Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-26T15:08:21.989Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  23 November 2018

Eric Peterson
Affiliation:
Harvard University, Massachusetts
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2018

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adams, J. F. and Atiyah, M. F.. K-theory and the Hopf invariantQ. J. Math., 17(1):3138, 1966. [163]Google Scholar
Ando, M., Blumberg, A, J., Gepner, D., Hopkins, M. J., and Rezk, C.. An ∞-categorical approach to R-line bundles, R-module Thom spectra, and twisted R-homologyJ. Topol., 7(3):869893, 2014. [334]Google Scholar
Anderson, D. W., Brown, E. H., Jr., and Peterson, F. P.. The structure of the Spin cobordism ringAnn. Math. (2), 86(2):271298, 1967. [353]Google Scholar
Atiyah, M. F., Bott, R., and Shapiro, A.. Clifford modulesTopology, 3(suppl. 1):338, 1964. [353]Google Scholar
Adams, J. F.. Vector fields on spheresTopology, 1(1):6365, 1962. [39]Google Scholar
Adams, J. F.. On the groups J(X): IVTopology, 5:2171, 1966. [148, 161, 163]Google Scholar
Adams, J. F.. Primitive elements in the K-theory of BSUQ. J. Math., 27(2):253262, 1976. [251]Google Scholar
Frank Adams, J.. Maps between classifying spaces: IIInvent. Math., 49(1):165, 1978. [306]Google Scholar
Adams, J. FInfinite loop. Princeton University Press, Princeton, NJ; University of Tokyo Press, Tokyo, 1978. [v, 78]CrossRefGoogle Scholar
Adams, J. F.Stable homotopy and generalised homology. University of Chicago Press, Chicago, IL, 1995. Reprint of the 1974 original. [x, 43, 85, 94, 95]Google Scholar
Adem, J.. The iteration of the Steenrod squares in algebraic topologyPNAS, 38(8):720726, 1952. [83]CrossRefGoogle ScholarPubMed
Ando, M., French, C. P., and Ganter, N.. The Jacobi orientation and the two-variable elliptic genusAlgebr. Geom. Topol., 8(1):493539, 2008. [270]Google Scholar
Ando, M., Hopkins, M. J., and Rezk, C.. Moments of measures on , with applications to maps between p-adic K-theory spectra. Unpublished. [344]Google Scholar
Ando, M., Hopkins, M. J., and Rezk, C.. Multiplicative orientations of ko-theory and the spectrum of topological modular forms. www.math.illinois.edu/∼mando/papers/koandtmf .pdf, accessed: November 16, 2016. [335, 336, 338, 343, 346]Google Scholar
Ando, M., Hopkins, M. J., and Strickland, N. P.. Elliptic spectra, the Witten genus and the theorem of the cubeInvent. Math., 146(3):595687, 2001. [4, 226, 227, 228, 232, 235, 237, 241, 250, 251, 252, 253, 266, 267, 269, 351]Google Scholar
Ando, M., Hopkins, M. J., and Strickland, N. P.. The sigma orientation is an H mapAmer. J. Math., 126(2):247334, 2004. [66, 78, 317, 319, 322]Google Scholar
Angeltveit, V. and Lind, J. A.. Uniqueness of BPnJ. Homotopy Relat. Struct., 12(1):1730, 2017. [194]Google Scholar
Ando, M. and Morava, J.. A renormalized Riemann–Roch formula and the Thom isomorphism for the free loop space. In Topology, geometry, and algebra: interactions and new directions (Stanford, CA, 1999), pages 1136. American Mathematical Society, Providence, RI, 2001. [270]Google Scholar
Amitsur, S. A.. Simple algebras and cohomology groups of arbitrary fieldsTrans. Amer. Math. Soc., 90:73112, 1959. [100]Google Scholar
Ando, M., Morava, J., and Sadofsky, H.. Completions of Z/(p)-Tate cohomology of periodic spectraGeom. Topol., 2(1):145174, 1998. [356]Google Scholar
Ando, M.. Isogenies of formal group laws and power operations in the cohomology theories EnDuke Math. J., 79(2):423485, 1995. [319, 320, 321]Google Scholar
Adams, J. F. and Priddy, S. B.. Uniqueness of BSOMath. Proc. Cambridge Philos. Soc., 80(3):475509, 1976. [251, 340]Google Scholar
Araki, S.Typical formal groups in complex cobordism and K-theory. Kinokuniya Book-Store Co., Ltd., Tokyo, 1973. [112, 125]Google Scholar
Ando, M. and Strickland, N. P.. Weil pairings and Morava K-theoryTopology, 40(1):127156, 2001. [227, 232, 236, 241, 242, 243, 244, 246, 247]Google Scholar
Atiyah, M. F.. Thom complexesProc. Lond. Math. Soc., 3(1):291310, 1961. [357]Google Scholar
Baez, J.. Euler characteristic versus homotopy cardinality. Lecture at the Program on Applied Homotopy Theory, Fields Institute, Toronto, September, 2003. [368]Google Scholar
Baker, A.. Combinatorial and arithmetic identities based on formal group laws. In Algebraic Topology Barcelona 1986, pages 1734. New York: Springer, 1987. [112]Google Scholar
Baker, A.. Power operations and coactions in highly commutative homology theoriesPubl. Res. Inst. Math. Sci., 51(2):237272, 2015. [309]Google Scholar
Balmer, P.. Spectra, spectra, spectra: tensor triangular spectra versus Zariski spectra of endomorphism ringsAlgebr. Geom. Topol., 10(3):15211563, 2010. [154, 155]Google Scholar
Barthel, T.. Chromatic completion. http://people.mpim-bonn.mpg.de/tbarthel/CC.pdf, accessed: October 26, 2016. [158]Google Scholar
Bauer, T.. Computation of the homotopy of the spectrum tmf . ArXiv Mathematics e-prints, November 2003. [333]Google Scholar
Bauer, T.. Formal plethoriesAdv. Math., 254:497569, 2014. [178]Google Scholar
[BCG+ 88] Baker, A., Carlisle, D., Gray, B., Hilditch, S., Ray, N., and Wood, R.. On the iterated complex transferMath. Z., 199(2):191207, 1988. [374]Google Scholar
Bendersky, M., Curtis, E. B., and Miller, H. R.. The unstable Adams spectral sequence for generalized homologyTopology, 17(3):229– 248, 1978. [169, 171, 177, 178]Google Scholar
Beilinson, A. A. and Drinfeld, V.Quantization of Hitchin’s integrable system and Hecke eigensheaveswww.math.uchicago.edu/mitya/langlands/hitchin/BD-hitchin.pdf, accessed July 20, 2018. [54]Google Scholar
Beaudry, A.. The chromatic splitting conjecture at n = p = 2. ArXiv e-prints, February 2015. [363]Google Scholar
Beardsley, J.. Constructions of MU by attaching Ek -cells in odd degrees. ArXiv e-prints, August 2017. [360]Google Scholar
Behrens, M.. A modular description of the K (2)-local sphere at the prime 3Topology, 45(2):343402, 2006. [366]Google Scholar
