Skip to main content Accessibility help
×
  • Cited by 567
Publisher:
Cambridge University Press
Online publication date:
June 2014
Print publication year:
2014
Online ISBN:
9781139507486

Book description

This textbook explores approximate solutions to general relativity and their consequences. It offers a unique presentation of Einstein's theory by developing powerful methods that can be applied to astrophysical systems. Beginning with a uniquely thorough treatment of Newtonian gravity, the book develops post-Newtonian and post-Minkowskian approximation methods to obtain weak-field solutions to the Einstein field equations. The book explores the motion of self-gravitating bodies, the physics of gravitational waves, and the impact of radiative losses on gravitating systems. It concludes with a brief overview of alternative theories of gravity. Ideal for graduate courses on general relativity and relativistic astrophysics, the book examines real-life applications, such as planetary motion around the Sun, the timing of binary pulsars, and gravitational waves emitted by binary black holes. Text boxes explore related topics and provide historical context, and over 100 exercises present challenging tests of the material covered in the main text.

Awards

Honourable Mention, 2015 PROSE Award for Textbook, Physical Sciences and Mathematics

Reviews

'This remarkable book gives a superb pedagogical treatment of topics that are crucial for modern astrophysics and gravitational-wave science, but (sadly) are generally omitted from textbooks on general relativity, or treated much too briefly. With enthusiasm, I recommend this book to all astrophysicists, gravitational physicists, and students of these subjects.'

Kip S. Thorne - California Institute of Technology

'This book is likely to become the bedside reading of all students and working scientists interested in Newtonian and Einsteinian gravity. Pedagogically written using fully modern notation, the book contains an extensive description of the post-Newtonian approximation, and is replete with useful results on gravitational waves and the motion of bodies under gravity.'

Luc Blanchet - Institut d'Astrophysique de Paris

'I know of no other text that compares with this compendium of tricks for calculating observables in the large fraction of the universe that is not near an event horizon. Eric Poisson and Clifford Will, two world-renowned leaders in the field, have produced the ideal manual for anyone who wishes to do calculations relevant to current experiments or upcoming gravitational-wave observations. … The clear, unified presentation in Gravity is a must-read for anyone wishing to absorb the material efficiently. … a great textbook for a special-topics graduate course after the introductory relativity course, a crucial study aid for anyone learning about astrophysical relativity and gravitational waves, and a lifelong reference for career researchers.'

Benjamin Owen Source: Physics Today

Refine List

Actions for selected content:

Select all | Deselect all
  • View selected items
  • Export citations
  • Download PDF (zip)
  • Save to Kindle
  • Save to Dropbox
  • Save to Google Drive

Save Search

You can save your searches here and later view and run them again in "My saved searches".

