Skip to main content Accessibility help
×
  • Cited by 1383
Publisher:
Cambridge University Press
Online publication date:
July 2014
Print publication year:
2001
Online ISBN:
9781107050884

Book description

This is an advanced 2001 textbook on modal logic, a field which caught the attention of computer scientists in the late 1970s. Researchers in areas ranging from economics to computational linguistics have since realised its worth. The book is for novices and for more experienced readers, with two distinct tracks clearly signposted at the start of each chapter. The development is mathematical; prior acquaintance with first-order logic and its semantics is assumed, and familiarity with the basic mathematical notions of set theory is required. The authors focus on the use of modal languages as tools to analyze the properties of relational structures, including their algorithmic and algebraic aspects, and applications to issues in logic and computer science such as completeness, computability and complexity are considered. Three appendices supply basic background information and numerous exercises are provided. Ideal for anyone wanting to learn modern modal logic.

Reviews

‘This book is undoubtedly going to be the definitive book on modal logic for years to come.’

M. Vardi - Rice University

‘… will take you from ground level to one of the best vista points on modal logic today. The authors are expert guides: they know the land from first-hand research experience, but they are committed to taking all newcomers there as well.’

Johan van Bentem - University of Amsterdam

‘… this is an excellent book, targeting a broad audience including logicians, computer scientists, mathematicians and philosophers. It can serve very well both as a graduate textbook, taking a beginner with sufficient logical maturity and interest in the subject well into the expert level, and as a state-of-the-art reference on the main aspects, results, methods, and literature on contemporary modal logic for the experienced researchers. And, much of it can be read just for fun.’

Source: Studia Logica

Refine List

Actions for selected content:

Select all | Deselect all
  • View selected items
  • Export citations
  • Download PDF (zip)
  • Save to Kindle
  • Save to Dropbox
  • Save to Google Drive

Save Search

You can save your searches here and later view and run them again in "My saved searches".

