Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-27T12:50:54.494Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  05 January 2012

Avinoam Mann
Affiliation:
Hebrew University of Jerusalem
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
How Groups Grow , pp. 187 - 194
Publisher: Cambridge University Press
Print publication year: 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[Ad 75]. Adian, S.I., The Burnside Problem and Identities in Groups, Nauka, 1975 (Russian; English translation, Springer, 1979).
[Al 72]. Aleshin, S.V., Finite automata and the Burnside problem for periodic groups, Mat. Zametki 11 (1972), 319–328 (Russian); English translation in Math. Notes 11 (1972).Google Scholar
[Al 91]. Alonso, J.M., Growth functions of amalgams. In Arboreal Group Theory, Springer, New York 1991, 1–34.
[Al 02]. Alperin, R.C., Uniform growth of polycyclic groups, Geo. Ded. 92 (2002), 105–113.Google Scholar
[AO 96]. Arzhantseva, G.N. and Olshanskii, A.U., Generality of the class of groups in which subgroups with a lesser number of generators are free, Mat. Zametki. 59 (1996), 489–496, 638 (In Russian; English translation in Math. Notes59 (1996), 350–355).Google Scholar
[BS 92]. Babai, L. and Szegedy, M., Local expansion of symmetric graphs, Combinatorics, Probability and Computing 1 (1992), 1–11.Google Scholar
[BM 07]. Bajorska, B. and Macedonska, O., A note on groups of intermediate growth, Comm. Alg. 35(12) (2007), 4112–4115.Google Scholar
[Ba 98]. Bartholdi, L., The growth of Grigorchuk's torsion group, Int. Math. Research Notices 20 (1998), 1049–1054.Google Scholar
[Ba 01]. Bartholdi, L., Lower bounds on the growth of a group acting on the binary rooted tree, Int. J. Alg. Comp. 11 (2001), 73–88.Google Scholar
[Ba 03]. Bartholdi, L., A Wilson group of non-uniformly exponential growth, C. R. Math. Acad. Sci. Paris 336 (2003), 549–554.Google Scholar
[BE 10]. Bartholdi, L. and Erschler, A., Growth of permutational extensions, arXiv preprint [math.Gr] 1011.5266, November 2010 (18 pages).
[BV 05]. Bartholdi, L. and Virag, B., Amenability via random walks, Duke Math. J. 130 (2005), 39–56.Google Scholar
[Bs 72]. Bass, H., The degree of polynomial growth of finitely generated nilpotent groups, Proc. London Math. Soc. 25 (1972), 603–614.Google Scholar
[Bu 01]. Baumagin, I., On small cancellation k-generator groups with (k – 1)-generator subgroups all free, Internat. J. Alg. Comp. 11 (2001), 507–524.Google Scholar
[Be 83] Benson, M., Growth series of finite extensions of Zn are rational, Inv. Math. 73 (1983), 251–269.Google Scholar
[Be 87]. Benson, M., On the rational growth of virtually nilpotent groups. In Combinatorial Group Theory and Topology, 185–196, Ann. Math. Studies 111, Princeton 1987.Google Scholar
[Bi 07]. Bieri, R., Deficiency and the geometric invariants of a group, J. Pure App. Alg. 208 (2007), 951–959.Google Scholar
[BS 78]. Bieri, R. and Strebel, R., Almost finitely presented groups, Comm. Math. Helvetici. 53 (1978), 258–278.Google Scholar
[Br 07]. Breuillard, E., On uniform exponential growth for solvable groups, Pure Appl. Math. Q. 3 (2007).Google Scholar
[BC 10]. Breuillard, E. and Cornulier, Y., On conjugacy growth for solvable groups, Ill. J. Math. 54 (2010), 389–395.Google Scholar
[BCLM 11]. Breuillard, E., Cornulier, Y., Lubotzky, A., and Meiri, C., On conjugacy growth of linear groups, arXiv preprint [math.Gr]1106.4773 (21 pages).
[BG 08]. Breuillard, E. and Gelander, T., Uniform independence in linear groups, Inv. Math. 173 (2008), 225–263.Google Scholar
[Br 05]. Bridson, M.R., On the growth of groups of automorphisms, Int. J. Alg. Comp. 15 (2005), 869–874.Google Scholar
[Br 09]. Brieussel, J., Amenability and non-uniform growth of some directed automorphism groups of a rooted tree, Math. Z. 263 (2009), 265–293.Google Scholar
[Br 11]. Brieussel, J., Growth behaviors in the range, arXiv preprint [math.GR] 1107.1632.