Please provide a title, maximum of 40 characters.
×

Contents

References
Abramowitz, M. and Stegun, I.A. 1975. Handbook of Mathematical Functions. Dover.
Alcock, C., Allsman, R.A., Alves, D.R., et al. 2000. The MACHO project: Microlensing results from 5.7 years of Large Magellanic Cloud observations. Astrophys. J. 542, 281–307.
Alväger, T., Farley, F.J.M., Kjellman, J., and Wallin, I. 1964. Test of the second postulate of special relativity in the GeV region. Phys. Lett. 12, 260–262.
Antoci, S. and Loinger, A. 1999. On the gravitational field of a mass point according to Einstein's theory (English translation of Schwarzschild's 1916 paper). arXiv.org/abs/physics/9905030.
Arfken, G.B., Weber, H.J., and Harris, F.E. 2012. Mathematical Methods for Physicists. Seventh Edition: A Comprehensive Guide. Academic Press.
Arnowitt, R., Deser, S., and Misner, C.W. 1962. The dynamics of general relativity, in Gravitation: An Introduction to Current Research, edited by Witten, L., 227–265. Wiley.
Ashby, N. 2003. Relativity in the Global Positioning System. Living Rev. Relativity 6.
Baessler, S., Heckel, B.R., Adelberger, E.G., et al. 1999. Improved test of the equivalence principle for gravitational self-energy. Phys. Rev. Lett. 83, 3585–3588.
Baker, J.G., Centrella, J., Choi, D.I., et al. 2006. Getting a kick out of numerical relativity. Astrophys. J. 653, L93–L96.
Barker, B.M. and O'Connell, R.F. 1974. Nongeodesic motion in general relativity. Gen. Relativ. Gravit. 5, 539–554.
Bekenstein, J.D. 1973. Gravitational-radiation recoil and runaway black holes. Astrophys. J. 183, 657–664.
Bender, C.M. and Orzag, S.A. 1978. Advanced Mathematical Methods for Scientists and Engineers. McGraw-Hill.
Bertotti, B., Brill, D.R., and Krotkov, R.D. 1962. Experiments on gravitation, in Gravitation: An Introduction to Current Research, edited by Witten, L., 1–48. Wiley.
Bertotti, B., Iess, L., and Tortora, P. 2003. A test of general relativity using radio links with the Cassini spacecraft. Nature 425, 374–376.
Black, E.D. and Gutenkunst, R.N. 2003. An introduction to signal extraction in interferometric gravitational wave detectors. Am. J. Phys. 71, 365–378.
Blanchet, L. 2006. Gravitational radiation from post-Newtonian sources and inspiralling compact binaries. Living Rev. Relativity 9.
Blanchet, L., and Faye, G. 2000. Hadamard regularization. Math. Phys. 41, 7675–7714.
Blanchet, L., Iyer, B.R., Will, C.M., and Wiseman, A.G. 1996. Gravitational waveforms from inspiralling compact binaries to second-post-Newtonian order. Class. Quantum Grav. 13, 575–584.
Blandford, R. and Teukolsky, S.A. 1976. Arrival-time analysis for a pulsar in a binary system. Astrophys. J. 205, 580–591.
Bolton, A.S., Rappaport, S., and Burles, S. 2006. Constraint on the post-Newtonian parameter γ on galactic size scales. Phys. Rev.D 74, 061501(R) (5 pages).
Bond, I.A., Udalski, A., Jaroszynski, M., et al., and OGLE Collaboration. 2004. OGLE 2003-BLG-235/MOA 2003-BLG-53: A planetary microlensing event. Astrophys. J. 606, L155–L158.
Bondi, H., van der Burg, M.G.J., and Metzner, A.W.K. 1962. Gravitational waves in general relativity. VII. Waves from axi-symmetric isolated systems. Proc. Roy. Soc. London A269, 21–52.
Braginskii, V.B., Caves, C.M., and Thorne, K.S. 1977. Laboratory experiments to test relativistic gravity. Phys. Rev.D 15, 2047–2068.
Brans, C.H. and Dicke, R.H. 1961. Mach's principle and a relativistic theory of gravitation. Phys. Rev. 124, 925–935.
Brecher, K. 1977. Is the speed of light independent of the velocity of the source?Phys. Rev. Lett. 39, 1051–1054.
Brooker, R.A. and Olle, T.W. 1955. Apsidal-motion constants for polytropic models. Mon. Not. R. Astr. Soc. 115, 101–106.
Brouwer, D. and Clemence, G.M. 1961. Methods of Celestial Mechanics. Academic Press.
Brown, E.W. 1960. An Introductory Treatise on the Lunar Theory. Dover.
Brumberg, V.A. 1991. Essential Relativistic Celestial Mechanics. IOP Publishing.
Burke, W.L. 1971. Gravitational radiation damping of slowly moving systems calculated using matched asymptotic expansions. J. Math. Phys. 12, 401–418.
Carroll, S. 2003. Spacetime and Geometry: An Introduction to General Relativity. Addison-Wesley.