Behrens, M.. Root invariants in the Adams spectral sequenceTrans. Amer. Math. Soc., 358(10):42794341, 2006. [358]Google Scholar
Behrens, M.. Buildings, elliptic curves, and the K (2)-local sphereAmer. J. Math., 129(6):15131563, 2007. [366]Google Scholar
Behrens, M.. Congruences between modular forms given by the divided β family in homotopy theoryGeom. Topol., 13(1):319357, 2009. [366]Google Scholar
Behrens, M.. The homotopy groups of SE(2) at p ≥ 5 revisitedAdv. Math., 230(2):458492, 2012. [366]CrossRefGoogle Scholar
Behrens, M.. The construction of tmf . In Topological modular forms, pages 149206. American Mathematical Society, Providence, RI, 2014. [284, 323, 325, 326, 327, 328, 329, 330, 331]Google Scholar
Beilinson, A.A.. Residues and adelesFunctional Analysis and Its Applications, 14(1):3435, 1980. [164]Google Scholar
Barthel, T. and Frankland, M.. Completed power operations for Morava E-theoryAlgebr. Geom. Topol., 15(4):20652131, 2015. [103]Google Scholar
Boardman, J. M., Johnson, D.C., and Wilson, W. S.. Unstable operations in generalized cohomology. In Handbook of algebraic topology, pages 687828. North-Holland, Amsterdam, 1995. [170, 176, 187]Google Scholar
Buchstaber, V. and Lazarev, A.. Dieudonné modules and p-divisible groups associated with Morava K-theory of Eilenberg–Mac Lane spacesAlgebr. Geom. Topol., 7:529564, 2007. [207]Google Scholar
Behrens, M. and Laures, G.β-family congruences and the f -invariantGeom. Topol. Monographs, 16:929, 2009. [281]CrossRefGoogle Scholar
Behrens, M. and Lawson, T.. Topological automorphic formsMem. Amer. Math. Soc., 204(958):xxiv–141, 2010. [326, 373]Google Scholar
Baas, N.A. and Madsen, I.. On the realization of certain modules over the Steenrod algebraMathematica Scandinavica, 31(1):220224, 1973. [159]Google Scholar
Bahri, A. P. and Mahowald, M. E.. A direct summand in H (MO〈8〉, Z2)Proc. Amer. Math. Soc., 78(2):295298, 1980. [351]Google Scholar
Bruner, R. R., May, J. P., McClure, J. E., and Steinberger, M.H ring spectra and their applications. Springer-Verlag, Berlin, 1986. [75, 76, 77, 78, 83, 148, 164, 284, 319]Google Scholar
J. Boardman, M.. The eightfold way to BP-operations or E E and all that. In Current trends in algebraic topology, Part 1 (London, Ont., 1981), pages 187226. American Mathematical Society, Providence, RI, 1982. [105]Google Scholar
J. Boardman, M.. Conditionally convergent spectral sequences. In Homotopy invariant algebraic structures (Baltimore, MD, 1998), pages 4984. American Mathematical Society, Providence, RI, 1999. [104]Google Scholar
Bousfield, A. K.. The localization of spaces with respect to homologyTopology, 14:133150, 1975. [309]Google Scholar
Bousfield, A. K.. The localization of spectra with respect to homologyTopology, 18(4):257281, 1979. [104, 110, 155]Google Scholar
Bousfield, A. K.. On λ-rings and the K-theory of infinite loop spacesK-Theory, 10(1):130, 1996. [309, 372]Google Scholar
Barnes, D., Poduska, D., and Shick, P.. Unstable Adams spectral sequence charts. In Adams memorial symposium on algebraic topology: Manchester 1990, volume 2, page 87. Cambridge University Press, Cambridge, 1992. [168]Google Scholar
Breen, L.Fonctions thêta et théorème du cube. Springer-Verlag, Berlin, 1983. [262, 272]Google Scholar
Browder, W.. The Kervaire invariant of framed manifolds and its generalizationAnn. Math. (2), 90(2):157186, 1969. [164]Google Scholar
Barthel, T. and Stapleton, N.. The character of the total power operationGeom. Topol., 21(1):385440, 2017. [291]Google Scholar
Barthel, T., Schlank, T., and Stapleton, N.. Chromatic homotopy theory is asymptotically algebraic. ArXiv e-prints, November 2017. [367]Google Scholar
Butowiez, J.Y. and Turner, P.. Unstable multiplicative cohomology operationsQ. J. Math., 51(4):437449, 2000. [165]Google Scholar
Cartier, P.. Quantum mechanical commutation relations and theta functions. In Proc. Sympos. Pure Math, 9: 361383, 1966. [260]Google Scholar
Conner, P. E. and Floyd, E. E.The relation of cobordism to K-theories. Springer-Verlag, Berlin, 1966. [146, 354]Google Scholar
Chan, K.. A simple proof that the unstable (co)-homology of the Brown–Peterson spectrum is torsion freeJ. Pure Appl. Algebra, 26(2):155157, 1982. [193]Google Scholar
Clausen, D. and Mathew, A.. A short proof of telescopic Tate vanishingProc. Amer. Math. Soc., 145(12):54135417, 2017. [345]Google Scholar
Cohen, R. L.. Odd primary infinite families in stable homotopy theoryMem. Amer. Math. Soc., 30(242):viii–92, 1981. [211]Google Scholar
Davis, D. M.. Computing v1-periodic homotopy groups of spheres and some compact Lie groups. In Handbook of algebraic topology, pages 9931048. North-Holland, Amsterdam, 1995. [309]Google Scholar
Deligne, P.. Cristaux ordinaires et coordonnées canoniques. In Algebraic surfaces (Orsay, 1976–78), pages 80137. Springer, Berlin, 1981. [326]Google Scholar
Demazure, M.Lectures on p-divisible groups. Springer-Verlag, Berlin, 1986. Reprint of the 1972 original. [197, 221, 226]Google Scholar
Devalapurkar, S. K.. Roots of unity in K (n)-local E -rings. arXiv preprint arXiv:1707.09957, 2017. [372]Google Scholar
Demazure, M. and Gabriel, P.Groupes algébriques. Tome I: Géométrie algébrique, généralités, groupes commutatifs. Masson & Cie, Éditeur, Paris; North-Holland Publishing Co., Amsterdam, 1970. [275]Google Scholar
Devinatz, E. S. and Hopkins, M. J.. The action of the Morava stabilizer group on the Lubin–Tate moduli space of liftsAmer. J. Math., 117(3):669710, 1995. [160, 202]Google Scholar
Douglas, C. L. and Henriques, A. G.. Topological modular forms and conformal nets. In Mathematical foundations of quantum field theory and perturbative string theory, pages 341354. American Mathematical Society, Providence, RI, 2011. [377]Google Scholar
Devinatz, E. S., Hopkins, M. J., and Smith, J. H.. Nilpotence and stable homotopy theory: IAnn. Math. (2), 128(2):207241, 1988. [148, 360]Google Scholar
