Hauptwerke und Notizen zu ihrer Rezeptionsgeschichte. History and Philosophy of Logic, 18:165-183, 1997.Google Scholar
[370] H., Rasiowa and R., Sikorski. The Mathematics of Metamathematics.Polish Scientific Publishers, 1963.Google Scholar
[371] H., Rasiowa and R., Sikorski. An Algebraic Approach to Non-Classical Logics.North Holland, 1974.Google Scholar
[372] W., Rautenberg. Der Verband der normalen verzweigten Modallogiken. Mathematische Zeitschrift, 156:123-140, 1977.Google Scholar
[373] W., Rautenberg. Klassische und nichtklassische Aussagenlogik.Vieweg & Sohn, 1979.Google Scholar
[374] W., Rautenberg. Splitting lattices of logics. Archiv für Mathematische Logik, 20:155-159, 1980.Google Scholar
[375] W., Rautenberg, editor. Non-Classical Logics. Ω-biblio graphy of Mathematical Logic, Volume II.Springer, 1987.
[376] M., Reape. A feature value logic. In C., Rupp, M., Rosner, and R., Johnson, editors, Constraints, Language and Computation, Synthese Language Library, pages 77-110. Academic Press, 1994.Google Scholar
[377] M., Reynolds. A decidable logic of parallelism. Notre Dame Journal of Formal Logic, 38:419-436, 1997.Google Scholar
[378] M., de Rijke. The Modal Logic of inequality. Journal of Symbolic Logic, 57:566-584, 1992.Google Scholar
[379] M., de Rijke, editor. Diamonds and Defaults. Synthese Library vol. 229. Kluwer Academic Publishers, 1993.
[380] M de., Rijke. Extending Modal Logic. PhD thesis, ILLC, University of Amsterdam, 1993.Google Scholar
[381] M., de Rijke. A Lindström theorem for modal logic. In Ponse et al. [360], pages 217-230.
[382] M., de Rijke. The logic of Peirce algebras. Journal of Logic, Language and Information, 4:227-250, 1995.Google Scholar
[383] M., de Rijke, editor. Advances in Intensional Logic. Number 7 in Applied Logic Series. Kluwer Academic Publishers, 1997.
[384] M., de Rijke. A system of dynamic modal logic. Journal of Philosophical Logic, 27:109-142, 1998.Google Scholar
[385] M., de Rijke. A modal characterization of Peirce algebras. In Orøowska [349], pages 109-123.
[386] M., de Rijke and H., Sturm. Global definability in basic modal logic. In H., Wansing, editor, Essays on Non-Classical Logic.King's College University Press, 2000.Google Scholar
[387] M., de Rijke and Y., Venema. Sahlqvist's theorem for Boolean algebras with operators. Studia Logica, 95:61-78, 1995.Google Scholar
[388] A., Robinson and A., Voronkov, editors. Handbook of Automated Reasoning.Elsevier Science Publishers, to appear.
[389] R.M., Robinson. Undecidability and nonperiodicity for tilings of the plane. Inventiones Mathematicae, 12:177-209, 1971.Google Scholar
[390] P.H., Rodenburg. Intuitionistic Correspondence Theory. PhD thesis, University of Amsterdam, 1986.Google Scholar
[391] H., Rogers. Theory of Recursive Functions and Effective Computability.McGraw Hill, 1967.Google Scholar
[392] E., Rosen. Modal logic over finite structures. Journal of Logic, Language and Information, 6:427-439, 1997.Google Scholar
[393] M., Rößiger. Coalgebras and modal logic. Electronic Notes in Computer Science, 33:299-320, 2000.Google Scholar
[394] W.C., Rounds. Feature logics. In van Benthem and ter Meulen [51].
[395] G., Rozenberg and A., Salomaa, editors. Handbook of Formal Languages, volume 3: Beyond Words. Springer, 1997.