Chandrasekhar, S. 1931. The maximum mass of ideal white dwarfs. Astrophys. J. 74, 81–82.
Chandrasekhar, S. 1958. An Introduction to the Study of Stellar Structure. Dover.
Chandrasekhar, S. 1965. The post-Newtonian equations of hydrodynamics in general relativity. Astrophys. J. 142, 1488–1512.
Chandrasekhar, S. 1969. Conservation laws in general relativity and in the post-Newtonian approximation. Astrophys. J. 158, 45–54.
Chandrasekhar, S. 1987. Ellipsoidal Figures of Equilibrium. Dover.
Chandrasekhar, S. and Contopoulos, G. 1967. On a post-Galilean transformation appropriate to the post-Newtonian theory of Einstein, Infeld, and Hoffmann. Proc. Roy. Soc. London A298, 123–141.
Chandrasekhar, S. and Esposito, F.P. 1970. The 5/2-post-Newtonian equations of hydrodynamics and radiation reaction in general relativity. Astrophys. J. 160, 153–179.
Chandrasekhar, S. and Nutku, Y. 1969. The second post-Newtonian equations of hydrodynamics in general relativity. Astrophys. J. 158, 55–79.
Ciufolini, I. and Pavlis, E.C. 2004. A confirmation of the general relativistic prediction of the Lense–Thirring effect. Nature 431, 958–960.
Cowling, T.G. 1941. The non-radial oscillations of polytropic stars. Mon. Not. R. Astr. Soc. 101, 367–375.
Cox., A.N. 2001. Allen's Astrophysical Quantities. Fourth Edition. Springer.
Cox, J.P. 1980. Theory of Stellar Pulsation. Princeton University Press.
Creighton, J.D.E. and Anderson, W.G. 2011. Gravitational-wave Physics and Astronomy: An Introduction to Theory, Experiment and Data Analysis. Wiley-VCH.
Crelinsten, J. 2006. Einstein's Jury: The Race to Test Relativity. Princeton University Press.
D'Eath, P.D. 1975. Interaction of two black holes in the slow-motion limit. Phys. Rev.D 12, 2183–2199.
Damour, T. 1983. Gravitational radiation and the motion of compact bodies. in Rayonnement Gravitationnel, edited by Deruelle, N. and Piran, T., 59–144. North-Holland.
Damour, T. 1987. The problem of motion in Newtonian and Einsteinian gravity, in Three Hundred Years of Gravitation, edited by Hawking, S.W. and Israel, W., 128–198. Cambridge University Press.
Damour, T. and Deruelle, N. 1981. Radiation reaction and angular momentum loss in small angle gravitational scattering. Phys. Lett.A 87, 81–84.
Damour, T. and Deruelle, N. 1985. General relativistic celestial mechanics of binary systems. I. The post-Newtonian motion. Ann. Inst. H. Poincaré, A43, 107–132.
Damour, T. and Deruelle, N. 1986. General relativistic celestial mechanics of binary systems. II. The post-Newtonian timing formula. Ann. Inst. H. Poincaré, A44, 263–292.
Damour, T. and Esposito-Farèse, G. 1992. Tensor–multi-scalar theories of gravitation. Class. Quantum Grav. 9, 2093–2176.
Damour, T. and Iyer, B.R. 1991. Multipole analysis for electromagnetism and linearized gravity with irreducible Cartesian tensors. Phys. Rev.D 43, 3259–3272.
Damour, T., Soffel, M., and Xu, C. 1991. General-relativistic celestial mechanics. I. Method and definition of reference systems. Phys. Rev.D 43, 3273–3307.
Damour, T., Soffel, M., and Xu, C. 1992. General-relativistic celestial mechanics. II. Translational equations of motion. Phys. Rev.D 45, 1017–1044.
Damour, T., Soffel, M., and Xu, C. 1993. General-relativistic celestial mechanics. III. Rotational equations of motion. Phys. Rev.D 47, 3124–3135.
Demianski, M. and Grishchuck, L.P. 1974. Note on the motion of black holes. Gen. Relativ. Gravit. 5, 673–679.
Demorest, P.B., Pennucci, T., Ransom, S.M., Roberts, M.S.E., and Hessels, J.W.T. 2010. A two-solar-mass neutron star measured using Shapiro delay. Nature 467, 1081–1083.
de Sitter, W. 1916. On Einstein's theory of gravitation, and its astronomical consequences. Second paper. Mon. Not. R. Astr. Soc. 27, 155–184.
De Witt, B. 2011. Bryce De Witt's Lectures on Gravitation. Lecture Notes in Physics, Volume 826, edited by Christensen, S.M.Springer-Verlag.
Dicke, R.H. 1970. Gravitation and the Universe — Jayne Lectures for 1969. American Philosophical Society.
Dicke, R.H. and Goldenberg, H.M. 1967. Solar oblateness and general relativity. Phys. Rev. Lett. 18, 313–316.