Davis, D. G. and Lawson, T.. Commutative ring objects in pro-categories and generalized Moore spectraGeom. Topol., 18(1):103140, 2014. [156]Google Scholar
Drinfeld, V. G.. Elliptic modulesMat. Sb. (N.S.), 94(136):594627, 656, 1974. [136]Google Scholar
Elmendorf, A. D., Kriz, I., Mandell, M. A., and May, J. P.Rings, modules, and algebras in stable homotopy theory. American Mathematical Society, Providence, RI, 1997. [74, 102, 283, 343]Google Scholar
Fox, T. F.. The construction of cofree coalgebrasJ. Pure Appl. Algebra, 84(2):191198, 1993. [186]Google Scholar
[G+ 13] Ganter, N.. Power operations in orbifold Tate K-theoryHomol Homotopy Appl, 15(1):313342, 2013. [322]Google Scholar
Ganter, N.. Stringy power operations in Tate K-theory. ArXiv Mathematics e-prints, January 2007. [322]Google Scholar
Goerss, P. G. and Hopkins, M. J.. Moduli spaces of commutative ring spectra. In Structured ring spectra, pages 151–200. Cambridge University Press, Cambridge, 2004. [284, 309, 323, 326]Google Scholar
Ginzburg, V., Kapranov, M., and Vasserot, E.. Elliptic algebras and equivariant elliptic cohomology. arXiv preprint q-alg/9505012, 1995. [375]Google Scholar
Goerss, P., Lannes, J., and Morel, F.. Hopf algebras, Witt vectors, and Brown–Gitler spectra. In Algebraic topology (Oaxtepec, 1991), pages 111128. American Mathematical Society, Providence, RI, 1993. [204, 205, 206, 209, 210, 211]Google Scholar
Greenlees, J. P. C. and May, J. P.Generalized Tate cohomology. American Mathematical Society, Providence, RI, 1995. [358]Google Scholar
Goerss, P. G.. Hopf rings, Dieudonné modules, and E Ω2 S3 . In Homotopy invariant algebraic structures (Baltimore, MD, 1998), pages 115174. American Mathematical Society, Providence, RI, 1999. [174, 182, 185, 207, 208, 209]Google Scholar
Goerss, P. G.. Quasi-coherent sheaves on the moduli stack of formal groups. Unpublished monograph, 2008. [27, 128]Google Scholar
Goerss, P. G.. Realizing families of Landweber exact homology theoriesNew topological contexts for Galois theory and algebraic geometry (BIRS 2008), 16:4978, 2009. [372]Google Scholar
Goerss, P. G.. Topological modular forms [after Hopkins, Miller and Lurie]. Astérisque, (332):Exp. No. 1005, viii, 221–255, 2010. Séminaire Bourbaki. Volume 2008/2009. Exposés 997–1011. [323]Google Scholar
González, J.. A vanishing line in the BP〈1〉-adams spectral sequenceTopology, 39(6):11371153, 2000. [362]Google Scholar
Giambalvo, V. and Pengelley, D. J.. The homology of MSpinMath. Proc. Cambs. Philos. Soc., 95:427436, 1984. [353]Google Scholar
Grothendieck, A.. Revêtement étales et groupe fondamental (sga1)Lecture Notes in Math., 288, 1971. [56, 102]Google Scholar
Grothendieck, A.Groupes de Barsotti-Tate et cristaux de Dieudonné. Les Presses de l’Université de Montréal, Montreal, Que., 1974. [196, 197, 200, 201, 214]Google Scholar
Gross, B. H.. On canonical and quasi-canonical liftingsInvent. Math., 84(2):321326, 1986. [202]Google Scholar
Grojnowski, I.. Delocalised equivariant elliptic cohomology. In Elliptic cohomology, pages 114121. Cambridge University Press, Cambridge, 2007. [375]Google Scholar
Greenlees, J. P. C. and Sadofsky, H.. The Tate spectrum of vn-periodic complex oriented theoriesMathematische Zeitschrift, 222(3):391405, 1996. [345]Google Scholar
Greenlees, J. P. C. and Strickland, N. P.. Varieties and local cohomology for chromatic group cohomology ringsTopology, 38(5):10931139, 1999. [286, 359]Google Scholar
Hartshorne, R.Algebraic geometry. Springer-Verlag, New York, 1977. [54, 64, 65, 260]Google Scholar
Harris, B.. Bott periodicity via simplicial spacesJ. Algebra, 62(2):450454, 1980. [38]Google Scholar
Hopkins, M., Ando, M., and Strickland, N.. Elliptic cohomology of BO〈8〉 in positive characteristic. 1999. Unpublished. [270]Google Scholar
Hazewinkel, M.Formal groups and applications. AMS Chelsea Publishing, Providence, RI, 2012. Corrected reprint of the 1978 original. [57, 122, 131]CrossRefGoogle Scholar
Dicke, R. H.. Dirac’s cosmology and Mach’s principleNature 192:440441, 1990. [361]Google Scholar
Hedayatzadeh, S. M. H.. Exterior powers of π-divisible modules over fieldsJ. Number Theory, 138:119174, 2014. [218]Google Scholar
Hedayatzadeh, S. M. H.. Exterior powers of Lubin-Tate groupsJ. Théor. Nombres Bordeaux, 27(1):77148, 2015. [218]Google Scholar
Heuts, G.. Lie algebras and vn -periodic spaces. ArXiv e-prints, March 2018. [362]Google Scholar
Hopkins, M. J. and Gross, B. H.. Equivariant vector bundles on the Lubin–Tate moduli space. In Topology and representation theory (Evanston, IL, 1992), pages 2388. American Mathematical Society, Providence, RI, 1994. [200, 202]CrossRefGoogle Scholar
Hopkins, M. J. and Gross, B. H.. The rigid analytic period mapping, Lubin–Tate space, and stable homotopy theoryBull. Amer. Math. Soc. (N.S.), 30(1):7686, 1994. [202]Google Scholar
Hill, M. A. and Hopkins, M. J.. Real Wilson Spaces I. ArXiv e-prints, June 2018. []Google Scholar
Hopkins, M. J. and Hovey, M. A.. Spin cobordism determines real K-theoryMathematische Zeitschrift, 210(1):181196, 1992. [280, 354]Google Scholar
Hopkins, M. J. and Hunton, J. R.. On the structure of spaces representing a Landweber exact cohomology theoryTopology, 34(1):2936, 1995. [187, 209]Google Scholar
Hill, M. A., Hopkins, M. J., and Ravenel, D. C.. On the nonexistence of elements of Kervaire invariant oneAnn. Math., 184(1):1262, 2016. [164, 187, 375]Google Scholar
Hida, H.p-adic automorphic forms on Shimura varieties. Springer-Verlag, New York, 2004. [329]Google Scholar
Hirzebruch, F.Topological methods in algebraic geometry. Springer-Verlag, Berlin, 1995. Reprint of the 1978 edition. [273]Google Scholar
Hopkins, M. J., Kuhn, N. J., and Ravenel, D. C.. Generalized group characters and complex oriented cohomology theoriesJ. Amer. Math. Soc., 13(3):553594, 2000. [78, 286, 287, 290, 294, 301, 306, 307, 359]Google Scholar
