[Ad 75]. Adian, S.I., The Burnside Problem and Identities in Groups, Nauka, 1975 (Russian; English translation, Springer, 1979).
[Al 72]. Aleshin, S.V., Finite automata and the Burnside problem for periodic groups, Mat. Zametki 11 (1972), 319–328 (Russian); English translation in Math. Notes 11 (1972).
[Al 91]. Alonso, J.M., Growth functions of amalgams. In Arboreal Group Theory, Springer, New York 1991, 1–34.
[Al 02]. Alperin, R.C., Uniform growth of polycyclic groups, Geo. Ded. 92 (2002), 105–113.
[AO 96]. Arzhantseva, G.N. and Olshanskii, A.U., Generality of the class of groups in which subgroups with a lesser number of generators are free, Mat. Zametki. 59 (1996), 489–496, 638 (In Russian; English translation in Math. Notes59 (1996), 350–355).
[BS 92]. Babai, L. and Szegedy, M., Local expansion of symmetric graphs, Combinatorics, Probability and Computing 1 (1992), 1–11.
[BM 07]. Bajorska, B. and Macedonska, O., A note on groups of intermediate growth, Comm. Alg. 35(12) (2007), 4112–4115.
[Ba 98]. Bartholdi, L., The growth of Grigorchuk's torsion group, Int. Math. Research Notices 20 (1998), 1049–1054.
[Ba 01]. Bartholdi, L., Lower bounds on the growth of a group acting on the binary rooted tree, Int. J. Alg. Comp. 11 (2001), 73–88.
[Ba 03]. Bartholdi, L., A Wilson group of non-uniformly exponential growth, C. R. Math. Acad. Sci. Paris 336 (2003), 549–554.
[BE 10]. Bartholdi, L. and Erschler, A., Growth of permutational extensions, arXiv preprint [math.Gr] 1011.5266, November 2010 (18 pages).
[BV 05]. Bartholdi, L. and Virag, B., Amenability via random walks, Duke Math. J. 130 (2005), 39–56.
[Bs 72]. Bass, H., The degree of polynomial growth of finitely generated nilpotent groups, Proc. London Math. Soc. 25 (1972), 603–614.
[Bu 01]. Baumagin, I., On small cancellation k-generator groups with (k – 1)-generator subgroups all free, Internat. J. Alg. Comp. 11 (2001), 507–524.
[Be 83] Benson, M., Growth series of finite extensions of Zn are rational, Inv. Math. 73 (1983), 251–269.
[Be 87]. Benson, M., On the rational growth of virtually nilpotent groups. In Combinatorial Group Theory and Topology, 185–196, Ann. Math. Studies 111, Princeton 1987.
[Bi 07]. Bieri, R., Deficiency and the geometric invariants of a group, J. Pure App. Alg. 208 (2007), 951–959.
[BS 78]. Bieri, R. and Strebel, R., Almost finitely presented groups, Comm. Math. Helvetici. 53 (1978), 258–278.
[Br 07]. Breuillard, E., On uniform exponential growth for solvable groups, Pure Appl. Math. Q. 3 (2007).
[BC 10]. Breuillard, E. and Cornulier, Y., On conjugacy growth for solvable groups, Ill. J. Math. 54 (2010), 389–395.
[BCLM 11]. Breuillard, E., Cornulier, Y., Lubotzky, A., and Meiri, C., On conjugacy growth of linear groups, arXiv preprint [math.Gr]1106.4773 (21 pages).
[BG 08]. Breuillard, E. and Gelander, T., Uniform independence in linear groups, Inv. Math. 173 (2008), 225–263.
[Br 05]. Bridson, M.R., On the growth of groups of automorphisms, Int. J. Alg. Comp. 15 (2005), 869–874.
[Br 09]. Brieussel, J., Amenability and non-uniform growth of some directed automorphism groups of a rooted tree, Math. Z. 263 (2009), 265–293.
[Br 11]. Brieussel, J., Growth behaviors in the range, arXiv preprint [math.GR] 1107.1632.