Dyson, F.W., Eddington, A.S., and Davidson, C., 1920. A determination of the deflection of light by the Sun's gravitational field, from observations made at the total eclipse of May 29, 1919. Phil. Trans. Roy. Soc. London A220, 291–333.
Eardley, D.M., Lee, D.L., Lightman, A.P., Wagoner, R.V., and Will, C.M. 1973. Gravitational-wave observations as a tool for testing relativistic gravity. Phys. Rev. Lett. 30, 884–886.
Eddington, A.S. 1922. The Mathematical Theory of Relativity. Cambridge University Press.
Eddington, A.S. and Clark, G.L. 1938. The problem of n bodies in general relativity theory. Proc. Roy. Soc. London A166, 465–475.
Ehlers, J., Rosenblum, A., Goldberg, J.N., and Havas, P. 1976. Comments on gravitational radiation damping and energy loss in binary systems. Astrophys. J. 208, L77–L81.
Einstein, A. and Rosen, N. 1937. On gravitational waves. J. of the Franklin Institute 223, 143–154.
Einstein, A., Infeld, L., and Hoffmann, B. 1938. The gravitational equations and the problem of motion. Annals of Mathematics 39, 65–100.
Everitt, C.W.F., Debra, D.B., Parkinson, B.W., et al. 2011. Gravity Probe B: Final results of a space experiment to test general relativity. Phys. Rev. Lett. 106, 221101 (4 pages).
Farley, F.J.M., Bailey, J., Brown, R.C.A., et al. 1966. The anomalous magnetic moment of the negative muon. Nuovo Cimento 45, 281–286.
Favata, M., Hughes, S.A., and Holz, D.E. 2004. How black holes get their kicks: Gravitational radiation recoil revisited. Astrophys. J. 607, L5–L8.
Faye, G., Marsat, S., Blanchet, L., and Iyer, B.R. 2012. The third and a half-post-Newtonian gravitational wave quadrupole mode for quasi-circular inspiralling compact binaries. Class. Quantum Grav. 29, 175004 (16 pages).
Fierz, M, 1956. Über die physikalische Deutung der erweiterten Gravitationstheorie P. Jordans. Helv. Phys. Acta 29, 128–134.
Fitchett, M.J. 1983. The influence of gravitational momentum losses on the centre of mass motion of a Newtonian binary system. Mon. Not. R. Astr. Soc. 203, 1049–1062.
Flanagan, E.E. and Hughes, S.A. 2005. The basics of gravitational wave theory. New J. Phys. 7, 204 (52 pages).
Fock, V.A. 1959. Theory of Space, Time and Gravitation. Pergamon.
French, A.P. 1968. Special Relativity. W.W. Norton & Company.
French, A.P. 1971. Newtonian Mechanics. W.W. Norton & Company.
Friedman, J.L. and Stergioulas, N. 2013. Rotating Relativistic Stars. Cambridge University Press.
Froeschlé, M., Mignard, F., and Arenou, F. 1997. Determination of the PPN parameter γ with the Hipparcos data, in Proceedings from the Hipparcos Venice 97 Symposium, edited by Battrick, B., 49–52. European Space Agency.
Gibbons, G. and Will, C.M. 2008. On the multiple deaths of Whitehead's theory of gravity. Stud. Hist. Philos. Mod. Phys. 39, 41–61.
Glendenning, N.K. 2000. Compact Stars: Nuclear Physics, Particle Physics, and General Relativity, Second Edition. Springer.
Goldstein, H., Poole, C.P. Jr., and Safko, J.L. 2001. Classical Mechanics. Third Edition. Addison-Wesley
Gonzalez, J.A., Sperhake, U., Bruegmann, B., Hannam, M., and Husa, S. 2007. Total recoil: the maximum kick from nonspinning black-hole binary inspiral. Phys. Rev. Lett. 98, 091101 (4 pages).
Gralla, S.E., Harte, A.I., and Wald, R.M. 2009. A rigorous derivation ofelectromagnetic self-force. Phys. Rev.D 80, 024031 (22 pages).
Gullstrand, A. 1922. Allegemeine Losung des statischen Einkorper-problems in der Ein-steinschen Gravitations Theorie. Arkiv. Mat. Astron. Fys. 16(8), 1–15.
Hansen, C.J., Kawaler, S.D., and Trimble, V. 2004. Stellar Interiors – Physical Principles, Structure, and Evolution. Second Edition. Springer.
Hartle, J.B. 2003. Gravity: An Introduction to Einstein's General Relativity. Addison-Wesley.
Havas, P. 1989. The early history of the ‘problem of motion’ in general relativity, in Einstein and the History of General Relativity, edited by Howard, D. and Stachel, J.Birkhäuser.
Havas, P. and Goldberg, J.N. 1962. Lorentz-invariant equations of motion of point masses in the general theory of relativity. Phys. Rev. 128, 398–414.
Hawking, S.W. 1972. Blackholes in the Brans–Dicke theory of gravitation. Commun. Math. Phys. 25, 167–171.
Hawking, S.W. 1998. A Brief History of Time. 10th Anniversary Edition. Bantam.