[Bu 99]. Bucher, M., Croissance de groupes et produits libres avec amalgamation, diploma thesis, Geneva 1999, see http://www.math.kth.se./mickar/ (18 pages).
[Bu 09]. Button, J.O., Uniform exponential growth of semidirect HNN extensions, preprint (January 2010: 22 pages).
[Ch 94a]. Chiswell, I.M., The growth series of a graph product, Bull. London Math. Soc. 26 (1994), 268–272.Google Scholar
[Ch 94b]. Chiswell, I.M., The growth series of HNN extensions, Comm. Alg. 22 (1994), 2969–2981.Google Scholar
[Ch 80]. Chou, C., Elementary amenable groups, Ill. J. Math. 24 (1980), 396–407.Google Scholar
[Co 07]. Collins, M.J., On Jordan's theorem for complex linear groups, J. Group Th. 10 (2007), 411–423.Google Scholar
[Co 08]. Collins, M.J., Modular analogues of Jordan's theorem for finite linear groups, J. Reine Angew. Math. (Crelle's) 624 (2008), 143–171.Google Scholar
[Co 05]. Coornaert, M., Asymptotic growth of conjugacy classes in finitely generated free groups, Int. J. Alg. Comp. 15 (2005), 887–892.Google Scholar
[CK 02]. Coornaert, M. and Knieper, G., Growth of conjugacy classes in Gromov hyperbolic groups, Geo. Func. Ana. 12 (2002), 464–478.Google Scholar
[CK 04]. Coornaert, M. and Knieper, G., An upper bound for the growth of conjugacy classes in torsion-free word hyperbolic groups, Int. J. Alg. Comp. 14 (2004), 395–401.Google Scholar
[CSC 93]. Coulhon, T. and Saloff-Coste, L., Isopérimétrie pour les groupes et les variétés, Rev. Mat. Iberoamericana 9 (1993), 293–314.Google Scholar
[CR 62]. Curtis, C.W. and Reiner, I., Representation Theory of Finite Groups and Associative Algebras, Interscience, New York 1962.
[DG 11]. Dahmani, F. and Guirardel, V., The isomorphism problem for all hyperbolic groups, Geom. Func. Anal. 21 (2011), 223–300.Google Scholar
[DDMS 99]. Dixon, J.D., Sautoy, M.P.F., Mann, A., and Segel, D., Analytic pro-p groups, 2nd edn., Cambridge University Press, Cambridge 1999.
[Dr 02]. Drutu, C., Quasi-isometry invariants and asymptotic cones, Int. J. Alg. Comp. 12 (2002), 99–135.Google Scholar
[Dy 00]. Dyubina, A., Instability of the virtual solvability and the property of being virtually torsion-free for quasi-isometric groups, Int. Math. Res. Notices 21 (2000), 1097–1101.Google Scholar
[ECHLPT 92]. Epstein, D.B.A., Cannon, J.W., Holt, D.F., Levy, S.V.F., Paterson, M.S., and Thurston, W.P., Word Processing in Groups, Jones and Bartlett, Boston 1992.
[Er 04]. Erschler, A., Not residually finite groups of intermediate growth, commensurability and non-geometricity, J. Alg. 272 (2004), 154–172.Google Scholar
[EMO 05]. Eskin, A., Mozes, S., and Oh, H., On uniform exponential growth for linear groups, Inv. Math. 160 (2005), 1–30.Google Scholar
[Fe 95]. Feit, W., The orders of finite linear groups, preprint.
[Fe 97]. Feit, W., Finite linear groups and theorems of Minkowski and Schur, Proc. Amer. Math. Soc. 125 (1997), 1259–1262.Google Scholar
[FP 87]. Floyd, W.J. and Plotnick, S.P., Growth functions on Fuchsian groups and the Euler characteristic, Inv. Math. 88 (1987), 1–29.Google Scholar
[Fr 97]. Friedland, S., The maximal orders of finite subgroups in GLn(ℚ), Proc. Amer. Math. Soc. 125 (1997), 3519–3526.Google Scholar
[FS 08]. Freden, E.M. and Schofield, J., The growth series for Higman: 3, J. Group Th. 11 (2008), 277–298.Google Scholar
[GH 90]. Ghys, E. and Harpe, P. (editors), Sur les Groupes Hyperboliques d'après Mikhael Gromov, Birkhauser, Boston 1990.