Hopkins, M. J. and Lurie, J.. Ambidexterity in K (n)-local stable homotopy theory. www.math.harvard.edu/~lurie/papers/Ambidexterity.pdf, accessed: January 9, 2015. [211, 212, 215, 216, 217, 218, 221]Google Scholar
Hopkins, M. J. and Lawson, T.. Strictly commutative complex orientation theory. arXiv preprint arXiv:1603.00047, 2016. [319, 373]Google Scholar
Hughes, A., Lau, J. M., and Peterson, E.. Multiplicative 2-cocycles at the prime 2J. Pure Appl. Algebra, 217(3):393408, 2013. [356]Google Scholar
Hahn, R. and Mitchell, S.. Iwasawa theory for K (1)-local spectraTrans. Amer. Math. Soc., 359(11):52075238, 2007. [366]Google Scholar
Hopkins, M. J. and Miller, H. R.. Elliptic curves and stable homotopy theory I. In Topological modular forms, pages 224275. American Mathematical Society, Providence, RI, 2014. [323]Google Scholar
Hopkins, M. J., Mahowald, M., and Sadofsky, H.. Constructions of elements in Picard groups. In Topology and representation theory (Evanston, IL, 1992), pages 89126. American Mathematical Society, Providence, RI, 1994. [160, 366]Google Scholar
Hopkins, M. J.. Complex oriented cohomology theories and the language of stacks. Unpublished. [43, 106, 115, 127, 140, 144]Google Scholar
Hopkins, M. J.. Topological modular forms, the Witten genus, and the theorem of the cube. In Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Zürich, 1994), pages 554565. Birkhäuser, Basel, 1995. [279, 351, 361]Google Scholar
Hopkins, M. J.. Algebraic topology and modular forms. In Proceedings of the International Congress of Mathematicians, Vol. I (Beijing, 2002), pages 291317. Higher Ed. Press, Beijing, 2002. [351]Google Scholar
Hopkins, M. J.. The mathematical work of Douglas C. RavenelHomol Homotopy Appl., 10(3):113, 2008. [xii, 361]Google Scholar
Hopkins, M. J.. From spectra to stacks. In Topological modular forms, pages 118126. American Mathematical Society, Providence, RI, 2014. [110, 147, 329]Google Scholar
Hopkins, M. J.K (1)-local E ring spectra. In Topological modular forms, pages 301216. American Mathematical Society, Providence, RI, 2014. [331]Google Scholar
Hopkins, M. J.. The string orientation. In Topological modular forms, pages 127142. American Mathematical Society, Providence, RI, 2014. [374]Google Scholar
Hovey, M.. Bousfield localization functors and Hopkins’ chromatic splitting conjecture. In The Čech centennial (Boston, MA, 1993), pages 225250. American Mathematical Society, Providence, RI, 1995. [156, 363]Google Scholar
Hovey, M.vn-elements in ring spectra and applications to bordism theoryDuke Math. J., 88(2):327356, 1997. [354, 355]Google Scholar
Hovey, M.. Morita theory for Hopf algebroids and presheaves of groupoidsAmer. J. Math., 124(6):12891318, 2002. [34, 101, 106]Google Scholar
Hovey, M.. Homotopy theory of comodules over a Hopf algebroid. In Homotopy theory: relations with algebraic geometry, group cohomology, and algebraic K-theory, pages 261304. American Mathematical Society, Providence, RI, 2004. [107]Google Scholar
Hovey, M. and Sadofsky, H.. Tate cohomology lowers chromatic Bousfield classesProc. Amer. Math. Soc., 124(11):35793585, 1996. [345]Google Scholar
Hopkins, M. J. and Smith, J. H.. Nilpotence and stable homotopy theory: IIAnn. Math. (2), 148(1):149, 1998. [148, 149, 150, 151, 152, 153, 159]Google Scholar
Hovey, M. and Strickland, N. P.. Morava K-theories and localisationMem. Amer. Math. Soc., 139(666):viii–100, 1999. [103, 144, 366]Google Scholar
Hovey, M., Shipley, B., and Smith, J.. Symmetric spectraJ. Amer. Math. Soc., 13(1):149208, 2000. [74]Google Scholar
Hunton, J. R. and Turner, P. R.. Coalgebraic algebraJ. Pure Appl. Algebra, 129(3):297313, 1998. [207]Google Scholar
Huan, Z.. Quasi-elliptic cohomology and its power operations. arXiv preprint arXiv:1612.00930, 2016. [322]Google Scholar
Huber, A.. On the Parshin–Beilinson adeles for schemes. In Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg, volume 61, page 249. Springer, New York, 1991. [164]Google Scholar
Husemöller, D.Elliptic curves. Springer-Verlag, New York, second edition, 2004. [259]Google Scholar
Johnson, N. and Noel, J.. For complex orientations preserving power operations, p-typicality is atypicalTopology Appl., 157(14):2271– 2288, 2010. [77, 131]Google Scholar
Johnson, D. C. and Wilson, W. S.. Projective dimension and Brown– Peterson homologyTopology, 12:327353, 1973. [193]Google Scholar
Johnson, D. C. and Wilson, W. S.BP operations and Morava’s extraordinary K-theoriesMath. Z., 144(1):5575, 1975. [149]Google Scholar
Katz, N. M.. Crystalline cohomology, Dieudonné modules, and Jacobi sums. In Automorphic forms, representation theory and arithmetic (Bombay, 1979), pages 165246. Tata Institute of Fundamental Research, Bombay, 1981. [195, 196, 197, 200]Google Scholar
Kitaev, A.. Periodic table for topological insulators and superconductors. In AIP conference proceedings, volume 1134, pages 2230. American Institute of Physics, College Park, MD, 2009. [377]Google Scholar
Kitchloo, N. and Laures, G.. Real structures and Morava K-theoriesK-Theory, 25(3):201214, 2002. [281]Google Scholar
Kitchloo, N., Laures, G., and Wilson, W. S.. The Morava K-theory of spaces related to BOAdv. Math., 189(1):192236, 2004. [147, 280]Google Scholar
Katz, N. M. and Mazur, B.Arithmetic moduli of elliptic curves. Princeton University Press, Princeton, NJ, 1985. [270]Google Scholar
Knight, E.A p-adic Jacquet–Langlands correspondence. PhD thesis, Harvard University Cambridge, MA, 2016. [367]Google Scholar
Kochman, S. O.. A chain functor for bordismTrans. Amer. Math. Soc., 239:167196, 1978. [1]CrossRefGoogle Scholar
Krause, H.. Smashing subcategories and the telescope conjecture: an algebraic approachInvent. Math., 139(1):99133, 2000. [359]Google Scholar
Kříž, I.. All complex Thom spectra are harmonic. In Topology and representation theory (Evanston, IL, 1992), pages 127134. American Mathematical Society, Providence, RI, 1994. [158, 306]Google Scholar
Kreck, M. and Stolz, S.. H2 -bundles and elliptic homologyActa Mathematica, 171(2):231261, 1993. [355]Google Scholar