Hulse, R.A. and Taylor, J.H. 1975. Discovery of a pulsar in a binary system. Astrophys. J. 195, L51–L53.
Isaacson, R.A. 1968a. Gravitational radiation in the limit of high frequency. I. The linear approximation and geometrical optics. Phys. Rev. 166, 1263–1271.
Isaacson, R.A. 1968b. Gravitational radiation in the limit of high frequency. II. Nonlinear terms and the effective stress tensor. Phys. Rev. 166, 1272–1279.
Ives, H.E., and Stilwell, G.R. 1938. An experimental study of the rate of a moving atomic clock. J. Opt. Soc. Am. 28, 215–226.
Iyer, B.R. and Will, C.M. 1995. Post-Newtonian gravitational radiation reaction for two-body systems: Nonspinning bodies. Phys. Rev.D 52, 6882–6893.
Jackson, J.D. 1998. Classical Electrodynamics. Third Edition. Wiley.
Jordan, P. 1959. Zum gegenwartigen Stand der Diracschen kosmologischen Hypothesen. Z. Phys. 157, 112–121.
Kennefick, D. 2005. Einstein versus the Physical Review. Physics Today 58(9), 43–48.
Kennefick, D. 2007. Traveling at the Speed of Thought: Einstein and the Quest for Gravitational Waves. Princeton University Press.
Kennefick, D. 2009. Testing relativity from the 1919 eclipse – A question of bias. Physics Today 62(3), 37–42.
Kidder, L.E. 1995. Coalescing binary systems of compact objects to 2.5 post-Newtonian order. V Spin effects. Phys. Rev.D 52, 821–847.
Kopal, Z. 1959. Close Binary Systems. Chapman and Hall.
Kopal, Z. 1978. Dynamics of Close Binary Systems. Reidel.
Kozai, Y. 1962. Secular perturbations of asteroids with high inclination and eccentricity. Astron. J. 67, 591–598.
Kramer, M., Stairs, I.H., Manchester, R.N., et al. 2006. Tests of general relativity from timing the double pulsar. Science 314, 97–102.
Kundu, P.K., Cohen, I.M., and Dowling, D.R. 2011. Fluid Mechanics. Fifth Edition. Academic Press.
Landau, L.D. 1932. On the theory of stars. Phys. Z. Sowjetunion 1, 285–288.
Landau, L.D. and Lifshitz, E.M. 1976. Mechanics. Third Edition. Butterworth-Heinemann.
Landau, L.D. and Lifshitz, E.M. 1987. Fluid Mechanics. Second Edition. Butterworth-Heinemann.
Landau, L.D. and Lifshitz, E.M. 2000. The Classical Theory of Fields. Fourth Edition. Butterworth-Heinemann.
Lattimer, J.M. and Prakash, M. 2001. Neutron star structure and the equation of state. Astrophys. J. 550, 426–442.
Lattimer, J.M. and Prakash, M. 2007. Neutron star observations: Prognosis for equation of state constraints. Phys. Report 442, 109–165.
Lidov, M.L. 1962. The evolution of orbits of artificial satellites of planets under the action of gravitational perturbations of external bodies. Planetary and Space Science 9, 719–759.
Lincoln, C.W. and Will, C.M. 1990. Coalescing binary systems of compact objects to 2.5 post-Newtonian order: Late-time evolution and gravitational-radiation emission. Phys. Rev.D 42, 1123–1144.
Lorentz, H.A. and Droste, J. 1917. The motion of a system of bodies under the influence of their mutual attraction, according to Einstein's theory. Versl. K. Akad. Wetensch. Amsterdam 26, 392. English translation in Lorentz H.A. 1937. Collected papers, Vol.5, edited by Zeeman P. and Fokker A.D. Martinus Nijhoff.
Love, A.E.H. 1911. Some Problems of Geodynamics. Cambridge University Press.
Maggiore, M. 2007. Gravitational Waves. Volume 1: Theory and Experiments. Oxford University Press.
Martel, K. and Poisson, E. 2001. Regular coordinate systems for Schwarzschild and other spherical spacetimes. Am. J. Phys. 69, 476–480.
Mathisson, M. 1937. Neue Mechanik materieller Systeme. Acta Phys. Polon. 6, 163–200.
Mccully, J.G. 2006. Beyond the Moon: A Conversational, Common Sense Guide to Understanding the Tides. World Scientific.
Merkowitz, S. 2010. Tests of gravity using lunar laser ranging. Living Rev. Relativity 13. http://www.livingreviews.org/lrr-2010-7.
Mikheev, S.P. and Smirnov, A.Yu. 1985. Resonant amplification of neutrino oscillations in matter and spectroscopy of solar neutrinos. Yad. Fiz. 42, 1441–1448. [Sov. J. Nucl. Phys. 42, 913–917.]
Mikheev, S.P. and Smirnov, A.Yu. 1986. Resonant amplification of neutrino oscillations in matter and solar neutrino spectroscopy. Nuovo CimentoC 9, 17–26.
Misner, C.W., Thorne, K.S., and Wheeler, J.A. 1973. Gravitation. Freeman.