[Bu 99]. Bucher, M., Croissance de groupes et produits libres avec amalgamation, diploma thesis, Geneva 1999, see http://www.math.kth.se./mickar/ (18 pages).
[Bu 09]. Button, J.O., Uniform exponential growth of semidirect HNN extensions, preprint (January 2010: 22 pages).
[Ch 94a]. Chiswell, I.M., The growth series of a graph product, Bull. London Math. Soc. 26 (1994), 268–272.
[Ch 94b]. Chiswell, I.M., The growth series of HNN extensions, Comm. Alg. 22 (1994), 2969–2981.
[Ch 80]. Chou, C., Elementary amenable groups, Ill. J. Math. 24 (1980), 396–407.
[Co 07]. Collins, M.J., On Jordan's theorem for complex linear groups, J. Group Th. 10 (2007), 411–423.
[Co 08]. Collins, M.J., Modular analogues of Jordan's theorem for finite linear groups, J. Reine Angew. Math. (Crelle's) 624 (2008), 143–171.
[Co 05]. Coornaert, M., Asymptotic growth of conjugacy classes in finitely generated free groups, Int. J. Alg. Comp. 15 (2005), 887–892.
[CK 02]. Coornaert, M. and Knieper, G., Growth of conjugacy classes in Gromov hyperbolic groups, Geo. Func. Ana. 12 (2002), 464–478.
[CK 04]. Coornaert, M. and Knieper, G., An upper bound for the growth of conjugacy classes in torsion-free word hyperbolic groups, Int. J. Alg. Comp. 14 (2004), 395–401.
[CSC 93]. Coulhon, T. and Saloff-Coste, L., Isopérimétrie pour les groupes et les variétés, Rev. Mat. Iberoamericana 9 (1993), 293–314.
[CR 62]. Curtis, C.W. and Reiner, I., Representation Theory of Finite Groups and Associative Algebras, Interscience, New York 1962.
[DG 11]. Dahmani, F. and Guirardel, V., The isomorphism problem for all hyperbolic groups, Geom. Func. Anal. 21 (2011), 223–300.
[DDMS 99]. Dixon, J.D., Sautoy, M.P.F., Mann, A., and Segel, D., Analytic pro-p groups, 2nd edn., Cambridge University Press, Cambridge 1999.
[Dr 02]. Drutu, C., Quasi-isometry invariants and asymptotic cones, Int. J. Alg. Comp. 12 (2002), 99–135.
[Dy 00]. Dyubina, A., Instability of the virtual solvability and the property of being virtually torsion-free for quasi-isometric groups, Int. Math. Res. Notices 21 (2000), 1097–1101.
[ECHLPT 92]. Epstein, D.B.A., Cannon, J.W., Holt, D.F., Levy, S.V.F., Paterson, M.S., and Thurston, W.P., Word Processing in Groups, Jones and Bartlett, Boston 1992.
[Er 04]. Erschler, A., Not residually finite groups of intermediate growth, commensurability and non-geometricity, J. Alg. 272 (2004), 154–172.
[EMO 05]. Eskin, A., Mozes, S., and Oh, H., On uniform exponential growth for linear groups, Inv. Math. 160 (2005), 1–30.
[Fe 95]. Feit, W., The orders of finite linear groups, preprint.
[Fe 97]. Feit, W., Finite linear groups and theorems of Minkowski and Schur, Proc. Amer. Math. Soc. 125 (1997), 1259–1262.
[FP 87]. Floyd, W.J. and Plotnick, S.P., Growth functions on Fuchsian groups and the Euler characteristic, Inv. Math. 88 (1987), 1–29.
[Fr 97]. Friedland, S., The maximal orders of finite subgroups in GLn(ℚ), Proc. Amer. Math. Soc. 125 (1997), 3519–3526.
[FS 08]. Freden, E.M. and Schofield, J., The growth series for Higman: 3, J. Group Th. 11 (2008), 277–298.
[GH 90]. Ghys, E. and Harpe, P. (editors), Sur les Groupes Hyperboliques d'après Mikhael Gromov, Birkhauser, Boston 1990.
[Gi 99]. Gill, C.P., Growth series of stem products of cyclic groups, Int. J. Alg. Comp. 9 (1999), 1–30.