[Gi 99]. Gill, C.P., Growth series of stem products of cyclic groups, Int. J. Alg. Comp. 9 (1999), 1–30.Google Scholar
[Go 64]. Golod, E.S., On nil-algebras and finitely approximable p-groups, Izv. Akad. Nauk SSSR, Ser. Mat. 28 (1964), 273–276 (In Russian; English translation in Transl. Amer. Math. Soc. (2)48 (1965), 103–106).Google Scholar
[Gri 80]. Grigorchuk, R.I., Burnside's problem on periodic groups, Fun. Anal. App. 14 (1980), 41–43.Google Scholar
[Gri 84]. Grigorchuk, R.I., Degrees of growth of finitely generated groups, and the theory of invariant means, Izv. Akad. Nauk SSSR Ser. Mat. 48 (1984), 939–985 (In Russian; English translation in Math. USSR Izv.25 (1985), 259–300).Google Scholar
[Gri 85]. Grigorchuk, R.I., On the growth degrees of p-groups and torsionfree groups, Mat. Sb. 126 (1985), 194–214 (In Russian; English translation in Math. USSR Sbornik54 (1986), 185–205.Google Scholar
[Gri 99]. Grigorchuk, R.I., On the system of defining relations and the Schur multiplier of periodic groups defined by finite automata. In Groups St Andrews 1997 in Bath I, Cambridge University Press, Cambridge 1999, 290–317.
[GH 01]. Grigorchuk, R.I. and Harpe, P., One-relator groups of exponential growth have uniformly exponential growth, Mat. Zametki 69 (2001), 628–630 (In Russian; English translation in Math. Notes69 575–577).Google Scholar
[Gro 81]. Gromov, M., Groups of polynomial growth and expanding maps, Publ. Math. IHES 53 (1981), 53–73.Google Scholar
[GS 84]. Grunewald, F. and Segal, D., Reflections on the classification of torsion-free nilpotent groups, Group Theory: Essays for Philip Hall121–158, Academic Press, London 1984.
[GSS 82]. Gruenwald, F., Segal, D., and Sterling, L.S., Nilpotent Groups of Hirsch Length Six, Math. Z. 179 (1982), 219–235.Google Scholar
[GS 10]. Guba, V.S. and Sapir, M.V., On the conjugacy growth functions of groups, Ill. J. Math. 54 (2010), 301–313.Google Scholar
[Ha 54]. Hall, P., Finiteness conditions for soluble groups, Proc. London Math. Soc. (3) 4 (1954), 419–436.Google Scholar
[Hr 00]. Harpe, P., Topics in Geometric Group Theory, University of Chicago Press, Chicago 2000.
[HB 00]. Harpe, P. and Bucher, M., Free products with amalgamation and HNN-extensions of uniformly exponential growth, Mat. Zametki 67 (2000), 811–815 (In Russian; English translation in Math. Notes 67 (2000), 686–689).Google Scholar
[Ho 63]. Horejs, J., Transformations defined by finite automata, Problems in Cybernetics 9 (1963), 23–26 (Russian).Google Scholar
[Hu 11]. Hull, M., Conjugacy growth in polycyclic groups, Arch. Math. 96 (2011), 131–134.Google Scholar
[HO 11]. Hull, M. and Osin, D., Conjugacy growth of finitely generated groups, arXiv preprint [math.GR] 1107.1826.
[Hu 67]. Huppert, B., Endliche Gruppen I, Springer, New York 1967.
[HW 42]. Hurewicz, W. and Wallman, H., Dimension Theory, Princeton University Press, Princeton 1942.
[IS 87]. Imrich, W. and Seifert, N., A bound for groups of linear growth, Arch. Math. (Basel) 48 (1987), 100–104.Google Scholar
[Is 76]. Isaacs, I.M., Character Theory of Finite Groups, Academic Press, San Diego 1976.
[JKS 95]. Johnson, D.L., Kim, A.C., and Song, H.J., The growth of the trefoil group. In Groups Korea 94, de Gruyter, Berlin (1995), 157–161.
[Jo 91]. Johnson, D.L., Rational growth of wreath products. In Groups St Andrews 1989 II, Cambridge University Press, Cambridge (1991), 309–315.
[Ju 71]. Justin, J., Groupes et semi-groupes à croissants linéare, C. R. Acad. Sci. Paris Ser A–B 273 (1971), A212–A214.Google Scholar
[Ka 95]. Kaplansky, I., Lie Algebras and Locally Compact Groups, 2nd edn., University of Chicago Press, Chicago 1995.