Kuhn, N. J.. Character rings in algebraic topology. In Advances in homotopy theory (Cortona, 1988), pages 111126. Cambridge University Press, Cambridge, 1989. [299]Google Scholar
Kuhn, N. J.. A guide to telescopic functorsHomol Homotopy Appl., 10(3):291319, 2008. [339]Google Scholar
Landweber, P. S.. Invariant regular ideals in Brown–Peterson homologyDuke Math. J., 42(3):499505, 1975. [130]Google Scholar
Landweber, P. S.. Homological properties of comodules over MU (MU) and BP (BP)Amer. J. Math., 98(3):591610, 1976. [140]Google Scholar
Landweber, P. S.. Elliptic cohomology and modular forms. In Elliptic curves and modular forms in algebraic topology, pages 5568. Springer, New York, 1988. [354]Google Scholar
Laures, G.. An E splitting of spin bordismAmer. J. Math., 125(5):9771027, 2003. [280]Google Scholar
Laures, G.K (1)-local topological modular formsInvent. Math., 157(2):371403, 2004. [331]Google Scholar
Lawson, T.. Realizability of the Adams–Novikov spectral sequence for formal A-modulesProc. Amer. Math. Soc., 135(3):883890, 2007. [373, 376]Google Scholar
Lawson, T.. An overview of abelian varieties in homotopy theory. In New topological contexts for Galois theory and algebraic geometry (BIRS 2008), pages 179214. Geometry and Topology Publishers, Coventry, 2009. [331]Google Scholar
Lawson, T.. Structured ring spectra and displaysGeom. Topol., 14(2):11111127, 2010. [203]Google Scholar
Lawson, T.. Secondary power operations and the Brown–Peterson spectrum at the prime 2. arXiv preprint arXiv:1703.00935, 2017. [131, 373]Google Scholar
Lazard, M.. Sur les groupes de Lie formels à un paramètreBull. Soc. Math. France, 83:251274, 1955. [111, 115, 132]Google Scholar
Lazard, M.Commutative formal groups. Springer-Verlag, Berlin, 1975. [55, 131, 204, 369, 370, 371, 372]Google Scholar
Lazarev, A.. Deformations of formal groups and stable homotopy theoryTopology, 36(6):13171331, 1997. [136, 137, 216]Google Scholar
Lin, W. H.. On conjectures of Mahowald, Segal and SullivanMath. Proc. Cambridge Philos. Soc., 87(3):449458, 1980. [357]Google Scholar
Lawson, T. and Naumann, N.. Commutativity conditions for truncated Brown–Peterson spectra of height 2J. Topol., 5(1):137168, 2012. [131, 194]Google Scholar
Landweber, P. S., Ravenel, D. C., and Stong, R. E.. Periodic cohomology theories defined by elliptic curvesContemp. Math., 181:317317, 1995. [4, 354]Google Scholar
Laures, G. and Schuster, B.. Towards a splitting of the K (2)-local string bordism spectrum. ArXiv e-prints, October 2017. [275, 353]Google Scholar
Lubin, J. and Tate, J.. Formal complex multiplication in local fieldsAnn. Math. (2), 81(2): 380387, 1965. [202]Google Scholar
Lubin, J. and Tate, J.. Formal moduli for one-parameter formal Lie groupsBull. Soc. Math. France, 94:4959, 1966. [134, 136, 138]Google Scholar
Lubin, J.. Finite subgroups and isogenies of one-parameter formal lie groupsAnn. Math., 85(2):296302, 1967. [316]Google Scholar
Lurie, J.. Chromatic homotopy. www.math.harvard.edu/~lurie/252x.html, accessed: September 22, 2016. [26, 73, 119, 124, 130, 138, 140, 157]Google Scholar
Lurie, J.. Elliptic cohomology II: orientations. http://math.harvard.edu/∼lurie/papers/Elliptic-II.pdf, accessed: February 4, 2018. [361]Google Scholar
Lurie, J.. Higher algebra. www.math.harvard.edu/~lurie/papers/HA.pdf, accessed: September 22, 2016. [74, 77, 79, 103, 110, 167, 283]Google Scholar
Lurie, J.. Spectral algebraic geometry. www.math.harvard.edu/~lurie/papers/SAG-rootfile.pdf, accessed: September 22, 2016. [80, 104]Google Scholar
Lurie, J.. A survey of elliptic cohomology. www.math.harvard.edu/∼lurie/papers/survey.pdf, accessed: April 4, 2017. [263, 323, 375, 376]Google Scholar
Lurie, J.Higher topos theory. Princeton University Press, Princeton, NJ, 2009. [323]Google Scholar
Mahowald, M.. Ring spectra which are Thom complexesDuke Math. J., 46(3):549559, 1979. [13]Google Scholar
Manin, Yu I. The theory of commutative formal groups over fields of finite characteristicRuss. Math. Surv., 18(6):1, 1963. [325]Google Scholar
Mandell, M. A.E algebras and p-adic homotopy theoryTopology, 40(1):4394, 2001. [308]Google Scholar
Margolis, H. R.Spectra and the Steenrod algebra. North-Holland Publishing Co., Amsterdam, 1983. [155]Google Scholar
Matsumura, H.Commutative ring theory. Cambridge University Press, Cambridge, second edition, 1989. Translated from the Japanese by M. Reid. [145]Google Scholar
Mathew, A.. The Galois group of a stable homotopy theoryAdv. Math., 291:403541, 2016. [104]Google Scholar
May, J. P.. Problems in infinite loop space theory. In Notas de Matemfiticas y Simposio, Ntimero, volume 1, pages 111125, 1974. [373]Google Scholar
May, J. P.. Classifying spaces and fibrationsMem. Amer. Math. Soc., 1(155):xiii–98, 1975. [11]Google Scholar
May, J. P.E ring spaces and E ring spectra. Springer-Verlag, Berlin, 1977. [16, 284, 334]Google Scholar
May, J. P.Equivariant homotopy and cohomology theory. American Mathematical Society, Providence, RI, 1996. [77, 79, 288]Google Scholar
May, J. P.A concise course in algebraic topology. University of Chicago Press, Chicago, IL, 1999. [248]Google Scholar
McClure, J. E.. Dyer–Lashof operations in K-theoryBull. Amer. Math. Soc. (N.S.), 8(1):6772, 1983. [327]Google Scholar
McTague, C.tmf is not a ring spectrum quotient of String bordism. arXiv preprint arXiv:1312.2440, 2013. [355]Google Scholar
Messing, W.The crystals associated to Barsotti–Tate groups: with applications to abelian schemes. Springer-Verlag, Berlin, 1972. [196]Google Scholar
Michaelis, W.. Coassociative coalgebras. In Handbook of algebra, volume 3, pages 587788. North-Holland Publishing Co., Amsterdam, 2003. [221, 222]Google Scholar
Miller, H.. Notes on Cobordism. www-math.mit.edu/~hrm/papers/cobordism.pdf, accessed: October 4, 2016. [127]Google Scholar
Miller, H.. Sheaves, gradings, and the exact functor theorem. Unpublished. [102]Google Scholar