[396] H., Sahlqvist. Completeness and correspondence in the first and second order semantics formodal logic. In Kanger [263], pages 110-143.
[397] I., Sain. Is ‘some-other-time’ sometimes better than ‘sometime’ for proving partial correctness of programs?Studia Logica, 47:279-301, 1988.Google Scholar
[398] G., Sambin and V., Vaccaro. Topology and duality in modal logic. Annals of Pure and Applied Logic, 37:249-296, 1988.Google Scholar
[399] G., Sambin and V., Vaccaro. A topological proof of Sahlqvist's theorem. Journal of Symbolic Logic, 54:992-999, 1989.Google Scholar
[400] K., Schild. A correspondence theory for terminological logics. In Proc. 12th IJCAI, pages 466-471, 1990.Google Scholar
[401] D., Scott. A decision method for validity of sentences in two variables. Journal of Symbolic Logic, 27:377, 1962.Google Scholar
[402] K., Segerberg. Decidability of S4.1. Theoria, 34:7-20, 1968.Google Scholar
[403] K., Segerberg. Modal logics with linear alternative relations. Theoria, 36:301-322, 1970.Google Scholar
[404] K., Segerberg. An Essay in Classical Modal Logic. Filosofiska Studier 13. University of Uppsala, 1971.Google Scholar
[405] K., Segerberg. Two-dimensional modal logics. Journal of Philosophical Logic, 2:77-96, 1973.Google Scholar
[406] K., Segerberg. ‘Somewhere else’ and ‘Some other time’. In Wright and Wrong, pages 61-64, 1976.Google Scholar
[407] K., Segerberg. A completeness theorem in the modal logic of programs. Notices of the American Mathematical Society, 24:A-552, 1977.Google Scholar
[408] K., Segerberg. Anote On the logic of elsewhere. Theoria, 46:183-187, 1980.Google Scholar
[409] K., Segerberg. A completeness theorem in the modal logic of programs. In T., Traczyk, editor, Universal Algebra and Applications, volume 9 of Banach Centre Publications, pages 31-46. PWN-Polish Scientific Publishers, 1982.Google Scholar
[410] K., Segerberg. Proposal for a theory of belief revision along the lines of Lindström and Rabinowicz. Fundamenta Informaticae, 32:183-191, 1997.Google Scholar
[411] J., Seligman. A cut-free sequent calculus for elementary situated reasoning. Technical Report HCRC-RP 22, HCRC, Edinburgh, 1991.Google Scholar
[412] J., Seligman. The logic of correct description. Inde Rijke [383], pages 107-135.
[413] V., Shehtman. Two-dimensional modal logics. Mathematical Notices of USSR Academy of Sciences, 23:417-424, 1978.Google Scholar
[414] H., Simmons. The monotonous elimination of predicate variables. Journal of Logic and Computation, 4, 1994.Google Scholar
[415] A.P., Sistla and E.M., Clarke. The complexity of linear temporal logic. Journal of the ACM, 32:733-749, 1985.Google Scholar
[416] C., Smoryński. Self-Reference and Modal Logic.Springer, New York, 1985.Google Scholar
[417] R., Smullyan and M, Fitting. Set Theory and the Continuum Problem.Clarendon Press, 1996.Google Scholar
[418] R.M., Smullyan and M., Fitting. Set Theory and the Continuum Problem.Oxford University Press, 1997.Google Scholar
[419] E., Spaan. Complexity of Modal Logics. PhD thesis, ILLC, University of Amsterdam, 1993.Google Scholar
[420] E., Spaan. The complexity of propositional tense logics. In de Rijke [379], pages 239-252.
[421] B., Stalnaker. Assertion. In P., Cole, editor, Syntax and Semantics Volume 9, pages 316-322. Academic Press, 1978.Google Scholar
[422] J., Stavi. Functional completeness over the rationals. Unpublished manuscript. Bar-Ilan University, Ramat-Gan, Israel, 1979.Google Scholar
[423] V., Stebletsova. Algebras, Relations and Geometries. PhD thesis, Zeno (The Leiden Utrecht Research Institute of Philosophy), Utrecht, 2000.Google Scholar
[424] C., Stirling. Modal and temporal logics. In Abramsky et al. [1], pages 477-563.