[Go 64]. Golod, E.S., On nil-algebras and finitely approximable p-groups, Izv. Akad. Nauk SSSR, Ser. Mat. 28 (1964), 273–276 (In Russian; English translation in Transl. Amer. Math. Soc. (2)48 (1965), 103–106).
[Gri 80]. Grigorchuk, R.I., Burnside's problem on periodic groups, Fun. Anal. App. 14 (1980), 41–43.
[Gri 84]. Grigorchuk, R.I., Degrees of growth of finitely generated groups, and the theory of invariant means, Izv. Akad. Nauk SSSR Ser. Mat. 48 (1984), 939–985 (In Russian; English translation in Math. USSR Izv.25 (1985), 259–300).
[Gri 85]. Grigorchuk, R.I., On the growth degrees of p-groups and torsionfree groups, Mat. Sb. 126 (1985), 194–214 (In Russian; English translation in Math. USSR Sbornik54 (1986), 185–205.
[Gri 99]. Grigorchuk, R.I., On the system of defining relations and the Schur multiplier of periodic groups defined by finite automata. In Groups St Andrews 1997 in Bath I, Cambridge University Press, Cambridge 1999, 290–317.
[GH 01]. Grigorchuk, R.I. and Harpe, P., One-relator groups of exponential growth have uniformly exponential growth, Mat. Zametki 69 (2001), 628–630 (In Russian; English translation in Math. Notes69 575–577).
[Gro 81]. Gromov, M., Groups of polynomial growth and expanding maps, Publ. Math. IHES 53 (1981), 53–73.
[GS 84]. Grunewald, F. and Segal, D., Reflections on the classification of torsion-free nilpotent groups, Group Theory: Essays for Philip Hall121–158, Academic Press, London 1984.
[GSS 82]. Gruenwald, F., Segal, D., and Sterling, L.S., Nilpotent Groups of Hirsch Length Six, Math. Z. 179 (1982), 219–235.
[GS 10]. Guba, V.S. and Sapir, M.V., On the conjugacy growth functions of groups, Ill. J. Math. 54 (2010), 301–313.
[Ha 54]. Hall, P., Finiteness conditions for soluble groups, Proc. London Math. Soc. (3) 4 (1954), 419–436.
[Hr 00]. Harpe, P., Topics in Geometric Group Theory, University of Chicago Press, Chicago 2000.
[HB 00]. Harpe, P. and Bucher, M., Free products with amalgamation and HNN-extensions of uniformly exponential growth, Mat. Zametki 67 (2000), 811–815 (In Russian; English translation in Math. Notes 67 (2000), 686–689).
[Ho 63]. Horejs, J., Transformations defined by finite automata, Problems in Cybernetics 9 (1963), 23–26 (Russian).
[Hu 11]. Hull, M., Conjugacy growth in polycyclic groups, Arch. Math. 96 (2011), 131–134.
[HO 11]. Hull, M. and Osin, D., Conjugacy growth of finitely generated groups, arXiv preprint [math.GR] 1107.1826.
[Hu 67]. Huppert, B., Endliche Gruppen I, Springer, New York 1967.
[HW 42]. Hurewicz, W. and Wallman, H., Dimension Theory, Princeton University Press, Princeton 1942.
[IS 87]. Imrich, W. and Seifert, N., A bound for groups of linear growth, Arch. Math. (Basel) 48 (1987), 100–104.
[Is 76]. Isaacs, I.M., Character Theory of Finite Groups, Academic Press, San Diego 1976.
[JKS 95]. Johnson, D.L., Kim, A.C., and Song, H.J., The growth of the trefoil group. In Groups Korea 94, de Gruyter, Berlin (1995), 157–161.
[Jo 91]. Johnson, D.L., Rational growth of wreath products. In Groups St Andrews 1989 II, Cambridge University Press, Cambridge (1991), 309–315.
[Ju 71]. Justin, J., Groupes et semi-groupes à croissants linéare, C. R. Acad. Sci. Paris Ser A–B 273 (1971), A212–A214.