Mora, T. and Will, C.M. 2004. Post-Newtonian diagnostic of quasiequilibrium binary configurations of compact objects. Phys. Rev.D 69, 104021 (25 pages).
Moulton, F.R. 1984. An Introduction to Celestial Mechanics. Second Revised Edition. Dover.
Murray, C.D. and Dermott, S.F. 2000. Solar System Dynamics. Cambridge University Press.
Narayanan, A.S. 2012. An Introduction to Waves and Oscillations in the Sun. Springer.
Newton, I. 1999. The Principia: Mathematical Principles of Natural Philosophy. Translated and edited by Cohen, I.B., Whitman, A., and Budenz, J.University of California Press.
Nordström, G. 1913. Zur Theorie des Gravitation vom Standpunkt des Relativitatsmechanik. Ann. Physik 42, 533–554.
Nordtvedt, K. Jr. 1968a. Equivalence principle for massive bodies. I. Phenomenology. Phys. Rev. 169, 1014–1016.
Nordtvedt, K. Jr. 1968b. Equivalence principle for massive bodies. II. Theory. Phys. Rev. 169, 1017–1025.
Nordtvedt, K. Jr. 1968c. Testing relativity with laser ranging to the Moon. Phys. Rev. 170, 1186–1187.
Nordtvedt, K. Jr. 1999. 30 years of lunar laser ranging and the gravitational interaction. Class. Quantum Grav. 16, A101–A112.
Owen, B.J. 2005. Maximum elastic deformations of compact stars with exotic equations of state. Phys. Rev. Lett. 95, 211101 (4 pages).
Painlevé, P. 1921. La mécanique classique et la théorie de la relativité. C. R. Acad. Sci. (Paris), 173, 677–680.
Papapetrou, A. 1951. Spinning test-particles in general relativity. I. Proc. Roy. Soc. London A209, 248–258.
Pati, M.E. and Will, C.M. 2000. Post-Newtonian gravitational radiation and equations of motion via direct integration of the relaxed Einstein equations: Foundations. Phys. Rev.D 62, 124015 (28 pages).
Pati, M.E. and Will, C.M. 2001. Post-Newtonian gravitational radiation and equations of motion via direct integration of the relaxed Einstein equations. II. Two-body equations of motion to second post-Newtonian order, and radiation-reaction to 3.5 post-Newtonian order. Phys. Rev.D 65, 104008 (21 pages).
Peters, P.C. 1964. Gravitational radiation and the motion of two point masses. Phys. Rev. 136, B1224–B1232.
Peters, P.C. and Mathews, J. 1963. Gravitational radiation from point masses in a Keplerian orbit. Phys. Rev. 131, 435–440.
Pirani, F.A.E. 1964. Introduction to gravitational radiation theory, in Lectures on General Relativity, edited by Trautman, A., Pirani, F.A.E., and Bondi, H., 249–273. Prentice-Hall.
Pound, A. 2010. Motion of small bodies in general relativity: Foundations and implementations of the self-force. PhD thesis, University of Guelph. Available online at arXiv.org/abs/1006.3903.
Pugh, G.E. 1959. Proposal for a satellite test of the Coriolis predictions of general relativity. Weapons System Evaluation Group, Research Memorandum No. 111, Department of Defense (unpublished). Reprinted (2003) in Nonlinear Gravitodynamics. The Lense–Thirring Effect, edited by Ruffini, R.J. and Sigismondi, C., 414–426. World Scientific.
Racine, E. and Flanagan, E.E. 2005. Post-1-Newtonian equations of motion for systems of arbitrarily structured bodies. Phys. Rev.D 71, 044010 (44 pages).
Reif, F. 2008. Fundamentals of Statistical and Thermal Physics. Waveland Pr. Inc.
Rindler, W. 1991. Introduction to Special Relativity. Second Edition. Oxford University Press.
Robertson, H.P. and Noonan, T.W. 1968. Relativity and Cosmology. W.B. Saunders.
Rosenblum, A. 1978. Gravitational radiation energy loss in scattering problems and the Einstein quadrupole formula. Phys. Rev. Lett. 41, 1003–1005.
Rossi, B. and Hall, D.B. 1941. Variation of the rate of decay of mesotrons with momentum. Phys. Rev. 59, 223–228.
Sachs, R.K. 1961. Gravitational waves in general relativity. VI. The outgoing radiation condition. Proc. Roy. Soc. London A264, 309–338.
Sachs, R.K. 1962. Gravitational waves in general relativity. VIII. Waves in asymptotically flat space-time. Proc. Roy. Soc. London A270, 103–126.
Saulson, P.R. 1994. Fundamentals of Interferometric Gravitational Wave Detectors. World Scientific.
Schäfer, G. 1983. On often used gauge transformations in gravitational radiation-reaction calculations. Lett. Nuovo Cimento 36, 105–108.