Milnor, J.. The Steenrod algebra and its dualAnn. Math. (2), 67:150171, 1958. [26]Google Scholar
Miller, H. R.. On relations between Adams spectral sequences, with an application to the stable homotopy of a Moore spaceJ. Pure Appl. Algebra, 20(3):287312, 1981. [110]Google Scholar
Miller, H. R.. Universal Bernoulli numbers and the S 1 -transfer. In Current trends in algebraic topology, Part 2 (London, Ont., 1981), pages 437449. American Mathematical Society, Providence, RI, 1982. [348, 374]Google Scholar
Milne, J. S.. Abelian varieties. 2008. www.jmilne.org/math/CourseNotes/av.html, accessed July 20, 2018. [260, 261, 325]Google Scholar
Mitchell, S. A.. Power series methods in unoriented cobordism. In Proceedings of the Northwestern Homotopy Theory Conference (Evanston, Ill., 1982), pages 247254. American Mathematical Society, Providence, RI, 1983. [45]Google Scholar
Mitchell, S. A.K (1)-local homotopy theory, Iwasawa theory, and algebraic K-theory. In Handbook of K-theory. Springer Science & Business Media, New York, 2005. [157, 366]Google Scholar
Milnor, J. W. and Moore, J. C.. On the structure of Hopf algebrasAnn. Math. (2), 81:211264, 1965. [38, 255]Google Scholar
Mazur, B. and Messing, W.Universal extensions and one dimensional crystalline cohomology. Springer-Verlag, Berlin, 1974. [200, 201, 369]Google Scholar
Mathew, A. and Meier, L.. Affineness and chromatic homotopy theoryJ. Topol., 8(2):476528, 2015. [362]Google Scholar
Mathew, A., Naumann, N., and Noel, J.. On a nilpotence conjecture of j. p. may J. P. MayJ. Topol., 8(4):917932, 2015. [156]Google Scholar
Morava, J.. Noetherian localisations of categories of cobordism comodulesAnn. Math. (2), 121(1):139, 1985. [201, 202, 364]Google Scholar
Morava, J.. Forms of K-theoryMath. Z., 201(3):401428, 1989. [ix, 4, 198, 266, 267]Google Scholar
Morava, J.. Complex cobordism in algebraic topology. arXiv, 2007. [155]Google Scholar
Morava, J.. The motivic Thom isomorphism. In Elliptic cohomology, pages 265285. Cambridge University Press, Cambridge, 2007. [270]Google Scholar
Morava, J.. Abelian varieties and the Kervaire invariant. arXiv preprint arXiv:1105.0539, 2011. [164]Google Scholar
Morava, J.. Local fields and extraordinary K-theory. arXiv preprint arXiv:1207.4011, 2012. [286]Google Scholar
Morava, J.. Complex orientations for T HH of some perfectoid fields. arXiv, 2016. [270, 361]Google Scholar
Mahowald, M. E. and Ravenel, D. C.. The root invariant in homotopy theoryTopology, 32(4):865898, 1993. [358]Google Scholar
Mahowald, M., Ravenel, D., and Shick, P.. The triple loop space approach to the telescope conjecture. In Homotopy methods in algebraic topology (Boulder, CO, 1999), pages 217284. American Mathematical Society, Providence, RI, 2001. [359]Google Scholar
Miller, H. R., Ravenel, D. C., and Wilson, W. S.. Periodic phenomena in the Adams–Novikov spectral sequenceAnn. Math. (2), 106(3):469516, 1977. [108, 163, 164, 362]Google Scholar
Mahowald, M. and Shick, P.. Root invariants and periodicity in stable homotopy theoryBull. Lond. Math. Soc., 20(3):262266, 1988. [358]Google Scholar
Mahowald, M. and Sadofsky, H.vn telescopes and the Adams spectral sequenceDuke Math. J., 78(1):101129, 1995. [359]Google Scholar
Mazur, B. and Swinnerton-Dyer, P.. Arithmetic of Weil curvesInvent. Math., 25(1):161, 1974. [345]Google Scholar
Mosher, R. E. and Tangora, M. C.Cohomology operations and applications in homotopy theory. Harper & Row, New York, 1968. [26, 32]Google Scholar
Mahowald, M. and Thompson, R. D.. The K-theory localization of an unstable sphereTopology, 31(1):133141, 1992. [309]Google Scholar
Mumford, D.. On the equations defining abelian varieties: IInvent. Math., 1:287354, 1966. [261]Google Scholar
Mumford, D.. On the equations defining abelian varieties: IIInvent. Math., 3:75135, 1967. [261]Google Scholar
Mumford, D.. On the equations defining abelian varieties: IIIInvent. Math., 3:215244, 1967. [261]Google Scholar
Naumann, N.. The stack of formal groups in stable homotopy theoryAdv. Math., 215(2):569600, 2007. [107]Google Scholar
Nave, L. S.. The Smith–Toda complex V ((p + 1)/2) does not existAnn. Math. (2), 171(1):491509, 2010. [148]Google Scholar
Nishida, G.. The nilpotency of elements of the stable homotopy groups of spheresJ. Math. Soc. Japan, 25:707732, 1973. [148]Google Scholar
Ochanine, S.. Modules de SU-bordisme: applicationsBull. Soc. Math. Fr, 115:257289, 1987. [354]Google Scholar
Ochanine, S.. Sur les genres multiplicatifs définis par des intégrales elliptiquesTopology, 26(2):143151, 1987. [3]Google Scholar
Ochanine, S.. Elliptic genera, modular forms over KO , and the Brown–Kervaire invariantMath. Z., 206(1):277291, 1991. [3]Google Scholar
Pengelley, D. J.. The homotopy type of MSUAmer. J. Math., 104(5):11011123, 1982. [353]Google Scholar
Polishchuk, A.Abelian varieties, theta functions and the Fourier transform. Cambridge University Press, Cambridge, 2003. [261]Google Scholar
Priddy, S.. A cellular construction of BP and other irreducible spectra. Math. Z., 173(1):2934, 1980. [360]Google Scholar
Peterson, E. and Stapleton, N.. Isogenies of formal groups laws and power operations in the cohomology theories En , revisited. In preparation. [320]Google Scholar
Quillen, D.. On the formal group laws of unoriented and complex cobordism theoryBull. Amer. Math. Soc., 75:12931298, 1969. [73]Google Scholar
Quillen, D.. Elementary proofs of some results of cobordism theory using Steenrod operationsAdv. Math., 7:2956, 1971. [82, 83, 90, 91, 92, 94]Google Scholar
Ravenel, D. C.. The cohomology of the Morava stabilizer algebrasMath. Z., 152(3):287297, 1977. [364]Google Scholar
Ravenel, D. C.. The non-existence of odd primary Arf invariant elements in stable homotopyMath. Proc. Camb. Phil. Soc83:429– 443, 1978. [164, 349, 350, 376]Google Scholar