[Kl 10]. Kleiner, B., A new proof of Gromov's theorem on groups of polynomial growth, J. Amer. Math. Soc. 23 (2010), 815–829.Google Scholar
[Ko 98]. Koubi, M., Croissance uniforme dans les groupes hyperboliques, Ann. Inst. Fourier 48 (1998), 1441–1453.Google Scholar
[Ku 56]. Kurosh, A.G., The Theory of Groups, vol. 2, 2nd edn. (English translation by Hirsch, K.A.), Chelsea, New York 1956.
[Le 91]. Lewin, J., The growth function of some free products of groups, Comm. Alg. 19 (1991), 2405–2418.Google Scholar
[Le 00]. Leonov, Yu.G., On a lower bound for the growth function of Grigorchuk's group, Math. Zametki 67 (2000), 475–477 (Russian); English translation in Math. Notes 67 (2000), 403–405.Google Scholar
[LP 98]. Larsen, M. and Pink, R., Finite Subgroups of Algebraic Groups, J. Amer. Math. Soc. 24 (2011), 1105–1158.Google Scholar
[LS 03]. Lubotzky, A. and Segal, D., Subgroup Growth, Birkhäuser, Basel 2003.
[LS 77]. Lyndon, R.C. and Schupp, P.E., Combinatorial Group Theory, Springer, Berlin 1977.
[LPV 08]. Lyons, R., Pichot, M., and Vassout, S., Uniform non-amenability, cost, and the first l2-Betti number, Groups Geom. Dyn. 2 (2008), 595–617.Google Scholar
[Ma 07]. Mann, A., Growth conditions in infinitely generated groups, Groups, Geometry, and Dynamics 1 (2007), 613–622.Google Scholar
[Ma 11]. Mann, A., The growth of free products, J. Alg. 326 (Karl W. Gruenberg memorial issue) (2011), 208–217.Google Scholar
[Mi 68]. Milnor, J., Growth of finitely generated solvable groups, J. Diff. Geo. 2 (1968), 447–449.Google Scholar
[Mi 87]. Minkowski, H., Collected Works I, 212–218.
[MZ 55]. Montgomery, D. and Zippin, L., Topological Transformation Groups, Interscience, New York 1955.
[MP 01]. Muchnik, R. and Pak, I., On growth of Grigorchuk's groups, Int. J. Alg. Comp. 11 (2001), 1–17.Google Scholar
[Ol 91]. Olshanskii, A. Yu., Geometry of Defining Relations in Groups, Kluwer, Dordrecht 1991.
[Ol 92]. Ol'shanskii, A. Yu., Almost every group is hyperbolic, Int. J. Alg. Comp. 2 (1992), 1–17.Google Scholar
[Os 03]. Osin, D.V., The entropy of solvable groups, Erg. Th. Dyn. Sys. 23 (2003), 907–918.Google Scholar
[Os 04]. Osin, D.V., Algebraic entropy of elementary amenable groups, Geo. Ded. 107 (2004), 133–151.Google Scholar
[Pa 83]. Pansu, P., Croissance des boules et des géodésiques fermées dans les nilvariétés, Erg. Th. Dyn. Sys. 3 (1983), 415–445.Google Scholar
[Pa 92]. Parry, W., Growth series of some wreath products, Trans. Amer. Math. Soc. 331 (1992), 751–759.Google Scholar
[Pi 00]. Pittet, Ch., The isoperimetric profile of homogeneous Riemannian manifolds, J. Diff. Geo. 54 (2000), 255–302.Google Scholar
[Re 98]. Remmert, R., Classical Topics in Complex Function Theory, Springer, New York 1998.
[Ri 82]. Rips, E., Subgroups of small cancellation groups, Bull. London Math. Soc. 14 (1982), 45–47.Google Scholar
[Ri 10]. Rivin, I., Growth in free groups (and other stories) – twelve years later, Ill. J. Math. 54 (2010), 327–370.Google Scholar
[Ro 96]. Robinson, D.J.S., A Course in the Theory of Groups, 2nd edn., Springer, New York 1996.
[Ro 95]. Rotman, J.J., Introduction to the Theory of Groups, 4th edn., Springer, New York 1995.
[Sc 11]. Scott, R., Rationality and reciprocity for the greedy normal form of a Coxeter groups, Trans. Amer. Math. Soc. 363 (2011), 385–415.Google Scholar
[Se 83]. Segal, D., Polycyclic Groups, Cambridge University Press, Cambridge 1983.
[Se 95]. Sela, Z., The isomorphism problem for hyperbolic groups, I., Ann. Math. (2) 141 (1995), 217–283.Google Scholar
[Se 80]. Serre, J.P., Trees, Springer-Verlag, Berlin, 1980.