Please provide a title, maximum of 40 characters.
×

Contents

References
[1] S., Abramsky, D.M., Gabbay, and T.S.E., Maibaum, editors. Handbook of Logic in Computer Science, volume 2. Clarendon Press, 1992.
[2] P., Aczel. Non-Well-Founded Sets.CSLI Publications, 1988.
[3] M., Aiello and J., van Benthem. A modal walk through space. Journal of Applied Non-Classical Logics, 12:319-364, 2002.
[4] C.E., Alchourrón, P., Gärdenfors, and D., Makinson. On the logic of theory change: partial meet contraction and revision functions. Journal of Symbolic Logic, 50:510-530, 1985.
[5] A., Andréka, A., Kurucz, I., Németi, and I., Sain. Applying algebraic logic to logic. In M., Nivat and M., Wirsing, editors, Algebraic Methodology and Software Technology, pages 201-221. Springer, 1994.
[6] H., Andréka. Complexity of equations valid in algebras of relations. Annals of Pure and Applied Logic, 89:149-229, 1997.
[7] H., Andréka, I.M., Hodkinson, and I., Németi. Finite algebras of relations are repre-sentable on finite sets. Journal of Symbolic Logic, 64:243-267, 1999.
[8] H., Andréka, J.D., Monk, and I., Németi, editors. Algebraic Logic. (Proceedings of the 1988 Budapest Conference), volume 54 of Colloquia Mathematica Societatis Janos Bolyai.North-Holland Publishing Company, 1991.
[9] H., Andréka, J., van Benthem, and I., Németi. Modal languages and bounded fragments of predicate logic. Journal of Philosophical Logic, 27:217-274, 1998.
[10] I.H., Anellis and N., Houser. Nineteenth century roots of algebraiclogic and universal algebra. In Andréka et al. [8], pages 1-36.
[11] L., Åqvist, F., Guenthner, and C., Rohrer. Definability in ITL of some subordinate temporal conjunctions in English. In F., Guenthner and C., Rohrer, editors, Studies in Formal Semantics, pages 201-221. North Holland, 1978.
[12] C., Areces. Logic Engineering: The Case of Description and Hybrid Logics. PhD thesis, ILLC, University of Amsterdam, 2000.
[13] C., Areces, P., Blackburn, and M., Marx. The computational complexity of hybrid temporal logics. Logic Journal of the IGPL, 8(5):653-679, 2000.
[14] C., Areces, P., Blackburn, and M., Marx. Hybrid logics: Characterization, interpolation and complexity. Journal of Symbolic Logic, 66:977-1010, 2001.
[15] C., Areces and M., de Rijke. Description and/or hybrid logic. In Workshop Proceedings AiML-2000, pages 1-14. Institut für Informatik, Universität Leipzig, 2000.
[16] F., Baader and K., Schulz, editors. Frontiers of Combining Systems 1.Kluwer Academic Publishers, 1996.
[17] P., Bailhache. Essai de Logique Deontique. Mathesis, 1991.
[18] P., Balbiani, N.-Y., Suzuki, F., Wolter, and M., Zakharyaschev, editors. Advances in Modal Logic, Volume 4.King's College London Publications, 2003.
[19] Ph., Balbiani, L. Fariñas, del Cerro, T., Tinchev, and D., Vakarelov. Modal logics for incidence geometries. Journal of Logic and Computation, 7:59-78, 1997.
[20] A., Baltag. STS: A Structural Theory of Sets. PhD thesis, Indiana University, Bloomington, Indiana, 1998.
[21] A., Baltag. A logic for suspicious players: epistemic actions and belief updates in games. Bulletin of Economic Research, to appear, 2000. Paper presented at the Fourth Conference on Logic and the Foundations of the Theory of Games and Decisions.
[22] A., Baltag. STS: a structural theory of sets. In Zakharyaschevet al. [469].
[23] B., Banieqbal, H., Barringer, and A., Pnueli, editors. Proc. Colloquium on Temporal Logic in Specification, volume 398 of LNCS.Springer, 1989.
[24] H., Barendregt. The Lambda Calculus: Its Syntax and Semantics.North-Holland Publishing Company, 1984.
[25] J., Barwise. Model-theoretic logics: backgroundandaims. In Barwise and Feferman [26], pages 3-23.
[26] J., Barwise and S., Feferman, editors. Model-Theoretic Logics.Springer, 1985.
[27] J., Barwise and L., Moss. Vicious Circles, volume 60 of Lecture Notes.CSLI Publications, 1996.
[28] J., Barwise and L.S., Moss. Modal correspondence for models. Journal of Philosophical Logic, 27:275-294, 1998.
[29] D., Basin and N., Klarlund. Automata based symbolic reasoning in hardware verification. Journal of Formal Methods in Systems Design, 13:255-288, 1998.
[30] D., Batens. Logicaboek.Garant Leven, Apeldoorn, 1991.
[31] P., Battigalli and G., Bonanno. Recent results on belief, knowledge and the foundations of game theory. Research in Economics, 53:149-225, 1999.
[32] J.L., Bell and M., Machover. A Course in Mathematical Logic.North-Holland Publishing Company, 1977.
[33] J.L., Bell and A.B., Slomson. Models and Ultraproducts.North-Holland Publishing Company, 1969.
[34] B., Bennet, C., Dixon, M., Fisher, E., Franconi, I., Horrocks, U., Hustadt, and M., de Rijke. Combinations of modal logic. Journal of AI Reviews, 17:1-20, 2002.
[35] J., van Benthem. A note on modal formulas and relational properties. Journal of Symbolic Logic, 40:85-88, 1975.
[36] J., van Benthem. Modal Correspondence Theory. PhD thesis, Mathematisch Instituut & Instituut voor Grondslagenonderzoek, University of Amsterdam, 1976.
[37] J., van Benthem. Two simple incomplete modal logics. Theoria, 44:25-37, 1978.
[38] J., van Benthem. Minimal deontic logics. Bulletin of the Section of Logic, 8:36-42, 1979.
[39] J., van Benthem. Syntactical aspects of modal incompleteness theorems. Theoria, 45:63-77, 1979.
[40] J., van Benthem. Canonical modal logics and ultrafilter extensions. Journal of Symbolic Logic, 44:1-8, 1980.
[41] J., van Benthem. Some kinds of modal completeness. Studia Logica, 39:125-141, 1980.
[42] J., van Benthem. Modal Logic and Classical Logic.Bibliopolis, 1983.
[43] J., van Benthem. Correspondence theory. In Gabbay and Guenthner [154], pages 167-247.
[44] J., van Benthem. A Manual of Intensional Logic, volume 1 of Lecture Notes.CSLI Publications, 1985.
[45] J., van Benthem. The Logic of Time.Kluwer Academic Publishers, second edition, 1991.
[46] J., van Benthem. Modal frame classes revisited. Fundamenta Informaticae, 18:307-317, 1993.
[47] J., van Benthem. Temporal logic. In Gabbayet al. [158], pages 241-351.
[48] J., van Benthem. Exploring Logical Dynamics. Studies in Logic, Language and Information. CSLI Publications, 1996.
[49] J., van Benthem. Dynamic bits and pieces. Technical Report LP-97-01, Institute for Language, Logic and Computation, 1997.
[50] J., van Benthem and W., Meyer Viol. Logical semantics of programming. Unpublished lecture notes. University of Amsterdam, 1993.
[51] J., van Benthem and A., ter Meulen, editors. Handbook of Logic and Language.Elsevier Science, 1997.
[52] R., Berger. The undecidability of the domino problem. Technical Report 66, Mem. Amer. Math. Soc., 1966.
[53] G., Birkhoff. On the structure of abstract algebras. Proceedings of the Cambridge Philosophical Society, 29:441-464, 1935.
[54] P., Blackburn. Nominal tense logic. Notre Dame Journal of Formal Logic, 34:56-83, 1993.
[55] P., Blackburn. Tense, temporal reference, and tense logic. Journal of Semantics, 11:83-101, 1994.
[56] P., Blackburn. Internalizing labelled deduction. Journal of Logic and Computation, 10:137-168, 2000.
[57] P., Blackburn. Representation, reasoning, and relational structures: a hybrid logic manifesto. Logic Journal of the IGPL, 8:339-365, 2000.
[58] P., Blackburn, C., Gardent, and W., Meyer-Viol. Talking about trees. In Proceedings of the 6th Conference of the European Chapter of the Association for Computational Linguistics, pages 21-29, 1993.
[59] P., Blackburn and J., Seligman. Hybrid languages. Journal of Logic, Language and Information, 4:251-272, 1995.
[60] P., Blackburn and J., Seligman. What are hybrid languages? In Krachtet al. [281], pages 41-62.
[61] P., BlackburnandE., Spaan. A modal perspective on the computational complexity of attribute value grammar. Journal of Logic, Language and Information, 2:129-169, 1993.
[62] P., Blackburn and M., Tzakova. Hybridizing concept languages. Annals of Mathematics and Artificial Intelligence, 24:23-49, 1998.
[63] P., Blackburn and M., Tzakova. Hybrid languages and temporal logic. Logic Journal of the IGPL, 7(1):27-54, 1999.
[64] W.J., Blok. An axiomatization of the modal theory of the veiled recession frame. Technical report, Department of Mathematics, University of Amsterdam, 1977.
[65] W.J., Blok. On the degree of incompleteness in modal logic and the covering relations in the lattice of modal logics. Technical Report 78-07, Department of Mathematics, University of Amsterdam, 1978.