Schiff, L.I. 1960. Motion of a gyroscope according to Einstein's theory of gravitation. Proc. Nat. Acad. Sci. U.S. 46, 871–882.
Schneider, P., Ehlers, J., and Falco, E.E. 1992. Gravitational Lenses. Springer.
Schutz, B.F. 2003. Gravity from the Ground Up. Cambridge University Press.
Schutz, B.F. 2009. A First Course in General Relativity. Second Edition. Cambridge University Press.
Schwarzschild, K. 1916. Uber das Gravitationsfeld eines Massenpunktes nach der Einstein-schen Theorie. Sitzber. Deut. Akad. Wiss. Berlin, Kl. Math.-Phys. Tech., 189–196. For an English translation, see arXiv.org/abs/physics/9905030.
Sellier, A. 1994. Hadamard's finite part concept in dimension n ≥ 2, distributional definition, regularization forms and distributional derivatives. Proc. R. Soc. London, A445, 69–98.
Shapiro, I.I. 1964. Fourth test of general relativity. Phys. Rev. Lett. 13, 789–791.
Shapiro, I.I.Pettengill, G.H., Ash, M.E., et al. 1968. Fourth test of general relativity: Preliminary results. Phys. Rev. Lett. 20, 1265–1269.
Shapiro, I.I.Reasenberg, R.D., Chandler, J.F., and Babcock, R.W. 1988. Measurement of the de Sitter precession of the Moon: A relativistic three-body effect. Phys. Rev. Lett. 61, 2643–2646.
Shapiro, S.L. and Teukolsky, S.A. 1983. Black Holes, White Dwarfs and Neutron Stars: The Physics ofCompact Objects. Wiley.
Shapiro, S.S., Davis, J.L., Lebach, D.E., and Gregory, J.S. 2004. Measurement of the solar gravitational deflection of radio waves using geodetic very-long-baseline interferometry data, 1979–1999. Phys. Rev. Lett. 92, 121101 (4 pages).
Smith, S.F. and Havas, P. 1965. Effects of gravitational radiation reaction in the general relativistic two-body problem by a Lorentz-invariant approximation method. Phys. Rev. 138, B495–B508.
Soffel, M.H. 1989. Relativity in Astrometry, Celestial Mechanics and Geodesy. Springer-Verlag.
Sotiriou, T.P. and Faraoni, V. 2012. Black holes in scalar–tensor gravity. Phys. Rev. Lett. 108, 081103 (4 pages).
Stairs, I.H., Faulkner, A.J., Lyne, A.G., et al. 2005. Discovery of three wide-orbit binary pulsars: Implications for binary evolution and equivalence principles. Astrophys. J. 632, 1060–1068.
Steiner, A.W., Lattimer, J.M., and Brown, E.F. 2010. The equation of state from observed masses and radii of neutron stars. Astrophys. J. 722, 33–54.
Steves, B.A. and Maciejewski, A.J. 2001. The Restless Universe: Applications of Gravitational N-Body Dynamics to Planetary, Stellar and Galactic Systems. Institute of Physics.
Su, Y., Heckel, B.R., Adelberger, E.G., et al. 1994. New tests of the universality of free fall. Phys. Rev.D 50, 3614–3636.
Tassoul, J.L. 1978. Theory of Rotating Stars. Princeton University Press.
Taylor, J.H., Fowler, L.A., and McCulloch, P.M. 1979. Measurements of general relativistic effects in the binary pulsar PSR 1913+16. Nature 277, 437–440.
Taylor, S. and Poisson, E. 2008. Nonrotating black hole in a post-Newtonian tidal environment. Phys. Rev.D 78, 084016 (26 pages).
Thirring, H. and Lense, J. 1918. Uber den Einfluss der Eigenrotation der Zentralkörper auf die Bewegung der Planeten und Monde nach des Einsteinschen Gravitationstheorie. Phys. Z. 19, 156–163.
Thorne, K.S. 1969. Nonradial pulsation of general-relativistic stellar models. IV The weak-field limit. Astrophys. J. 158, 997–1019.
Thorne, K.S. 1980. Multipole expansions of gravitational radiation, Rev. Mod. Phys. 52, 299–340.
Thorne, K.S. and Kovacs, S.J. 1975. The generation of gravitational waves. I. Weak-field sources. Astrophys. J. 200, 245–262.
Thorne, K.S. and Will, C.M. 1970. Theoretical frameworks for testing relativistic gravity. I. Foundations. Astrophys. J. 163, 595–610.
Tooper, R.F. 1965. Adiabatic fluid spheres in general relativity. Astrophys. J. 142, 1541–1562.
Turner, M. 1977. Tidal generation of gravitational waves from orbiting Newtonian stars. I. General formalism. Astrophys. J. 216, 914–929.
Ushomirsky, G., Cutler, C., and Bildsten, L. 2000. Deformations of accreting neutron star crusts and gravitational wave emission. Mon. Not. R. Astr. Soc. 319, 902–932.
Wagoner, R.V. and Will, C.M. 1976. Post-Newtonian gravitational radiation from orbiting point masses, Astrophys. J. 210, 764–775.