[Sh 94]. Shapiro, M., Growth of a PSL2R manifold group, Math. Nach. 167 (1994), 279–312.Google Scholar
[Sh 98]. Shalom, Y., The growth of linear groups, J. Alg. 199 (1998), 169–174.Google Scholar
[SW 92]. Shalen, P.B. and Wagreich, P., Growth rates, ℤp-homology, and volumes of hyperbolic 3-manifolds, Trans. Amer. Math. Soc. 331 (1992), 895–917.Google Scholar
[Sl]. Sloane's Online Encyclopedia of Integer Sequences, http://www.research.att.com/ njas/sequences/Seis.html.
[So 06]. Soifer, I., Properties of growth functions of Fuchsian groups, M.Sc. thesis, Hebrew University, Jerusalem 2006.
[St 96]. Stoll, M., Rational and transcendental growth series for the higher Heisenberg groups, Inv. Math. 126 (1996), 85–109.Google Scholar
[St 98]. Stoll, M., On the asymptotics of the growth of 2-step nilpotent groups, J. London Math. Soc. 58 (1998), 38–48.Google Scholar
[Su 79]. Sushchanskii, V.I., Periodic p-groups of permutations and the unrestricted Burnside problem (in Russian), Dokl. Akad. Nauk SSSR 247 (1979), 557–561.Google Scholar
[Ta 10]. Tao, T., A proof of Gromov's theorem (a blog entry) http://terrytao.wordpress.com/2010/02/18/a-proof-of-gromovs-theorem/
[Te 07]. Tessera, R., Volume of spheres in doubling metric measured spaces and in groups of polynomial growth, Bull. Soc. Math. France 135 (2007), 47–64.Google Scholar
[Ti 39]. Titchmarch, E.C., The Theory of Functions, 2nd edn., Oxford University Press, Oxford 1939 (reprinted 1952).
[Ti 72]. Tits, J., Free subgroups in linear groups, J. Alg. 20 (1972), 250–270.Google Scholar
[TJ 74]. Tyrer-Jones, J.M., Direct products and the Hopf property, J. Austral. Math. Soc. 17 (1974), 174–196.Google Scholar
[VdDW 84(1)]. Dries, L. and Wilkie, A.J., On Gromov's theorem concerning groups of polynomial growth and elementary logic, J. Alg. 89 (1984), 349–374.Google Scholar
[VdDW 84(2)]. Dries, L. and Wilkie, A.J., An effective bound for groups of linear growth, Arch. Math. (Basel) 42 (1984), 391–396.Google Scholar
[We 73]. Wehrfritz, B.A.F., Infinite Linear Groups, Springer, Berlin 1973.
[Wi 04(1)]. Wilson, J.S., On exponential growth and uniformly exponential growth for groups, Inv. Math. 155 (2004), 287–303.Google Scholar
[Wi 04(2)]. Wilson, J.S., Further groups that do not have uniformly exponential growth, J. Alg. 279 (2004), 292–301.Google Scholar
[Wi 10]. Wilson, J.S., Free subgroups in groups with few relators, Enseign. Math. (2) 56 (2010), 173–185.Google Scholar
[Wi 11]. Wilson, J.S., The gap in the growth of residually soluble groups, Bull. London Math. Soc. 43 (2011), 576–582.Google Scholar
[Wo 68]. Wolf, J.A., Growth of finitely generated solvable groups and curvature of Riemannian manifolds, J. Diff. Geo. 2 (1968), 421–446.Google Scholar
[Wo 97]. Worthington, R.L., The growth series of Hwr(ℤ × Z2), Arch. Math. 68 (1997), 110–121.Google Scholar
[Xi 07]. Xi, X., Growth of relatively hyperbolic groups, Proc. Amer. Math. Soc. 135 (2007), 695–704.Google Scholar
[Z 00]. zuk, Andrzej, On an isoperimetric inequality for infinite finitely generated groups, Topology 39 (2000), 947–956.

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Avinoam Mann, Hebrew University of Jerusalem
  • Book: How Groups Grow
  • Online publication: 05 January 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9781139095129.020
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Avinoam Mann, Hebrew University of Jerusalem
  • Book: How Groups Grow
  • Online publication: 05 January 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9781139095129.020
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Avinoam Mann, Hebrew University of Jerusalem
  • Book: How Groups Grow
  • Online publication: 05 January 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9781139095129.020
Available formats
×