[66] W.J., Blok. The lattice of modal algebras: An algebraic investigation. Journal of Symbolic Logic, 45:221-236, 1980.
[67] W.J., Blok and D., Pigozzi. Algebraizable logics. Memoirs of the American Mathematical Society, 77, 396, 1989.
[68] G., Boolos. The Unprovability of Consistency.Cambridge University Press, 1979.
[69] G., Boolos. The Logic of Provability.Cambridge University Press, 1993.
[70] G., Boolos and R., Jeffrey. Computability and Logic.Cambridge University Press, 1989.
[71] E., Börger, E., Gradel, and Y., Gurevich. The Classical Decision Problem.Springer, 1997.
[72] J.R., Büchi. On a decision method in restricted second order arithmetic. In Proceedings International Congress on Logic, Methodology and Philosophy of Science 1960.Stanford University Press, 1962.
[73] R., Bull. Anapproachto tense logic. Theoria, 36:282-300, 1970.
[74] R.A., Bull. That all normal extensions of S4.3 have the finite model property. Zeitschrift für mathemathische Logik und Grundlagen der Mathematik, 12:314-344, 1966.
[75] R.A., Bull and K., Segerberg. Basic modal logic. In Gabbay and Guenthner [154], pages 1-88.
[76] P., Buneman, S., Davidson, M., Fernandez, and D., Suciu. Adding structure to un- structered data. In Proceedings ICDT'97, 1997.
[77] J., Burgess. Decidability for branching time. Studia logica, 39:203-218, 1980.
[78] J., Burgess. Axioms for tense logic I: ‘since’ and ‘until’. Notre Dame Journal of Formal Logic, 23:375-383, 1982.
[79] J.P., Burgess. Basic tense logic. In Gabbayand Guenthner [154], pages 89-133.
[80] J.P., Burgess and Y., Gurevich. The decision problem for linear temporal logic. Notre Dame Journal of Formal Logic, 26:115-128, 1985.
[81] S., Burris and H.P., Sankappanavar. A Course in Universal Algebra. Graduate Texts in Mathematics. Springer, 1981.
[82] R., Burstall. Program proving as hand simulation with a little induction. In Information Processing '74, pages 308-312. North-Holland Publishing Company, 1974.
[83] S.R., Buss, editor. Handbook of Proof Theory.Elsevier Science, 1998.
[84] D., Calvanese, G., De Giacomo, and M., Lenzerini. Modeling and querying semistructured data. Networking and Information Systems, pages 253-273, 1999.
[85] R., Carnap. Modalities and quantification. Journal of Symbolic Logic, 11:33-64, 1946.
[86] R., Carnap. Meaning and Necessity.University of Chicago Press, 1947.
[87] A., Chagrov, F., Wolter, and M., Zakharyaschev. Advanced modal logic. In Handbook of Philosophical Logic, volume 3, pages 83-266. Kluwer Academic Publishers, second edition, 2001.
[88] A., Chagrov and M., Zakharyaschev. Modal Logic, volume 35 of Oxford Logic Guides.Oxford University Press, 1997.
[89] L.A., Chagrova. An undecidable problem in correspondence theory. Journal of Symbolic Logic, 56:1261-1272, 1991.
[90] D., Chalmers. The Conscious Mind.Oxford University Press, 1996.
[91] C.C., Chang and H.J., Keisler. Model Theory.North-Holland Publishing Company, Amsterdam, 1973.
[92] B.F., Chellas. Modal Logic, an Introduction.Cambridge University Press, 1980.
[93] B., Chlebus. Domino-tiling games. Journal of Computer and System Sciences, 32:374-392, 1986.
[94] E.M., Clarke andE.A., Emerson. Design and synthesis of synchronisation skeletons using branching time temporal logic. In D., Kozen, editor, Logics of Programs, pages 52-71. Springer, 1981.
[95] E.M., Clarke, O., Grumberg, and D.A., Peled. Model Checking.The MIT Press, 1999.
[96] E.M., Clarke and B.-H., Schlingloff. Model checking. In Robinson and Voronkov [388].
[97] B.J., Copeland, editor. Logic and Reality. Essays on the Legacy of Arthur Prior.Clarendon Press, 1996.
[98] W., Craig. On axiomatizability within a system. Journal of Symbolic Logic, 18:30-32, 1953.
[99] M.J., Cresswell. A Henkin completeness theorem for T. Notre Dame Journal of Formal Logic, 8:186-90, 1967.
[100] M.J., Cresswell. An incomplete decidable modal logic. Journal of Symbolic Logic, 49:520-527, 1984.
[101] G., Crocco. Fondements Logiques du Raisonnement Contextuel. Une Etude surles Logiques des Conditionnels.Padova Unipress, 1996.
[102] L., Csirmaz, D.M., Gabbay, and M., de Rijke, editors. Logic Colloquium '92, number 1 in Studies in Logic, Language and Information. CSLI Publications, 1995.
[103] N., Cutland. Computability. An Introduction to Recursive Function Theory.Cambridge University Press, 1980.
[104] M., D'Agostino, D.M., Gabbay, R., Hahnle, and J., Posegga, editors. Handbook of Tableau Methods.Kluwer Academic Publishers, 1999.
[105] B.A., Davey and H.A., Priestly. Introduction to Lattices and Order.Cambridge University Press, 1990.
[106] G., De Giacomo. Decidability of Class-Based Knowledge Representation Formalisms. PhD thesis, Università di Roma “La Sapienza”, 1995.
[107] S., Demri. Sequent calculi for nominal tense logics: a step towards mechanization? In Murray [339], pages 140-154.
[108] S., Demri and R., Gore. Cut-free display calculi for nominal tense logics. In Murray [339], pages 155-170.
[109] H., van Ditmarsch. Knowledge Games. PhD thesis, Department of Mathematics and Computer Science, Rijksuniversiteit Groningen, 2000.
[110] H.C., Doets. Completeness and Definability: Applications of the Ehrenfeucht Game in Intensional and Second-Order Logic. PhD thesis, Department of Mathematics and Computer Science, University of Amsterdam, 1987.
[111] K., Doets. Basic Model Theory. Studies in Logic, Language and Information. CSLI Publications, 1996.
[112] K., Doets and J., van Benthem. Higher-orderlogic. In Gabbay and Guenthner [153], pages 275-329.
[113] J., Doner. Tree acceptors and some of their applications. Journal of Computer and System Sciences, 4:406-451, 1970.
[114] F.M., Donini, M., Lenzerini, D., Nardi, and W., Nutt. The complexity of concept languages. Information and Computation, 134:1-58, 1997.
[115] F.M., Donini, M., Lenzerini, D., Nardi, and A., Schaerf. Reasoning in description logics. In G., Brewka, editor, Principles of Knowledge Representation, Studies in Logic, Language and Information, pages 191-236. CSLI Publications, 1996.
[116] J., Dugundji. Note on a property of matrices for Lewis and Langford's calculi of propositions. Journal of Symbolic Logic, 5:150-151, 1940.
[117] M.A.E., Dummett and E.J., Lemmon. Modal logics between S4 and S5. Zeitschrift für mathemathische Logik und Grundlagen der Mathematik, 5:250-264, 1959.
[118] H.-D., Ebbinghaus and J., Flum. Finite Model Theory. Perspectives in Mathematical Logic. Springer, 1995.
[119] A., Ehrenfeucht. An application of games to the completeness problem for formal-izedtheories. Fundamenta Mathematicae, 49:129-141, 1961.
[120] P., van Emde Boas. The convenience of tilings. Technical Report CT-96-01, ILLC, University of Amsterdam, 1996.
[121] E.A., Emerson. Temporal and modal logics. In van Leeuwen [293], pages 995-1072.
[122] H.B., Enderton. A Mathematical Introduction to Logic.Academic Press, New York, 1972.
[123] L.L., Esakia. Topological Kripke models. Soviet Mathematics Doklady, 15:147-151, 1974.
[124] L.L., Esakia and V. Yu., Meskhi. Five critical systems. Theoria, 40:52-60, 1977.
[125] R., Fagin, J.Y., Halpern, Y., Moses, and M.Y., Vardi. Reasoning About Knowledge.The MIT Press, 1995.
[126] T., Fernando. A modal logic for non-deterministic discourse processing. Journal of Logic, Languageand Information, 8:455-468, 1999.
[127] K., Fine. Propositional quantifiers in modal logic. Theoria, 36:331-346, 1970.
[128] K., Fine. The logics containing 54.3. Zeitschrift für mathemathische Logik und Grndlagen der Mathematik, 17:371-376, 1971.
[129] K., Fine. An incomplete logic containing S4. Theoria, 40:23-29, 1974.
[130] K., Fine. Logics extending K 4. Part I. Journal of Symbolic Logic, 39:31-42, 1974.
[131] K., Fine. Normal forms in modal logic. Notre Dame Journal of Formal Logic, 16:229-234, 1975.
[132] K., Fine. Some connections between elementary and modal logic. In Kanger [263].
[133] K., Fine. Modal logics containing K4. Part II. Journal of Symbolic Logic, 50:619-651, 1985.
[134] M., Finger. Handling database updates in two-dimensional temporal logic. Journal of Applied Non-Classical Logics, 2:201-224, 1992.
[135] M.J., Fischer and R.E., Ladner. Propositional dynamic logic of regular programs. Journal of Computer and System Sciences, 18:194-211, 1979.
[136] F., Fitch. A correlation between modal reduction principles and properties of relations. Journal of Philosophical Logic, 2:97-101, 1973.