Ravenel, D. C.. A novice’s guide to the Adams–Novikov spectral sequence. In Geometric applications of homotopy theory (Proc. Conf., Evanston, Ill., 1977), II, pages 404475. Springer, Berlin, 1978. [41, 108]Google Scholar
Ravenel, D. C.. Localization with respect to certain periodic homology theoriesAmer. J. Math., 106(2):351414, 1984. [104, 147, 148, 149, 151, 359]Google Scholar
Ravenel, D. C.Complex cobordism and stable homotopy groups of spheres. Academic Press, Orlando, FL, 1986. [x, 32, 33, 36, 106, 109, 127, 163]Google Scholar
Ravenel, D. C.Nilpotence and periodicity in stable homotopy theory. Princeton University Press, Princeton, NJ, 1992. [156, 158]Google Scholar
Ravenel, D. C.. Life after the telescope conjecture. In Algebraic K-theory and algebraic topology (Lake Louise, AB, 1991), pages 205222. Kluwer Academic Publishers, Dordrecht, 1993. [359]Google Scholar
Rezk, C.. Elliptic cohomology and elliptic curves (Felix Klein lectures, Bonn 2015). www.math.uiuc.edu/~rezk/felix-klein-lectures-notes.pdf, accessed: October 7, 2016. [133, 269]Google Scholar
Rezk, C.. Notes on the Hopkins–Miller theorem. www.math.uiuc.edu/∼rezk/hopkins-miller-thm.pdf, accessed: October 10, 2016. [134]Google Scholar
Rezk, C.. Supplementary notes for Math 512. www.math.uiuc.edu/∼rezk/512-spr2001-notes.pdf, accessed: October 28, 2016. [161, 162, 329]Google Scholar
Rezk, C.. The units of a ring spectrum and a logarithmic cohomology operationJ. Amer. Math. Soc., 19(4):9691014, 2006. [339, 340, 348]Google Scholar
Rezk, C.. Rings of power operations for Morava E-theories are Koszul. ArXiv e-prints, April 2012. [313]Google Scholar
Rudyak, Y. B.On Thom spectra, orientability, and cobordism. Springer-Verlag, Berlin, 1998. [12, 76, 89, 90]Google Scholar
Ravenel, D. C. and Wilson, W. S.. The Morava K-theories of Eilenberg–Mac Lane spaces and the Conner–Floyd conjectureAmer. J. Math., 102(4):691748, 1980. [172, 174, 180, 211, 212, 213, 216, 218]Google Scholar
Ravenel, D. C. and Wilson, W. S.. The Hopf ring for complex cobordismJ. Pure Appl. Algebra, 9(3):241280, 1976/1977. [181, 183, 188, 189, 191, 192, 194]Google Scholar
Ravenel, D. C., Wilson, W. S., and Yagita, N.. Brown–Peterson cohomology from Morava K-theoryK-Theory, 15(2):147199, 1998. [218]Google Scholar
Sadofsky, H.. Hopkins’ and Mahowald’s picture of Shimomura’s v1 -Bockstein spectral sequence calculation. In Algebraic topology (Oaxtepec, 1991), pages 407418. American Mathematical Society, Providence, RI, 1993. [365]Google Scholar
Salch, A.. The cohomology of the height four Morava stabilizer group at large primes. arXiv preprint arXiv:1607.01108, 2016. [376]Google Scholar
Schoeller, C.. Étude de la catégorie des algèbres de Hopf commutatives connexes sur un corpsManuscripta Math., 3:133155, 1970. [204, 205, 206]Google Scholar
Segal, G.. Cohomology of topological groups. In Symposia Mathematica, Vol. IV (INDAM, Rome, 1968/69), pages 377387. Academic Press, London, 1970. [172]Google Scholar
Segal, G.. Elliptic cohomology [after Landweberstong, Ochanine, Witten, and others]Astérisque, 161–162:187201, 1988. [377]Google Scholar
Senger, A.. The Brown–Peterson spectrum is not E2(p 2 +2) at odd primes. ArXiv e-prints, October 2017. [373]Google Scholar
Brian Shay, P.. mod p Wu formulas for the Steenrod algebra and the Dyer–Lashof algebraProc. Amer. Math. Soc., 63(2):339347, 1977. [249]Google Scholar
Shimomura, K.. On the Adams–Novikov spectral sequence and products of β-elements. Hiroshima Math. J., 16(1):209224, 1986. [366]Google Scholar
Silverman, J. H.The arithmetic of elliptic curves. Springer-Verlag, New York, 1986. [325]Google Scholar
Silverman, J. H.Advanced topics in the arithmetic of elliptic curves. Springer-Verlag, New York, 1994. [266]Google Scholar
Singer, W. M.. Connective fiberings over BU and UTopology, 7:271303, 1968. [4, 249]Google Scholar
Sprang, J. and Naumann, N.p-adic interpolation and multiplicative orientations of KO and tmf (with an appendix by Niko Naumann). ArXiv e-prints, September 2014. [374]Google Scholar
Schlank, T. M. and Stapleton, N.. A transchromatic proof of Strickland’s theoremAdv. Math., 285:14151447, 2015. [310, 311, 312]Google Scholar
Stolz, S. and Teichner, P.. What is an elliptic object? London Math. Soc. Lecture Note Ser., 308:247, 2004. [377]Google Scholar
Stolz, S. and Teichner, P.. Supersymmetric field theories and generalized cohomology. In Mathematical foundations of quantum field theory and perturbative string theory, pages 279340. American Mathematical Society, Providence, RI, 2011. [377]Google Scholar
Stapleton, N.. Transchromatic generalized character mapsAlgebr. Geom. Topol., 13(1):171203, 2013. [286, 359]Google Scholar
The Stacks Project Authors. Stacks Project. http://stacks.math.columbia.edu, accessed July 20, 2018, 2014. [101]Google Scholar
Stapleton, N.. Transchromatic twisted character mapsJ. Homotopy Relat Struct, 10(1):2961, 2015. [359]Google Scholar
Steenrod, N. E.. Cyclic reduced powers of cohomology classesPNAS, 39(3):217223, 1953. [83]Google Scholar
Steenrod, N. E.. Homology groups of symmetric groups and reduced power operationsPNAS, 39(3):213217, 1953. [83]Google Scholar
Stong, R. E.. Determination of H (BO(k, · · · , ∞), Z2 ) and H ∗ (BU(k, · · · , ∞), Z2)Trans. Amer. Math. Soc., 107:526544, 1963. [4, 249]Google Scholar
Stojanoska, V.. Duality for topological modular formsDoc. Math., 17:271311, 2012. [331]Google Scholar
Strickland, N. P.. Formal schemes for K-theory spaces. Unpublished. [270, 280]Google Scholar
Strickland, N. P.. Functorial philosophy for formal phenomena. http://hopf.math.purdue.edu/Strickland/fpfp.pdf, accessed: January 9, 2014. [6, 23, 51, 65, 72, 160, 198, 202, 204, 275, 312, 359]Google Scholar
Strickland, N. P.. On the p-adic interpolation of stable homotopy groups. In Adams Memorial Symposium on Algebraic Topology, 2 (Manchester, 1990), pages 4554. Cambridge University Press, Cambridge, 1992. [366]Google Scholar
Strickland, N. P.. Finite subgroups of formal groupsJ. Pure Appl. Algebra, 121(2):161208, 1997. [133, 311, 312, 313, 315, 316]Google Scholar
