Book contents
- Frontmatter
- Contents
- List of boxes
- Preface
- 1 Foundations of Newtonian gravity
- 2 Structure of self-gravitating bodies
- 3 Newtonian orbital dynamics
- 4 Minkowski spacetime
- 5 Curved spacetime
- 6 Post-Minkowskian theory: Formulation
- 7 Post-Minkowskian theory: Implementation
- 8 Post-Newtonian theory: Fundamentals
- 9 Post-Newtonian theory: System of isolated bodies
- 10 Post-Newtonian celestial mechanics, astrometry and navigation
- 11 Gravitational waves
- 12 Radiative losses and radiation reaction
- 13 Alternative theories of gravity
- References
- Index
4 - Minkowski spacetime
Published online by Cambridge University Press: 05 June 2014
- Frontmatter
- Contents
- List of boxes
- Preface
- 1 Foundations of Newtonian gravity
- 2 Structure of self-gravitating bodies
- 3 Newtonian orbital dynamics
- 4 Minkowski spacetime
- 5 Curved spacetime
- 6 Post-Minkowskian theory: Formulation
- 7 Post-Minkowskian theory: Implementation
- 8 Post-Newtonian theory: Fundamentals
- 9 Post-Newtonian theory: System of isolated bodies
- 10 Post-Newtonian celestial mechanics, astrometry and navigation
- 11 Gravitational waves
- 12 Radiative losses and radiation reaction
- 13 Alternative theories of gravity
- References
- Index
Summary
The preceding chapters were devoted to a Newtonian description of the gravitational interaction, and it is now time to embark on an exploration of its relativistic aspects. As we shall argue in the next chapter, a relativistic theory of gravity that respects the principle of equivalence reviewed in Sec. 1.2 must be a metric theory in which gravitation is a manifestation of the curvature of spacetime. The simplest metric theory of gravitation is Einstein's general relativity, and our task in this chapter and the next is to introduce its essential elements. Subsequent chapters will develop the weak-field limit of general relativity, and in these chapters we will return to notions (such as gravitational potentials and forces) that are familiar from Newtonian physics. But a proper grounding of the weak-field limit must rest on the exact theory, and we shall now work to acquire the required knowledge. It is, of course, unlikely that a mere two chapters will suffice to introduce all relevant aspects of general relativity. What we intend to cover here is a rather minimal package, the smallest required for the development of the weak-field limit.
This chapter is devoted to a description of physics in Minkowski spacetime (also known as flat spacetime), which codifies in a particularly elegant way the kinematical rules of special relativity.
- Type
- Chapter
- Information
- GravityNewtonian, Post-Newtonian, Relativistic, pp. 189 - 216Publisher: Cambridge University PressPrint publication year: 2014