[137] M., Fitting. Proof Methods for Modal and Intuitionistic Logic.Reidel, 1983.
[138] M., Fitting. Basic modal logic. In Gabbayet al. [157], pages 368-449.
[139] M., Fitting. Types, Tableaus, and Goedel's God.Kluwer Academic Publishers, 2002.
[140] M., Fitting and R.L., Mendelsohn. First-Order Modal Logic.Kluwer Academic Publishers, 1998.
[141] R., Fraïssé. Sur quelques classifications des systèmes de relations. Publ. Sci. Univ. Alger, 1:35-182, 1954.
[142] N., Friedman and J.Y., Halpern. Modeling beliefindynamic systems, parti: Foundations. Artificial Intelligence, 95:257-316, 1997.
[143] M., Frixione. Logica, Significato e Intelligenza Artificiale.Franco Angeli, Milano, 1994.
[144] A., Fuhrmann. On the modal logic of theory change. In A., Fuhrmann and M., Morreau, editors, LNAI, volume 465, pages 259-281. Springer, 1990.
[145] D.M., Gabbay. Decidability results in non-classical logics. Annals of Mathematical Logic, 10:237-285, 1971.
[146] D.M., Gabbay. On decidable, finitely axiomatizable modal and tense logics without the finite model property I. Israel Journal of Mathematics, 10:478-495, 1971.
[147] D.M., Gabbay. On decidable, finitely axiomatizable modal and tense logics without the finite model property II. Israel Journal of Mathematics, 10:496-503, 1971.
[148] D.M., Gabbay. The separation property of tense logics. Unpublished manuscript, September 1979.
[149] D.M., Gabbay. An irreflexivity lemma with applications to axiomatizations of conditions on linear frames. In U., Moïnnich, editor, Aspects of Philosophical Logic, pages 67-89. Reidel, 1981.
[150] D.M., Gabbay. The declarative past and imperative future: executable temporal logic for interactive systems. In Banieqbalet al. [23], pages 431-448.
[151] D.M., Gabbay. Labelled Deductive Systems.Clarendon Press, Oxford, 1996.
[152] D.M., Gabbay and M., de Rijke, editors. Frontiers of Combining Systems 2.Research Studies Press, 2000.
[153] D.M., Gabbay and F., Guenthner, editors. Handbook of Philosophical Logic, volume 1. Reidel, 1983.
[154] D.M., Gabbay and F., Guenthner, editors. Handbook of Philosophical Logic, volume 2. Reidel, 1984.
[155] D.M., Gabbay and I.M., Hodkinson. An axiomatization of the temporal logic with Since and Until over the real numbers. Journal of Logic and Computation, 1:229-259, 1991.
[156] D.M., Gabbay, I.M., Hodkinson, and M., Reynolds. Temporal Logic: Mathematical Foundations and Computational Aspects.Oxford University Press, 1994.
[157] D.M., Gabbay, C.J., Hogger, and J.A., Robinson, editors. Handbook of Logic in Artificial Intelligence and Logic Programming, volume 1. Oxford University Press, 1993.
[158] D.M., Gabbay, C.J., Hogger, and J.A., Robinson, editors. Handbook of Logic in Artificial Intelligence and Logic Programming, volume 4. Oxford University Press, 1994.
[159] D.M., Gabbay, A., Kurucz, F., Wolter, and M., Zakharyaschev. Many-Dimensional Modal Logics: Theory and Applications, volume 146 of Studies in Logic and the Foundations of Mathematics.Elsevier, 2003.
[160] D.M., Gabbay, A., Pnueli, S., Shelah, and J., Stavi. On the temporal analysis of fairness. In Proc. 7th ACM Symposium on Principles of Programming Languages, pages 163-173, 1980.
[161] J., Gardies. La Logique du Temps.Presses Universitaires de France, Paris, 1975.
[162] J., Gardies. Essai sur les Logiques des Modalités.Presses Universitaires de France, Paris, 1979.
[163] M.R., Garey and D.S., Johnson. Computers and Intractibility. A Guide to the Theory of NP-Completeness.W.H. Freeman, 1979.
[164] G., Gargov and V., Goranko. Modal logic with names. Journal of Philosophical Logic, 22:607-636, 1993.
[165] G., Gargov and S., Passy. A note on Boolean modal logic. In P.P., Petkov, editor, Mathematical Logic. Proceedings of the 1988 Heyting Summerschool, pages 311-321. Plenum Press, 1990.
[166] G., Gargov, S., Passy, and T., Tinchev. Modal environment for Boolean speculations. In D., Skordev, editor, Mathematical Logic and its Applications, pages 253-263. Plenum Press, 1987.
[167] F., Gecseg and M., Steinby. Tree languages. In Rozenberg and Salomaa [395], pages 1-68.
[168] M., Gehrke and J., Harding. Bounded lattice expansions. Journal of Algebra, 238:345-371, 2001.
[169] M., Gehrke and B., Joonsson. Bounded distributive lattices with operators. Mathematica Japonica, 40:207-215, 1994.
[170] J., Gerbrandy and W., Groeneveld. Reasoning about information change. Journal of Logic, Language and Information, 6:147-169, 1997.
[171] S., Ghilardi and G., Meloni. Constructive canonicity in non-classical logics. Annals of Pure and Applied Logic, 86:1-32, 1997.
[172] R., Girle. Modal Logics and Philosophy.Acumen, 2000.
[173] R., van Glabbeek. The linear time-branching time spectrum II; the semantics of sequential processes with silent moves. In Proceedings CONCUR '93, volume 715 of LNCS, pages 66-81. Springer, 1993.
[174] P., Gochet, P., Gribomont, and A., Thayse. Logique. Volume 3. Methodes pour l'intelligence artificielle.Hermes, 2000.
[175] K., Goïdel. Eine Interpretation des intuitionistischen Aussagenkalkuïlus. In Ergebnisse eines mathematischen Kolloquiums 4, pages 34-40, 1933.
[176] R., Goldblatt. Semantic analysis of orthologic. Journal of Philosophical Logic, 3:19-35, 1974.
[177] R., Goldblatt. Logics of Time and Computation, volume 7 of Lecture Notes.CSLI Publications, 1987.
[178] R., Goldblatt. Mathematics of Modality, volume 43 of Lecture Notes.CSLI Publications, 1993.
[179] R., Goldblatt. Saturation and the Hennessy-Milner property. In Ponse et al. [360].
[180] R., Goldblatt. Elementary generation and canonicity for varieties of boolean algebras with operators. Algebra Universalis, 34:551-607, 1995.
[181] R., Goldblatt. Algebraic polymodal logic: a survey. Logic Journal of the IGPL, 8:393-450, 2000.
[182] R., Goldblatt. Mathematical modal logic: a view of its evolution, 2000. To appear. Draft available at http://www.vuw.ac.nz/~rob.
[183] R.I., Goldblatt. First-order definability in modal logic. Journal of Symbolic Logic, 40:35-40, 1975.
[184] R.I., Goldblatt. Metamathematics of modal logic I. Reports on Mathematical Logic, 6:41-78, 1976.
[185] R.I., Goldblatt. Metamathematics of modal logic II. Reports on Mathematical Logic, 7:21-52, 1976.
[186] R.I., Goldblatt. Varieties of complex algebras. Annals of Pure and Applied Logic, 38:173-241, 1989.
[187] R.I., Goldblatt. The McKinsey axiom is not canonical. Journal of Symbolic Logic, 56:554-562, 1991.
[188] R.I., Goldblatt and S.K., Thomason. Axiomatic classes in propositional modal logic. In J., Crossley, editor, Algebra and Logic, pages 163-173. Springer, 1974.
[189] V., Goranko. Modal definability in enriched languages. Notre Dame Journal of Formal Logic, 31:81-105, 1990.
[190] V., Goranko. Hierarchies of modal and temporal logics with reference pointers. Journal of Logic, Language and Information, 5:1-24, 1996.
[191] V., Goranko and B., Kapron. The modal logic of the countable random frame. Archive for Mathematical Logic, 42:221-243, 2003.
[192] V., Goranko and S., Passy. Using the universal modality: Gains and questions. Journal of Logic and Computation, 2:5-30, 1992.
[193] R., Goré. Tableau methods for modal and temporal logics. In D'Agostino et al. [104].
[194] E., Grädel. On the restraining power of guards. Journal of Symbolic Logic, 64:1719-1742, 1999.
[195] E., Grädel, P., Kolaitis, and M.Y., Vardi. On the decision problem for two-variable first-order logic. Bulletin of Symbolic Logic, 3:53-69, 1997.
[196] E., Grädel, M., Otto, and E., Rosen. Two-variable logic with counting is decidable. In Proceedings 12th IEEE Symposium on Logic in Computer Science LICS'97, 1997.
[197] E., Grädel and I., Walukiewicz. Guarded fixed point logic. In Proceedings 14th IEEE Symposium on Logic in Computer Science LICS'99, 1999.
[198] G., Graïtzer. Universal Algebra.Springer, 1979.
[199] A.J., Grove, J.Y., Halpern, and D., Koller. Asymptotic conditional probabilities: the non-unarycase. Journal of Symbolic Logic, 61:250-275, 1996.
[200] A.J., Grove, J.Y., Halpern, and D., Koller. Asymptotic conditional probabilities: the unarycase. SIAM Journal on Computing, 25:1-51, 1996.
[201] Y., Gurevich and S., Shelah. The decision problem for branching time logic. Journal of Symbolic Logic, 50:669-681, 1985.
[202] P., R. Halmos. Algebraic Logic.Chelsea Publishing Company, 1962.