[425] M.H., Stone. The theory of representations for boolean algebras. Transactions of the American Mathematical Society, 40:37-111, 1936.Google Scholar
[426] H., Sturm. Modale Fragmente von Lωω und Lω1ω. PhD thesis, CIS, University of Munich, 1997.
[427] A., Tarski. On the calculus of relations. Journal of Symbolic Logic, 6:73-89, 1941.Google Scholar
[428] A., Tarski and S., Givant. A Formalization of Set Theory without Variables, volume 41. AMS Colloquium Publications, Providence, Rhode Island, 1987.Google Scholar
[429] J.W., Thatcher and J.B., Wright. Generalized finite automata theory with an application to a decision problem of second-order logic. Mathematical Systems Theory, 2:57-81, 1968.Google Scholar
[430] A., Thayse, editor. From Modal Logic to Deductive Databases.Wiley, 1989.
[431] W., Thomas. Automata on infinite objects. In van Leeuwen [293], pages 135-191.
[432] W., Thomas. Languages, automata and logic. In Rozenberg and Salomaa [395], pages 389-456.
[433] S.K., Thomason. Semantic analysis of tense logics. Journal of Symbolic Logic, 37:150-158, 1972.Google Scholar
[434] S.K., Thomason. An in completeness theorem in Modal Logic. Theoria, 40:150-158, 1974.Google Scholar
[435] S.K., Thomason. Categories offrames for Modal Logics. Journal of Symbolic Logic, 40:439-442, 1975.Google Scholar
[436] S.K., Thomason. Reduction of second-order logic to modal logic. Zeitschrift für mathemathische Logik und Grundlagen der Mathematik, 21:107-114, 1975.Google Scholar
[437] S.K., Thomason. Reduction of tense logic to Modal Logic II. Theoria, 41:154-169, 1975.Google Scholar
[438] D., Toman and D., Niwhiski. First-order queries over temporal databases inexpressible in temporal logic. Manuscript, 1997.
[439] M., Tzakova. Tableaux calculi for hybrid logics. In Murray [339], pages 278-292.
[440] A., Urquhart. Decidability and the finite model property. Journal of Philosophical Logic, 10:367-370, 1981.Google Scholar
[441] M.Y., Vardi. Why is modal logic so robustly decidable? In DIMACS Series in Discrete Mathematics and Theoretical Computer Science 31, pages 149-184. AMS, 1997.Google Scholar
[442] M.Y., Vardi and P., Wolper. Automata-theoretic techniques for modal logics of programs. Journal of Computer and System Sciences, 32:183-221, 1986.Google Scholar
[443] Y., Venema. Completeness via completeness: Since and Until. In de Rijke [379], pages 279-286.
[444] Y., Venema. Derivation rules as anti-axioms in modal logic. Journal of Symbolic Logic, 58:1003-1034, 1993.Google Scholar
[445] Y., Venema. Cylindric modal logic. Journal of Symbolic Logic, 60:591-623, 1995.Google Scholar
[446] Y., Venema. Atom structures and Sahlqvist equations. Algebra Universalis, 38:185-199, 1997.Google Scholar
[447] Y., Venema. Modal definability, purely modal. In J., Gerbrandy, M., Marx, M., de Rijke, and Y., Venema, editors, JFAK. Essays Dedicatedto Johan van Benthem on the Occasion of his 50th Birthday.Vossiuspers AUP, Amsterdam, 1999.Google Scholar
[448] Y., Venema. Points, lines and diamonds: a two-sorted modal logic for projective geometry. Journal of Logic and Computation, 9:601-621, 1999.Google Scholar
[449] Y., Venema. Canonical pseudo-correspondence. In Zakharyaschev et al. [469], pages 439-448.