Strickland, N. P.. Morava E-theory of symmetric groups. Topology, 37(4):757779, 1998. [311, 312, 313]Google Scholar
Strickland, N. P.. Products on MU-modulesTrans. Amer. Math. Soc., 351(7):25692606, 1999. [131, 147, 194]Google Scholar
Strickland, N. P.. Formal schemes and formal groups. In Homotopy invariant algebraic structures (Baltimore, MD, 1998), pages 263– 352. American Mathematical Society, Providence, RI, 1999. [x, 20, 23, 34, 52, 54, 56, 61, 65, 70, 72, 181, 187, 222, 223, 224, 225, 314, 359]Google Scholar
Strickland, N. P.. Gross–Hopkins dualityTopology, 39(5):1021– 1033, 2000. [159]Google Scholar
Strickland, N. P.. Formal groups. https://neil-strickland.staff.shef.ac.uk/courses/formalgroups/fg.pdf, accessed July 20, 2018, 2006. [44, 45, 130, 132, 133]Google Scholar
Stroilova, O.The generalized Tate construction. PhD thesis, Massachusetts Institute of Technology, 2012. [358]Google Scholar
Schwänzl, R., Vogt, R. M., and Waldhausen, F.. Adjoining roots of unity to E ring spectra in good cases: a remarkContemp. Math, 239:245249, 1999. [372]Google Scholar
Switzer, R. M.Algebraic topology: homotopy and homology. Springer-Verlag, Berlin, 2002. Reprint of the 1975 original [Springer, New York]. [12, 42, 69, 71, 176, 353]Google Scholar
Shimomura, K. and Yabe, A.. On the chromatic E1 –term . In Topology and representation theory (Evanston, IL, 1992), pages 217228. American Mathematical Society, Providence, RI, 1994. [366]Google Scholar
Shimomura, K. and Yabe, A.. The homotopy groups π∗ (L2 S 0 )Topology, 34(2):261289, 1995. [366]Google Scholar
Takhtajan, L. A.Quantum mechanics for mathematicians. American Mathematical Society, Providence, RI, 2008. [376]Google Scholar
Tate, J.. The work of David Mumford. In Fields medallists’ lectures, pages 219223. World Scientific, Singapore, 1997. [261]Google Scholar
Thompson, R.. An unstable change of rings for Morava E-theory. ArXiv e-prints, September 2014. [313]Google Scholar
Torii, T.. On degeneration of one-dimensional formal group laws and applications to stable homotopy theoryAmer. J. Math., 125(5):10371077, 2003. [364]Google Scholar
Torii, T.. Milnor operations and the generalized Chern character. In Proceedings of the Nishida Fest (Kinosaki 2003), pages 383421. Geometry and Topology Publishers, Coventry, 2007. [364]Google Scholar
Torii, T.. Comparison of Morava E-theoriesMath. Z., 266(4):933– 951, 2010. [364]Google Scholar
Torii, T.. HKR characters, p-divisible groups and the generalized Chern characterTrans. Amer. Math. Soc., 362(11):61596181, 2010. [364]Google Scholar
Torii, T.K (n)-localization of the K (n + 1)-local En+1 -Adams spectral sequencesPacific J. Math., 250(2):439471, 2011. [364]Google Scholar
Thomason, R. W. and Wilson, W. S.. Hopf rings in the bar spectral sequenceQuart. J. Math. Oxford Ser. (2), 31(124):507511, 1980. [172]Google Scholar
Vakil, R.The rising sea: foundations of algebraic geometry. 2015. Preprint. http://math.stanford.edu/~vakil/216blog, accessed January 15, 2013. [64]Google Scholar
Vistoli, A.. Grothendieck topologies, fibered categories and descent theory. In Fundamental algebraic geometry, pages 1104. American Mathematical Society, Providence, RI, 2005. [102]Google Scholar
Walker, B. J.. Orientations and p-adic analysis. ArXiv e-prints, April 2009. [347]Google Scholar
Wang, G.Unstable chromatic homotopy theory. PhD thesis, Massachusetts Institute of Technology, 2015. [362]Google Scholar
Weil, A.. Sur certains groupes d’opérateurs unitairesActa Mathematica, 111(1):143211, 1964. [260]Google Scholar
Weil, A.Basic number theory. Springer-Verlag, New York, third edition, 1974. [361]Google Scholar
Weinstein, J.. The geometry of Lubin–Tate spaces. http://math.bu.edu/people/jsweinst/FRGLecture.pdf, accessed July 20, 2018, 2011. [195]Google Scholar
Wilson, W. S.. The Ω-spectrum for Brown–Peterson cohomology: IComment. Math. Helv., 48:4555, 1973; corrigendum, ibid. 194. [194]Google Scholar
Wilson, W. S.. The Ω-spectrum for Brown–Peterson cohomology: IIAmer. J. Math., 97:101123, 1975. [194]Google Scholar
Wilson, W. S.Brown–Peterson homology: an introduction and sampler. Conference Board of the Mathematical Sciences, Washington, DC, 1982. [129, 130, 164, 174, 175, 183, 189, 193]Google Scholar
Witten, E.. Elliptic genera and quantum field theoryComm. Math. Phys., 109(4):525536, 1987. [3]Google Scholar
Witten, E.. The index of the Dirac operator in loop space. In Elliptic curves and modular forms in algebraic topology (Princeton, NJ, 1986), pages 161181. Springer, Berlin, 1988. [3]Google Scholar
Yagita, N.. On the Steenrod algebra of Morava K-theoryJ. London Math. Soc. (2), 22(3):423438, 1980. [280]Google Scholar
Yu, J.-Kang. On the moduli of quasi-canonical liftingsCompositio Math., 96(3):293321, 1995. [202]Google Scholar
Zhu, Y.. Norm coherence for descent of level structures on formal deformations. ArXiv e-prints, June 2017. [320]Google Scholar
Zink, T.Cartiertheorie kommutativer formaler Gruppen. BSB B. G. Teubner Verlagsgesellschaft, Leipzig, 1984. [135, 201, 369]Google Scholar
Zink, T.. The display of a formal p-divisible groupAstérisque, (278):127248, 2002. [203]Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Eric Peterson, Harvard University, Massachusetts
  • Book: Formal Geometry and Bordism Operations
  • Online publication: 23 November 2018
  • Chapter DOI: https://doi.org/10.1017/9781108552165.011
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Eric Peterson, Harvard University, Massachusetts
  • Book: Formal Geometry and Bordism Operations
  • Online publication: 23 November 2018
  • Chapter DOI: https://doi.org/10.1017/9781108552165.011
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Eric Peterson, Harvard University, Massachusetts
  • Book: Formal Geometry and Bordism Operations
  • Online publication: 23 November 2018
  • Chapter DOI: https://doi.org/10.1017/9781108552165.011
Available formats
×