[203] J.Y., Halpern. The effect of bounding the number of primitive propositions and the depth of nesting on the complexity of modal logic. Artificial Intelligence, 75:361-372, 1995.
[204] J.Y., Halpern and B.M., Kapron. Zero-onelaws formodallogic. Annals of Pure and Applied Logic, 69:157-193, 1994.
[205] J.Y., Halpern and Y.O., Moses. A guide to the completeness and complexity for modal logics of knowledge and belief. Artificial Intelligence, 54:319-379, 1992.
[206] J.Y., Halpern and M.Y., Vardi. The complexity of reasoning about knowledge and time, I: Lower bounds. Journal of Computer and System Sciences, 38:195-237, 1989.
[207] J.Y., Halpern and M.Y., Vardi. Model checking vs. theorem proving: a manifesto. In J.A., Allen, R., Fikes, and E., Sandewall, editors, Principles of Knowledge Representation and Reasoning: Proc. Second International Conference (KR'91), pages 325-334. Morgan Kaufmann, 1991.
[208] D., Harel. Recurring dominoes: making the highly undecidable highly understandable. In Proc. of the Conference on Foundations of Computing Theory, volume 158 of LNCS, pages 177-194. Springer, 1983.
[209] D., Harel. Dynamic logic. In Gabbay and Guenthner [154], pages 497-604.
[210] D., Harel. Recurring dominoes: making the highly undecidable highly understandable. Annals of Discrete Mathematics, 24:51-72, 1985.
[211] D., Harel. Effective transformations on infinite trees, with applications to high undecidability. Journal of the ACM, 33:224-248, 1986.
[212] D., Harel, D., Kozen, andJ., Tiuryn. Dynamic Logic.The MIT Press, 2000.
[213] R., Harrop. On the existence of finite models and decision procedures for propositional calculi. Proceedings of the Cambridge Philosophical Society, 54:1-13, 1958.
[214] T., Hayashi. Finite automata on infinite objects. Math. Res. Kyushu University, 15:13-66, 1985.
[215] E., Hemaspaandra. The price of universality. Notre Dame Journal of Formal Logic, 37:174-203, 1996.
[216] L., Henkin. Logical systems containing only a finite number of symbols. Seminiare de Mathematique Superieures 21, Les Presses de l'Universite de Montreal, Montreal, 1967.
[217] L., Henkin. Completeness in the theory of types. Journal of Symbolic Logic, 15:81-91, 1950.
[218] L., Henkin, J.D., Monk, and A., Tarski. Cylindric Algebras. Part 1. Part 2.North-Holland Publishing Company, Amsterdam, 1971, 1985.
[219] M., Hennessy and R., Milner. Algebraic laws for indeterminism and concurrency. Journal of the ACM, 32:137-162, 1985.
[220] J.G., Henriksen, J., Jensen, M., Jørgensen, N., Klarlund, R., Paige, T., Rauhe, and A., Sandhol. MONA: Monadic second-order logic in practice. In Proceedings TACAS'95, LNCS, pages 479-506. Springer, 1995.
[221] M., Henzinger, T., Henzinger, and P., Kopke. Computing simulations on finite and infinite graphs. In Proceedings 20th Symposium on Foundations of Computer Science, pages 453-462, 1995.
[222] B., Herwig. Extending partial isomorphisms on finite structures. Combinatorica, 15:365-371, 1995.
[223] J., Hindley and J., Seldin. Introduction to Combinators and the Lambda Calculus. London Mathematical Society Student Texts vol. 1. Cambridge University Press, 1986.
[224] J., Hintikka. Knowledge and Belief.Cornell University Press, 1962.
[225] R., Hirsch and I.M., Hodkinson. Step by step — building representations in algebraic logic. Journal of Symbolic Logic, 62:225-279, 1997.
[226] R., Hirsch and I.M., Hodkinson. Relation Algebras by Games. Number 147 in Studies in Logic. Elsevier, Amsterdam, 2002.
[227] R., Hirsch, I.M., Hodkinson, M., Marx, Sz., Mikulás, and M., Reynolds. Mosaics and step-by-step. Remarks on ‘A modal logic of relations’. In Orøowska [349], pages 158-167.
[228] W., Hodges. Elementary predicate logic. In Gabbay and Guenthner [153], pages 1-131.
[229] W., Hodges. Model Theory.Cambridge University Press, 1993.
[230] I.M., Hodkinson. Atom structures of cylindric algebras and relation algebras. Annals of Pure and Applied Logic, 89:117-148, 1997.
[231] I.M., Hodkinson. Loosely guarded fragment has finite model property. Studia Logica, 70:205-240, 2002.
[232] M., Hollenberg. Safety for bisimulation in general modal logic. In Proceedings 10th Amsterdam Colloquium, 1996.
[233] M.J., Hollenberg. Hennessy-Milner classes and process algebra. In Ponse et al. [360].
[234] G., Hughes andM.J., Cresswell. ACompanionto Modal Logic.Methuen, 1984.
[235] G., Hughes and M.J., Cresswell. A New Introduction to Modal Logic.Routledge, 1996.
[236] I., Humberstone. Inaccessible worlds. Notre Dame Journal of Formal Logic, 24:346-352, 1983.
[237] U., Hustadt. Resolution-Based Decision Procedures for Subclasses of First-Order Logic. PhD thesis, Universitaït des Saarlandes, Saarbruïcken, Germany, 1999.
[238] U., Hustadt and R., A. Schmidt. Issues of decidability for description logics in the framework of resolution. In R., Caferra and G., Salzer, editors, First-order Theorem Proving—FTP'98, pages 152-161. Technical Report E1852-GS-981, Technische Universitaït Wien, 1998.
[239] M.R.A., Huth and M.D., Ryan. Logic in Computer Science.Cambridge University Press, 2000.
[240] N., Immerman and D., Kozen. Definability with bounded number of bound variables. In Proceedings 4th IEEE Symposium on Logic in Computer Science LICS'87.Computer Society Press, 1987.
[241] B., Jacobs. The temporal logic of coalgebras via Galois algebras. Mathematical Structure in Computer Science, 12:875-903, 2002.
[242] B., Jacobs and J., Rutten. A tutorial on (co)algebras and (co)induction. Bulletin of the European Association for Theoretical Computer Science, 62:222-259, 1997.
[243] D., Janin and I., Walukiewicz. On the expressive completeness of the propositional μ-calculus w.r.t. monadic second-order logic. In Proceedings CONCUR '96, 1996.
[244] R., Jansana. Una Introducción a la Lógica Modal.Editorial Tecnos, Madrid, 1990.
[245] G., Japaridze and D., de Jongh. The logic of provability. In Buss [83], pages 475-546.
[246] He, Jifeng. Process simulation and refinement. Formal Aspects of Computing, 1:229-241, 1989.
[247] P., Jipsen. Discriminator varieties of boolean algebras with residuated operators. In C., Rauszer, editor, Algebraic Methods in Logic and Computer Science, volume 28 of Banach Center Publications, pages 239-252. Polish Academy of Sciences, 1993.
[248] P.J., Johnstone. Stone Spaces, volume 3 of Cambridge Studies in Advanced Mathematics.Cambridge University Press, Cambridge, 1982.
[249] D., de Jongh and A., Troelstra. On the connection between partially ordered sets and some pseudo-booleanalgebras. Indigationes Mathematicae, 28:317-329, 1966.
[250] D., de Jongh and F., Veltman. Intensional logic, 1986. Course notes.
[251] B., Jónsson. Varieties of relation algebras. Algebra Universalis, 15:273-298, 1982.
[252] B., Jonsson. The theory of binary relations. In Andreka et al. [8], pages 241-292.
[253] B., Jónsson. A survey of boolean algebras with operators. In Algebras and Orders, pages 239-286. Kluwer Academic Publishers, 1993.
[254] B., Jónsson. On the canonicity of Sahlqvist identities. Studia Logica, 4:473-491, 1994.
[255] B., Jonsson and A., Tarski. Boolean algebras with operators, Part I. American Journal of Mathematics, 73:891-939, 1952.
[256] B., Jónsson and A., Tarski. Boolean algebras with operators, Part II. American Journal of Mathematics, 74:127-162, 1952.
[257] G., Kalinowski. La Logique Deductive.Presses Universitaires de France, 1996.
[258] H., Kamp. Tense Logic and the Theory of Linear Order. PhD thesis, University of California, Los Angeles, 1968.
[259] H., Kamp. Formal properties of ‘Now’. Theoria, 37:227-273, 1971.
[260] M., Kaneko and T., Nagashima. Game logic and its applications. Studia Logica, 57:325-354, 1998.
[261] S., Kanger. The morning star paradox. Theoria, pages 1-11, 1957.
[262] S., Kanger. Provability in Logic.Almqvist & Wiksell, 1957.
[263] S., Kanger, editor. Proceedings of the Third Scandinavian Logic Symposium. Uppsala 1973.North-Holland Publishing Company, 1975.
[264] D., Kaplan. Dthat. In P., Cole, editor, Syntax and Semantics Volume 9, pages 221-253. Academic Press, 1978.
[265] D., Kaplan. On the logic of demonstratives. Journal of Philosophical Logic, 8:81-98, 1978.
[266] R., Kasper and W., Rounds. The logic of unification in grammar. Linguistics and Philosophy, 13:33-58, 1990.
[267] H.J., Keisler. Model Theory for Infinitary Logic.North-Holland Publishing Company, 1971.
[268] H., Kirchner and C., Ringeissen, editors. Frontiers of Combining Systems 3.Springer, 2000.