[450] A., Visser. Modal logic and bisimulation. Tutorial for the workshop ‘Three days of bisimulation’, Amsterdam, 1994.Google Scholar
[451] A., Visser. An overview of interpretability logic. In Kracht et al. [281], pages 307-359.
[452] H., Vlach. ‘Now’ and ‘Then’. PhD thesis, University of California, Los Angeles, 1973.Google Scholar
[453] H., Wang. Proving theorems by pattern recognition II. Bell Systs. Tech. J, 40:1-41, 1961.Google Scholar
[454] H., Wansing, editor. Proof Theory of Modal Logic.Kluwer Academic Publishers, 1996.
[455] H., Wansing. Displaying Modal Logic.Kluwer Academic Publishers, 1998.Google Scholar
[456] P., Wolper. Temporal logic can be more expressive. Information and Control, 56:72-93, 1983.Google Scholar
[457] F., Wolter. Tense logic without tense operators. Mathematical Logic Quarterly, 42:145-171, 1996.Google Scholar
[458] F., Wolter. Completeness and decidability of tense logics closely related to logics containing K 4. Journal of Symbolic Logic, 62:131-158, 1997.Google Scholar
[459] F., Wolter. The structure of lattices of subframe logics. Annals of Pure and Applied Logic, 86:47-100, 1997.Google Scholar
[460] F., Wolter. The product of converse PDL and polymodal K. Journal of Logic and Computation, 10:223-251, 2000.Google Scholar
[461] F., Wolter, H., Wansing, M., de Rijke, and M., Zakharyaschev, editors. Advances in Modal Logic, Volume 3.World Scientific, 2002.
[462] F., Wolter and M., Zakharyaschev. Satisfiability problem in description logics with modal operators. In Principles of Knowledge Representation and Reasoning: Proc. Sixth International Conference (KR'98), pages 512-523. Morgan Kaufmann, 1998.Google Scholar
[463] M., Wooldridge and N., Jennings. Intelligent agents: theory and practice. Knowledge Engineering Review, 10:115-152, 1995.Google Scholar
[464] G.H., von Wright. An Essay in Modal Logic.North-Holland Publishing Company, 1951.Google Scholar
[465] G.H., von Wright. A modal logic of place. In E., Sosa, editor, The Philosophy of Nicholas Rescher, pages 65-73. Publications of the Groupin Logic and Methodology of Science of Real Finland, vol. 3, 1979.Google Scholar
[466] M., Xu. On some U,S-tense logics. Journal of Philosophical Logic, 17:181-202, 1988.Google Scholar
[467] M., Zakharyaschev. Canonical formulas for modal and superintuitionistic logics: a short outline. In de Rijke [383], pages 195-248.
[468] M., Zakharyaschev and A., Alekseev. All finitely axiomatizable normal extensions of K4.3 are decidable. Mathematical Logic Quaterly, 41:15-23, 1995.Google Scholar
[469] M., Zakharyaschev, K., Segerberg, M., de Rijke, and H., Wansing, editors. Advances in Modal Logic, Volume 2. CSLI Publications, 2000.
[470] M.V., Zakharyaschev. On intermediate logics. Soviet Mathematics Doklady, 27:274-277, 1983.Google Scholar
[471] M.V., Zakharyaschev. Normal modal logics containing S4. Soviet Mathematics Doklady, 28:252-255, 1984.Google Scholar
[472] M.V., Zakharyaschev. Syntax and semantics of modal logics containing S4. Algebra and Logic, 27:408-428, 1988.Google Scholar
[473] M.V., Zakharyaschev. Canonical formulas for K4. Part I: basic results. Journal of Symbolic Logic, 57:1377-1402, 1992.Google Scholar
[474] J., Zeman. Modal Logic: The Lewis Modal Systems.Oxford University Press, 1973.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×