Wahlquist, H. 1987. The Doppler response to gravitational waves from a binary star source. Gen. Relativ. Gravit. 19, 1101–1113.
Wald, R.M. 1984. General Relativity. University of Chicago Press.
Walker, M. and Will, C.M. 1980. The approximation of radiative effects in relativistic gravity: Gravitational radiation reaction and energy loss in nearly Newtonian systems. Astrophys. J. 242, L129–L133.
Walsh, D., Carswell, R.F., and Weymann, R.J. 1979. 0957 + 561 A, B – Twin quasistellar objects or gravitational lens. Nature 279, 381–384.
Weinberg, S. 1972. Gravitation and Cosmology. Wiley.
Weisberg, J.M., Nice, D.J., and Taylor, J.H. 2010. Timing measurements of the relativistic binary pulsar PSR B1913+16. Astrophys. J. 722, 1030–1034.
Whitehead, A.N. 1922. The Principle of Relativity, with Applications to Physical Science. Cambridge University Press.
Whitrow, G.J. and Morduch, G.E. 1965. Relativistic theories of gravitation: A comparative analysis with particular reference to astronomical tests. Vistas in Astronomy 6, 1–67.
Will, C.M. 1971a. Theoretical frameworks for testing relativistic gravity. II. Parameterized post-Newtonian hydrodynamics, and the Nordtvedt effect. Astrophys. J. 163, 611–628.
Will, C.M. 1971b. Theoretical frameworks for testing relativistic gravity. III. Conservation laws, Lorentz invariance, and values of the PPN parameters. Astrophys. J. 169, 125–140.
Will, C.M. 1971c. Relativistic gravity in the solar system. II. Anisotropy in the Newtonian gravitational constant. Astrophys. J. 169, 141–155.
Will, C.M. 1983. Tidal gravitational radiation from homogeneous stars. Astrophys. J. 274, 858–874.
Will, C.M. 1988. Henry Cavendish, Johann von Soldner, and the deflection of light. Am. J. Phys. 56, 413–415.
Will, C.M. 1993. Theory and Experiment in Gravitational Physics. Revised Edition. Cambridge University Press.
Will, C.M. 2005. Post-Newtonian gravitational radiation and equations of motion via direct integration of the relaxed Einstein equations. III. Radiation reaction for binary systems with spinning bodies. Phys. Rev.D 71, 084027 (15 pages).
Will, C.M. 2006a. Special relativity: A centenary perspective. Einstein 1905-2005: Poincare Seminar 2005, edited by Damour, T., Darrigol, O., Duplantier, B. and Rivasseau, V, 33–58. Birkhauser Publishing.
Will, C.M. 2006b. The confrontation between general relativity and experiment. Living Rev. Relativity 9. http://www.livingreviews.org/lrr-2006-3/.
Will, C.M. 2010. Resource letter PTG-1: Precision tests of gravity. Am. J. Phys. 78, 1240–1247.
Will, C.M. and Nordtvedt, K. Jr. 1972a. Conservation laws and preferred frames in relativistic gravity. I. Preferred-frame theories and an extended PPN formalism. Astrophys. J. 177, 757–774.
Will, C.M. and Nordtvedt, K. Jr. 1972b. Conservation laws and preferred frames in relativistic gravity. II. Experimental evidence to rule out preferred-frame theories of gravity. Astrophys. J. 177, 775–792.
Will, C.M. and Wiseman, A.G. 1996. Gravitational radiation from compact binary systems: Gravitational waveforms and energy loss to second post-Newtonian order. Phys. Rev.D 54, 4813–4848.
Williams, J.G., Turyshev, S.G., and Boggs, D.H. 2009. Lunar laser ranging tests of the equivalence principle with the Earth and Moon. Int. J. Mod. Phys.D 18, 1129–1175.
Wiseman, A.G. 1992. Coalescing binary systems of compact objects to (post)5/2-Newtonian order. II. Higher-order wave forms and radiation recoil. Phys. Rev.D 46, 1517–1539.
Wiseman, A.G. and Will, C.M. 1991. Christodoulou's nonlinear gravitational-wave memory: Evaluation in the quadrupole approximation. Phys. Rev.D 44, R2945–R2949.
Wolfenstein, L. 1978. Neutrino oscillations in matter. Phys. Rev.D 17, 2369–2374.
Zlochower, Y., Campanelli, M. and Lousto, C.O. 2011. Modeling gravitational recoil from black-hole binaries using numerical relativity. Class. Quantum Grav. 28, 114015 (11 pages).

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Book summary page views

Total views: 0 *
Loading metrics...

* Views captured on Cambridge Core between #date#. This data will be updated every 24 hours.

Usage data cannot currently be displayed.