[269] B., Konikowska. A formal language for reasoning about indiscernibility. Bulletin of the Polish Academy of Sciences, 35:239-249, 1987.
[270] B., Konikowska. A logic for reasoning about relative similarity. Studia Logica, 58:185-226, 1997.
[271] R., Koymans. Specifying Message Passing and Time-Critical Systems with Temporal Logic, volume 651 of LNCS. Springer, 1992.
[272] D., Kozen. A completeness theorem for Kleene algebras and the algebra of regular events. In Proceedings 6th IEEE Symposium on Logic in Computer Science LICS'91, pages 214-225, 1991.
[273] D., Kozen and R., Parikh. An elementary proof of the completeness of PDL. Theoretical Computer Science, 14:113-118, 1981.
[274] D., Kozen and J., Tiuryn. Logics of programs. Invan Leeuwen [293], pages 789-840.
[275] M., Kracht. Even more about the lattice of tense logics. Archive of Mathematical Logic, 31:243-357, 1992.
[276] M., Kracht. How completeness and correspondence theory got married. In de Rijke [379], pages 175-214.
[277] M., Kracht. Splittings and the finite model property. Journal of Symbolic Logic, 58:139-157, 1993.
[278] M., Kracht. Lattices of modal logics and their groups of automorphisms. Journal of Pure and Applied Logic, 100:99-139, 1999.
[279] M., Kracht. Tools and Techniques in Modal Logic. Number 142 in Studies in Logic. Elsevier, Amsterdam, 1999.
[280] M., Kracht. Logic and syntax — a personal perspective. In Zakharyaschev et al. [469], pages 355-384.
[281] M., Kracht, M., de Rijke, H., Wansing, and M., Zakharyaschev, editors. Advances in Modal Logic, Volume 1, volume 87 of Lecture Notes.CSLI Publications, 1998.
[282] M., Kracht and F., Wolter. Simulation and transfer results in modal logic: A survey. Studia Logica, 59:149-177, 1997.
[283] S., Kripke. A completeness theorem in modal logic. Journal of Symbolic Logic, 24:1-14, 1959.
[284] S., Kripke. Semantic analysis of modal logic I, normal propositional calculi. Zeitschrift für mathemathische Logik und Grundlagen der Mathematik, 9:67-96, 1963.
[285] S., Kripke. Semantical considerations on modal logic. Acta Philosophica Fennica, 16:83-94, 1963.
[286] S., Kuhn. Quantifiers as diamonds. Studia Logica, 39:173-195, 1980.
[287] N., Kurtonina. Frames and Labels. PhD thesis, OTS, Utrecht University, 1996.
[288] N., Kurtonina and M., de Rijke. Bisimulations for temporal logic. Journal of Logic, Language and Information, 6:403-425, 1997.
[289] N., Kurtonina and M., de Rijke. Expressiveness of concept expressions in first-order description logics. Artificial Intelligence, 107:303-333, 1999.
[290] A., Kurz. A co-variety-theorem for modal logic. In Zakharyaschev et al. [469].
[291] A.H., Lachlan. A note on Thomason's refined structures for tense logics. Theoria, 40:117-120, 1970.
[292] R., Ladner. The computational complexity of provability in systems of modal logic. SIAM Journal on Computing, 6:467-480, 1977.
[293] J., van Leeuwen, editor. Handbook of Theoretical Computer Science, volume B: Formal Models and Semantics. Elsevier, 1990.
[294] A., Leitsch, C., Fermuïller, and T., Tammet. Resolution decision procedures. In Robinson and Voronkov [388].
[295] E.J., Lemmon. Algebraic semantics for modal logics, Parts I & II. Journal of Symbolic Logic, pages 46-65 & 191-218, 1966.
[296] E.J., Lemmon and D.S., Scott. The ‘Lemmon Notes’: An Introduction to Modal Logic.Blackwell, 1977.
[297] O., Lemon and I., Pratt. On the incompleteness of modal logics of space: advancing complete modal logics of space. In Kracht et al. [281].
[298] W., Lenzen. Glauben, Wissen und Wahrscheinlichkeit. Systeme der Epistemischen Logik.Springer, 1980.
[299] C.I., Lewis. A Survey of Symbolic Logic.University of California Press, 1918.
[300] C.I., Lewis and C.H., Langford. Symbolic Logic.Dover, 1932.
[301] H.R., Lewis and C.H., Papadimitriou. Elements of the Theory of Computation.Prentice-Hall, 1981.
[302] P., Lindstroïm. On extensions of elementary logic. Theoria, 35:1-11, 1969.
[303] C., Lutz and U., Sattler. The complexity of reasoning with boolean Modal Logics. In Workshop Proceedings AiML-2000, pages 175-184. Institut fuïr Informatik, Universitaït Leipzig, 2000.
[304] R.C., Lyndon. The representation of relation algebras. Annals of Mathematics, 51:707-729, 1950.
[305] H., MacColl. Symbolic Logic and its Applications.Longmans, Green, and Co., London, 1906.
[306] R., Maddux. Introductory course on relation algebras, finite-dimensional cylindric algebras, and their interconnections. In Andréka et al. [8], pages 361-392.
[307] D.C., Makinson. On some completeness theorems in modal logic. Zeitschrift für mathemathische Logik und Grndlagen der Mathematik, 12:379-84, 1966.
[308] D.C., Makinson. A generalization of the concept of relational model. Theoria, pages 331-335, 1970.
[309] D.C., Makinson. Some embedding theorems for modal logic. Notre Dame Journal of Formal Logic, pages 252-254, 1971.
[310] L., Maksimova. Interpolation theorems in modal logic and amalgable varieties of topological boolean algebras. Algebra and Logic, 18:348-370, 1979.
[311] L.L., Maksimova. Pretabular extensions of Lewis S4. Algebra and Logic, 14:16-33, 1975.
[312] Z., Manna and A., Pnueli. The Temporal Logic of Reactive and Concurrent Systems. Vol. 1 Specification.Springer, 1992.
[313] Z., Manna and A., Pnueli. Temporal Verification of Reactive Systems: Safety.Springer, 1995.
[314] M., Manzano. Extensions of First Order Logic, volume 19 of Tracts in Theoretical Computer Science.Cambridge University Press, 1996.
[315] R., Martin. Pour une Logique du Sens.Presses Universitaires de France Paris, 1983.
[316] M., Marx. Complexity of modal logics of relations. Technical Report ML–97–02, Institute for Language, Logic and Computation, May 1997.
[317] M., Marx. Tolerance logic. Journal of Logic, Language and Information, 10:353-373, 2001.
[318] M., Marx, L., Poolos, and M., Masuch, editors. Arrow Logic and Multi-Modal Logic. Studies in Logic, Language and Information. CSLI Publications, 1996.
[319] M., Marx, S., Schlobach, and Sz., Mikulas. Labelled deduction for the guarded fragment. In D., Basin et al., editor, Labelled Deduction, Applied Logic Series, pages 193-214. Kluwer Academic Publishers, 2000.
[320] M., Marx and Y., Venema. Multidimensional Modal Logic, volume 4 of Applied Logic Series.Kluwer Academic Publishers, 1997.
[321] R., McKenzie, G., McNulty, and W., Taylor. Algebras, Lattices, Varieties, volume I. Wadsworth & Brooks/Cole, 1987.
[322] J.C.C., McKinsey. A solution to the decision problems for the Lewis systems S2 and S4 with an application to topology. Journal of Symbolic Logic, 6:117-134, 1941.
[323] J.C.C., McKinsey. On the syntactical construction of systems of Modal Logic. Journal of Symbolic Logic, 10:83-96, 1945.
[324] J.C.C., McKinsey and A., Tarski. The algebra of topology. Annals of Mathematics, pages 141-191, 1944.
[325] J.C.C., McKinsey and A., Tarski. Some theorems about the sentential calculi of Lewis and Heyting. Journal of Symbolic Logic, 13:1-15, 1948.
[326] K., McMillan. Symbolic Model Checking.Kluwer Academic Publishers, 1993.
[327] C., Meredith and A., Prior. Interpretations of different modal logics in the ‘property calculus’, 1956. Mimeographed manuscript. Philosophy Department, Canterbury University College.
[328] J.J.-Ch., Meyer and W., van der Hoek. Epistemic Logic for AI and Computer Science.Cambridge University Press, 1995.
[329] Sz., Mikulas. Taming Logics. PhD thesis, Institute for Language, Logic and Computation, University of Amsterdam, 1995. ILLC Dissertation Series 95-12.
[330] G., Mints. A Short Introduction to Modal Logic, volume 30 of Lecture Notes.CSLI Publications, 1992.
[331] J.L., Moens. Forcing et Sémantique de Kripke-Joyal.Cabay, 1982.
[332] G., Moisil. Essais sur les Logiques non Chrysipiennes. Editions de l'Academie de la Republique Socialiste de Roumanie, 1972.
[333] F., Moller and A., Rabinovich. On the expressive power of CTL *.In Proceedings 14th IEEE Symposium on Logic in Computer Science LICS'99, 1999.
[334] J.D., Monk. On representable relation algebras. Michigan Mathematical Journal, 11:207-210, 1964.
[335] R., Montague. Logical necessity, physical necessity, ethics, and quantifiers. Inquiry, 4:259-269, 1960.
[336] R., Montague. Universal grammar. Theoria, 36:373-398, 1970.
[337] M., Mortimer. On languages with two variables. Zeitschrift für mathemathische Logikund Grundlagen der Mathematik, 21:135-140, 1975.