[Ka 95]. Kaplansky, I., Lie Algebras and Locally Compact Groups, 2nd edn., University of Chicago Press, Chicago 1995.
[Kl 10]. Kleiner, B., A new proof of Gromov's theorem on groups of polynomial growth, J. Amer. Math. Soc. 23 (2010), 815–829.
[Ko 98]. Koubi, M., Croissance uniforme dans les groupes hyperboliques, Ann. Inst. Fourier 48 (1998), 1441–1453.
[Ku 56]. Kurosh, A.G., The Theory of Groups, vol. 2, 2nd edn. (English translation by Hirsch, K.A.), Chelsea, New York 1956.
[Le 91]. Lewin, J., The growth function of some free products of groups, Comm. Alg. 19 (1991), 2405–2418.
[Le 00]. Leonov, Yu.G., On a lower bound for the growth function of Grigorchuk's group, Math. Zametki 67 (2000), 475–477 (Russian); English translation in Math. Notes 67 (2000), 403–405.
[LP 98]. Larsen, M. and Pink, R., Finite Subgroups of Algebraic Groups, J. Amer. Math. Soc. 24 (2011), 1105–1158.
[LS 03]. Lubotzky, A. and Segal, D., Subgroup Growth, Birkhäuser, Basel 2003.
[LS 77]. Lyndon, R.C. and Schupp, P.E., Combinatorial Group Theory, Springer, Berlin 1977.
[LPV 08]. Lyons, R., Pichot, M., and Vassout, S., Uniform non-amenability, cost, and the first l2-Betti number, Groups Geom. Dyn. 2 (2008), 595–617.
[Ma 07]. Mann, A., Growth conditions in infinitely generated groups, Groups, Geometry, and Dynamics 1 (2007), 613–622.
[Ma 11]. Mann, A., The growth of free products, J. Alg. 326 (Karl W. Gruenberg memorial issue) (2011), 208–217.
[Mi 68]. Milnor, J., Growth of finitely generated solvable groups, J. Diff. Geo. 2 (1968), 447–449.
[Mi 87]. Minkowski, H., Collected Works I, 212–218.
[MZ 55]. Montgomery, D. and Zippin, L., Topological Transformation Groups, Interscience, New York 1955.
[MP 01]. Muchnik, R. and Pak, I., On growth of Grigorchuk's groups, Int. J. Alg. Comp. 11 (2001), 1–17.
[Ol 91]. Olshanskii, A. Yu., Geometry of Defining Relations in Groups, Kluwer, Dordrecht 1991.
[Ol 92]. Ol'shanskii, A. Yu., Almost every group is hyperbolic, Int. J. Alg. Comp. 2 (1992), 1–17.
[Os 03]. Osin, D.V., The entropy of solvable groups, Erg. Th. Dyn. Sys. 23 (2003), 907–918.
[Os 04]. Osin, D.V., Algebraic entropy of elementary amenable groups, Geo. Ded. 107 (2004), 133–151.
[Pa 83]. Pansu, P., Croissance des boules et des géodésiques fermées dans les nilvariétés, Erg. Th. Dyn. Sys. 3 (1983), 415–445.
[Pa 92]. Parry, W., Growth series of some wreath products, Trans. Amer. Math. Soc. 331 (1992), 751–759.
[Pi 00]. Pittet, Ch., The isoperimetric profile of homogeneous Riemannian manifolds, J. Diff. Geo. 54 (2000), 255–302.
[Re 98]. Remmert, R., Classical Topics in Complex Function Theory, Springer, New York 1998.
[Ri 82]. Rips, E., Subgroups of small cancellation groups, Bull. London Math. Soc. 14 (1982), 45–47.
[Ri 10]. Rivin, I., Growth in free groups (and other stories) – twelve years later, Ill. J. Math. 54 (2010), 327–370.
[Ro 96]. Robinson, D.J.S., A Course in the Theory of Groups, 2nd edn., Springer, New York 1996.
[Ro 95]. Rotman, J.J., Introduction to the Theory of Groups, 4th edn., Springer, New York 1995.