[338] D.E., Muller, A., Saoudi, and P.E., Schupp. Weak alternating automata give a simple explanation of why most temporal and dynamic logics are decidable in exponential time. In Proceedings 3rd IEEE Symposium on Logic in Computer Science LICS'88, pages 422-427, 1988.
[339] N., Murray, editor. Conference on Tableaux Calculi and Related Methods (TABLEAUX), Saratoga Springs, USA, volume 1617 of LNAI.Springer, 1999.
[340] I., Németi. Free algebras and decidability in algebraic logic, 1986. Thesis for D.Sc. (a post-habilitation degree) with Math. Inst. Hungar. Ac. Sci. Budapest. In Hungarian, the English version is [342].
[341] I., Németi. Algebraizations of quantifier logics: an overview. Studia Logica, 50:485-569, 1991.
[342] I., Németi. Decidability of weakened versions of first-order logic. In Csirmazet al. [102], pages 177-242.
[343] P., Odifreddi. Classical Recursion Theory.North-Holland Publishing Company, 1989.
[344] H.J., Ohlbach, D.M., Gabbay, and D., Plaisted. Killer transformations. In Wansing [454].
[345] H.J., Ohlbach, A., Nonnengart, M., de Rijke, and D.M., Gabbay. Encoding non-classical logics in classical logic. In Robinson and Voronkov [388].
[346] H.J., Ohlbach and R.A., Schmidt. Functional translation and second-order frame properties of Modal Logics. Journal of Logic and Computation, 7:581-603, 1997.
[347] P., Øhrstrom and P, Hasle. Temporal Logic.Kluwer Academic Publishers, 1995.
[348] H., Ono andA., Nakamura. On the size of refutation Kripke models forsome linear modal and tense logics. Studia Logica, 39:325-333, 1980.
[349] E., Orøowska, editor. Logic at Work: Essays Dedicated to the Memory of Elena Rasiowa. Studies in Fuzziness and Soft Computing. Springer, 1999.
[350] M.J., Osborne and A., Rubinstein. A Course in Game Theory.The MIT Press, 1994.
[351] M., Otto. Bounded Variable Logics and Counting—A Study in Finite Models, volume 9 of Lecture Notes in Logic.Springer, 1997.
[352] C.H., Papadimitriou. Computational Complexity.Addison-Wesley, 1994.
[353] R., Parikh. The completeness of propositional dynamic logic. In Mathematical Foundations of Computer Science 1978, volume 51 of LNCS, pages 403-415. Springer, 1978.
[354] D., Park. Concurrency and automata on infinite sequences. In Proceedings 5th GI Conference, pages 167-183. Springer, 1981.
[355] W.T., Parry. The postulates for strict implication. Mind, 43:78-80, 1934.
[356] S., Passy and T., Tinchev. PDL with data constants. Information Processing Letters, 20:35-41, 1985.
[357] S., Passy and T., Tinchev. Quantifiers in combinatory PDL: completeness, definability, incompleteness. In Fundamentals of Computation Theory FCT 85, volume 199 of LNCS, pages 512-519. Springer, 1985.
[358] S., Passy and T., Tinchev. An essay in combinatory dynamic logic. Information and Computation, 93:263-332, 1991.
[359] A., Pnueli. The temporal logic of programs. In Proc. 18th Symp. Foundations of Computer Science, pages 46-57, 1977.
[360] A., Ponse, M., de Rijke, and Y., Venema, editors. Modal Logic and Process Algebra: ABisimulation Perspective, volume 53 of Lecture Notes.CSLI Publications, 1995.
[361] S., Popkorn. First Stepsin Modal Logic.Cambridge University Press, 1992.
[362] V.R., Pratt. Semantical considerations on Floyd-Hoare logic. In Proc. 17th IEEE Symposium on Computer Science, pages 109-121, 1976.
[363] V.R., Pratt. Models of program logics. In Proc. 20th IEEE Symp. Foundations of Computer Science, pages 115-222, 1979.
[364] A.N., Prior. Time and Modality.Oxford University Press, 1957.
[365] A.N., Prior. Past, Present and Future.Oxford University Press, 1967.
[366] A.N., Prior. Papers on Time and Tense.Oxford University Press, Newedition, 2003. Edited by Hasle, Øhrstrom, Braüner, and Copeland.
[367] A.N., Prior and K., Fine. Worlds, Times and Selves.University of Massachusetts Press, 1977.
[368] M.O., Rabin. Decidability of second-order theories and automata on infinite trees. Transactions of the American Mathematical Society, 141:1-35, 1969.
[369] S., Rahman. Hugh MacColl: Eine bibliographische Erschließung seiner Hauptwerke und Notizen zu ihrer Rezeptionsgeschichte. History and Philosophy of Logic, 18:165-183, 1997.
[370] H., Rasiowa and R., Sikorski. The Mathematics of Metamathematics.Polish Scientific Publishers, 1963.
[371] H., Rasiowa and R., Sikorski. An Algebraic Approach to Non-Classical Logics.North Holland, 1974.
[372] W., Rautenberg. Der Verband der normalen verzweigten Modallogiken. Mathematische Zeitschrift, 156:123-140, 1977.
[373] W., Rautenberg. Klassische und nichtklassische Aussagenlogik.Vieweg & Sohn, 1979.
[374] W., Rautenberg. Splitting lattices of logics. Archiv für Mathematische Logik, 20:155-159, 1980.
[375] W., Rautenberg, editor. Non-Classical Logics. Ω-biblio graphy of Mathematical Logic, Volume II.Springer, 1987.
[376] M., Reape. A feature value logic. In C., Rupp, M., Rosner, and R., Johnson, editors, Constraints, Language and Computation, Synthese Language Library, pages 77-110. Academic Press, 1994.
[377] M., Reynolds. A decidable logic of parallelism. Notre Dame Journal of Formal Logic, 38:419-436, 1997.
[378] M., de Rijke. The Modal Logic of inequality. Journal of Symbolic Logic, 57:566-584, 1992.
[379] M., de Rijke, editor. Diamonds and Defaults. Synthese Library vol. 229. Kluwer Academic Publishers, 1993.
[380] M de., Rijke. Extending Modal Logic. PhD thesis, ILLC, University of Amsterdam, 1993.
[381] M., de Rijke. A Lindström theorem for modal logic. In Ponse et al. [360], pages 217-230.
[382] M., de Rijke. The logic of Peirce algebras. Journal of Logic, Language and Information, 4:227-250, 1995.
[383] M., de Rijke, editor. Advances in Intensional Logic. Number 7 in Applied Logic Series. Kluwer Academic Publishers, 1997.
[384] M., de Rijke. A system of dynamic modal logic. Journal of Philosophical Logic, 27:109-142, 1998.
[385] M., de Rijke. A modal characterization of Peirce algebras. In Orøowska [349], pages 109-123.
[386] M., de Rijke and H., Sturm. Global definability in basic modal logic. In H., Wansing, editor, Essays on Non-Classical Logic.King's College University Press, 2000.
[387] M., de Rijke and Y., Venema. Sahlqvist's theorem for Boolean algebras with operators. Studia Logica, 95:61-78, 1995.
[388] A., Robinson and A., Voronkov, editors. Handbook of Automated Reasoning.Elsevier Science Publishers, to appear.
[389] R.M., Robinson. Undecidability and nonperiodicity for tilings of the plane. Inventiones Mathematicae, 12:177-209, 1971.
[390] P.H., Rodenburg. Intuitionistic Correspondence Theory. PhD thesis, University of Amsterdam, 1986.
[391] H., Rogers. Theory of Recursive Functions and Effective Computability.McGraw Hill, 1967.
[392] E., Rosen. Modal logic over finite structures. Journal of Logic, Language and Information, 6:427-439, 1997.
[393] M., Rößiger. Coalgebras and modal logic. Electronic Notes in Computer Science, 33:299-320, 2000.
[394] W.C., Rounds. Feature logics. In van Benthem and ter Meulen [51].
[395] G., Rozenberg and A., Salomaa, editors. Handbook of Formal Languages, volume 3: Beyond Words. Springer, 1997.
[396] H., Sahlqvist. Completeness and correspondence in the first and second order semantics formodal logic. In Kanger [263], pages 110-143.
[397] I., Sain. Is ‘some-other-time’ sometimes better than ‘sometime’ for proving partial correctness of programs?Studia Logica, 47:279-301, 1988.
[398] G., Sambin and V., Vaccaro. Topology and duality in modal logic. Annals of Pure and Applied Logic, 37:249-296, 1988.
[399] G., Sambin and V., Vaccaro. A topological proof of Sahlqvist's theorem. Journal of Symbolic Logic, 54:992-999, 1989.
[400] K., Schild. A correspondence theory for terminological logics. In Proc. 12th IJCAI, pages 466-471, 1990.
[401] D., Scott. A decision method for validity of sentences in two variables. Journal of Symbolic Logic, 27:377, 1962.
[402] K., Segerberg. Decidability of S4.1. Theoria, 34:7-20, 1968.
[403] K., Segerberg. Modal logics with linear alternative relations. Theoria, 36:301-322, 1970.
[404] K., Segerberg. An Essay in Classical Modal Logic. Filosofiska Studier 13. University of Uppsala, 1971.
[405] K., Segerberg. Two-dimensional modal logics. Journal of Philosophical Logic, 2:77-96, 1973.
[406] K., Segerberg. ‘Somewhere else’ and ‘Some other time’. In Wright and Wrong, pages 61-64, 1976.
[407] K., Segerberg. A completeness theorem in the modal logic of programs. Notices of the American Mathematical Society, 24:A-552, 1977.
[408] K., Segerberg. Anote On the logic of elsewhere. Theoria, 46:183-187, 1980.
[409] K., Segerberg. A completeness theorem in the modal logic of programs. In T., Traczyk, editor, Universal Algebra and Applications, volume 9 of Banach Centre Publications, pages 31-46. PWN-Polish Scientific Publishers, 1982.
[410] K., Segerberg. Proposal for a theory of belief revision along the lines of Lindström and Rabinowicz. Fundamenta Informaticae, 32:183-191, 1997.
[411] J., Seligman. A cut-free sequent calculus for elementary situated reasoning. Technical Report HCRC-RP 22, HCRC, Edinburgh, 1991.
[412] J., Seligman. The logic of correct description. Inde Rijke [383], pages 107-135.
[413] V., Shehtman. Two-dimensional modal logics. Mathematical Notices of USSR Academy of Sciences, 23:417-424, 1978.
[414] H., Simmons. The monotonous elimination of predicate variables. Journal of Logic and Computation, 4, 1994.
[415] A.P., Sistla and E.M., Clarke. The complexity of linear temporal logic. Journal of the ACM, 32:733-749, 1985.
[416] C., Smoryński. Self-Reference and Modal Logic.Springer, New York, 1985.
[417] R., Smullyan and M, Fitting. Set Theory and the Continuum Problem.Clarendon Press, 1996.
[418] R.M., Smullyan and M., Fitting. Set Theory and the Continuum Problem.Oxford University Press, 1997.
[419] E., Spaan. Complexity of Modal Logics. PhD thesis, ILLC, University of Amsterdam, 1993.
[420] E., Spaan. The complexity of propositional tense logics. In de Rijke [379], pages 239-252.
[421] B., Stalnaker. Assertion. In P., Cole, editor, Syntax and Semantics Volume 9, pages 316-322. Academic Press, 1978.
[422] J., Stavi. Functional completeness over the rationals. Unpublished manuscript. Bar-Ilan University, Ramat-Gan, Israel, 1979.
[423] V., Stebletsova. Algebras, Relations and Geometries. PhD thesis, Zeno (The Leiden Utrecht Research Institute of Philosophy), Utrecht, 2000.
[424] C., Stirling. Modal and temporal logics. In Abramsky et al. [1], pages 477-563.
[425] M.H., Stone. The theory of representations for boolean algebras. Transactions of the American Mathematical Society, 40:37-111, 1936.
[426] H., Sturm. Modale Fragmente von Lωω und Lω1ω. PhD thesis, CIS, University of Munich, 1997.
[427] A., Tarski. On the calculus of relations. Journal of Symbolic Logic, 6:73-89, 1941.
[428] A., Tarski and S., Givant. A Formalization of Set Theory without Variables, volume 41. AMS Colloquium Publications, Providence, Rhode Island, 1987.
[429] J.W., Thatcher and J.B., Wright. Generalized finite automata theory with an application to a decision problem of second-order logic. Mathematical Systems Theory, 2:57-81, 1968.
[430] A., Thayse, editor. From Modal Logic to Deductive Databases.Wiley, 1989.
[431] W., Thomas. Automata on infinite objects. In van Leeuwen [293], pages 135-191.
[432] W., Thomas. Languages, automata and logic. In Rozenberg and Salomaa [395], pages 389-456.
[433] S.K., Thomason. Semantic analysis of tense logics. Journal of Symbolic Logic, 37:150-158, 1972.
[434] S.K., Thomason. An in completeness theorem in Modal Logic. Theoria, 40:150-158, 1974.
[435] S.K., Thomason. Categories offrames for Modal Logics. Journal of Symbolic Logic, 40:439-442, 1975.
[436] S.K., Thomason. Reduction of second-order logic to modal logic. Zeitschrift für mathemathische Logik und Grundlagen der Mathematik, 21:107-114, 1975.
[437] S.K., Thomason. Reduction of tense logic to Modal Logic II. Theoria, 41:154-169, 1975.
[438] D., Toman and D., Niwhiski. First-order queries over temporal databases inexpressible in temporal logic. Manuscript, 1997.
[439] M., Tzakova. Tableaux calculi for hybrid logics. In Murray [339], pages 278-292.
[440] A., Urquhart. Decidability and the finite model property. Journal of Philosophical Logic, 10:367-370, 1981.
[441] M.Y., Vardi. Why is modal logic so robustly decidable? In DIMACS Series in Discrete Mathematics and Theoretical Computer Science 31, pages 149-184. AMS, 1997.
[442] M.Y., Vardi and P., Wolper. Automata-theoretic techniques for modal logics of programs. Journal of Computer and System Sciences, 32:183-221, 1986.
[443] Y., Venema. Completeness via completeness: Since and Until. In de Rijke [379], pages 279-286.
[444] Y., Venema. Derivation rules as anti-axioms in modal logic. Journal of Symbolic Logic, 58:1003-1034, 1993.
[445] Y., Venema. Cylindric modal logic. Journal of Symbolic Logic, 60:591-623, 1995.
[446] Y., Venema. Atom structures and Sahlqvist equations. Algebra Universalis, 38:185-199, 1997.
[447] Y., Venema. Modal definability, purely modal. In J., Gerbrandy, M., Marx, M., de Rijke, and Y., Venema, editors, JFAK. Essays Dedicatedto Johan van Benthem on the Occasion of his 50th Birthday.Vossiuspers AUP, Amsterdam, 1999.
[448] Y., Venema. Points, lines and diamonds: a two-sorted modal logic for projective geometry. Journal of Logic and Computation, 9:601-621, 1999.
[449] Y., Venema. Canonical pseudo-correspondence. In Zakharyaschev et al. [469], pages 439-448.
[450] A., Visser. Modal logic and bisimulation. Tutorial for the workshop ‘Three days of bisimulation’, Amsterdam, 1994.
[451] A., Visser. An overview of interpretability logic. In Kracht et al. [281], pages 307-359.
[452] H., Vlach. ‘Now’ and ‘Then’. PhD thesis, University of California, Los Angeles, 1973.
[453] H., Wang. Proving theorems by pattern recognition II. Bell Systs. Tech. J, 40:1-41, 1961.
[454] H., Wansing, editor. Proof Theory of Modal Logic.Kluwer Academic Publishers, 1996.
[455] H., Wansing. Displaying Modal Logic.Kluwer Academic Publishers, 1998.
[456] P., Wolper. Temporal logic can be more expressive. Information and Control, 56:72-93, 1983.
[457] F., Wolter. Tense logic without tense operators. Mathematical Logic Quarterly, 42:145-171, 1996.
[458] F., Wolter. Completeness and decidability of tense logics closely related to logics containing K 4. Journal of Symbolic Logic, 62:131-158, 1997.
[459] F., Wolter. The structure of lattices of subframe logics. Annals of Pure and Applied Logic, 86:47-100, 1997.
[460] F., Wolter. The product of converse PDL and polymodal K. Journal of Logic and Computation, 10:223-251, 2000.
[461] F., Wolter, H., Wansing, M., de Rijke, and M., Zakharyaschev, editors. Advances in Modal Logic, Volume 3.World Scientific, 2002.
[462] F., Wolter and M., Zakharyaschev. Satisfiability problem in description logics with modal operators. In Principles of Knowledge Representation and Reasoning: Proc. Sixth International Conference (KR'98), pages 512-523. Morgan Kaufmann, 1998.
[463] M., Wooldridge and N., Jennings. Intelligent agents: theory and practice. Knowledge Engineering Review, 10:115-152, 1995.
[464] G.H., von Wright. An Essay in Modal Logic.North-Holland Publishing Company, 1951.
[465] G.H., von Wright. A modal logic of place. In E., Sosa, editor, The Philosophy of Nicholas Rescher, pages 65-73. Publications of the Groupin Logic and Methodology of Science of Real Finland, vol. 3, 1979.
[466] M., Xu. On some U,S-tense logics. Journal of Philosophical Logic, 17:181-202, 1988.
[467] M., Zakharyaschev. Canonical formulas for modal and superintuitionistic logics: a short outline. In de Rijke [383], pages 195-248.
[468] M., Zakharyaschev and A., Alekseev. All finitely axiomatizable normal extensions of K4.3 are decidable. Mathematical Logic Quaterly, 41:15-23, 1995.
[469] M., Zakharyaschev, K., Segerberg, M., de Rijke, and H., Wansing, editors. Advances in Modal Logic, Volume 2. CSLI Publications, 2000.
[470] M.V., Zakharyaschev. On intermediate logics. Soviet Mathematics Doklady, 27:274-277, 1983.
[471] M.V., Zakharyaschev. Normal modal logics containing S4. Soviet Mathematics Doklady, 28:252-255, 1984.
[472] M.V., Zakharyaschev. Syntax and semantics of modal logics containing S4. Algebra and Logic, 27:408-428, 1988.
[473] M.V., Zakharyaschev. Canonical formulas for K4. Part I: basic results. Journal of Symbolic Logic, 57:1377-1402, 1992.
[474] J., Zeman. Modal Logic: The Lewis Modal Systems.Oxford University Press, 1973.

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Book summary page views

Total views: 0 *
Loading metrics...

* Views captured on Cambridge Core between #date#. This data will be updated every 24 hours.

Usage data cannot currently be displayed.