[Sc 11]. Scott, R., Rationality and reciprocity for the greedy normal form of a Coxeter groups, Trans. Amer. Math. Soc. 363 (2011), 385–415.
[Se 83]. Segal, D., Polycyclic Groups, Cambridge University Press, Cambridge 1983.
[Se 95]. Sela, Z., The isomorphism problem for hyperbolic groups, I., Ann. Math. (2) 141 (1995), 217–283.
[Se 80]. Serre, J.P., Trees, Springer-Verlag, Berlin, 1980.
[Sh 94]. Shapiro, M., Growth of a PSL2R manifold group, Math. Nach. 167 (1994), 279–312.
[Sh 98]. Shalom, Y., The growth of linear groups, J. Alg. 199 (1998), 169–174.
[SW 92]. Shalen, P.B. and Wagreich, P., Growth rates, ℤp-homology, and volumes of hyperbolic 3-manifolds, Trans. Amer. Math. Soc. 331 (1992), 895–917.
[Sl]. Sloane's Online Encyclopedia of Integer Sequences, http://www.research.att.com/ njas/sequences/Seis.html.
[So 06]. Soifer, I., Properties of growth functions of Fuchsian groups, M.Sc. thesis, Hebrew University, Jerusalem 2006.
[St 96]. Stoll, M., Rational and transcendental growth series for the higher Heisenberg groups, Inv. Math. 126 (1996), 85–109.
[St 98]. Stoll, M., On the asymptotics of the growth of 2-step nilpotent groups, J. London Math. Soc. 58 (1998), 38–48.
[Su 79]. Sushchanskii, V.I., Periodic p-groups of permutations and the unrestricted Burnside problem (in Russian), Dokl. Akad. Nauk SSSR 247 (1979), 557–561.
[Ta 10]. Tao, T., A proof of Gromov's theorem (a blog entry) http://terrytao.wordpress.com/2010/02/18/a-proof-of-gromovs-theorem/
[Te 07]. Tessera, R., Volume of spheres in doubling metric measured spaces and in groups of polynomial growth, Bull. Soc. Math. France 135 (2007), 47–64.
[Ti 39]. Titchmarch, E.C., The Theory of Functions, 2nd edn., Oxford University Press, Oxford 1939 (reprinted 1952).
[Ti 72]. Tits, J., Free subgroups in linear groups, J. Alg. 20 (1972), 250–270.
[TJ 74]. Tyrer-Jones, J.M., Direct products and the Hopf property, J. Austral. Math. Soc. 17 (1974), 174–196.
[VdDW 84(1)]. Dries, L. and Wilkie, A.J., On Gromov's theorem concerning groups of polynomial growth and elementary logic, J. Alg. 89 (1984), 349–374.
[VdDW 84(2)]. Dries, L. and Wilkie, A.J., An effective bound for groups of linear growth, Arch. Math. (Basel) 42 (1984), 391–396.
[We 73]. Wehrfritz, B.A.F., Infinite Linear Groups, Springer, Berlin 1973.
[Wi 04(1)]. Wilson, J.S., On exponential growth and uniformly exponential growth for groups, Inv. Math. 155 (2004), 287–303.
[Wi 04(2)]. Wilson, J.S., Further groups that do not have uniformly exponential growth, J. Alg. 279 (2004), 292–301.
[Wi 10]. Wilson, J.S., Free subgroups in groups with few relators, Enseign. Math. (2) 56 (2010), 173–185.
[Wi 11]. Wilson, J.S., The gap in the growth of residually soluble groups, Bull. London Math. Soc. 43 (2011), 576–582.
[Wo 68]. Wolf, J.A., Growth of finitely generated solvable groups and curvature of Riemannian manifolds, J. Diff. Geo. 2 (1968), 421–446.
[Wo 97]. Worthington, R.L., The growth series of Hwr(ℤ × Z2), Arch. Math. 68 (1997), 110–121.
[Xi 07]. Xi, X., Growth of relatively hyperbolic groups, Proc. Amer. Math. Soc. 135 (2007), 695–704.
[Z 00]. zuk, Andrzej, On an isoperimetric inequality for infinite finitely generated groups, Topology 39 (2000), 947–956.