Skip to main content Accessibility help
×
  • Cited by 3
Publisher:
Cambridge University Press
Online publication date:
November 2018
Print publication year:
2018
Online ISBN:
9781108552165

Book description

This text organizes a range of results in chromatic homotopy theory, running a single thread through theorems in bordism and a detailed understanding of the moduli of formal groups. It emphasizes the naturally occurring algebro-geometric models that presage the topological results, taking the reader through a pedagogical development of the field. In addition to forming the backbone of the stable homotopy category, these ideas have found application in other fields: the daughter subject 'elliptic cohomology' abuts mathematical physics, manifold geometry, topological analysis, and the representation theory of loop groups. The common language employed when discussing these subjects showcases their unity and guides the reader breezily from one domain to the next, ultimately culminating in the construction of Witten's genus for String manifolds. This text is an expansion of a set of lecture notes for a topics course delivered at Harvard University during the spring term of 2016.

Reviews

'It has a down-to-earth and inviting style (no small achievement in a book about functorial algebraic geometry). It is elegant, precise, and incisive, and it is strong on both theory and calculation.'

Michael Berg Source: MAA Reviews

‘This book is likely to be quite useful to graduate students in algebraic topology. For years it has been an informal tradition for students of algebraic topology to teach themselves enough of the foundations of algebraic geometry to be able to translate between theorems about Hopf algebroids and theorems about algebraic stacks, and then to proceed to translate, as much as possible, calculations and theorems in algebraic topology into equivalent formulations in terms of moduli stacks of formal groups and related objects. This book does a great service to such students (and their advisors!), as it gives good answers to many of the questions such students inevitably ask.’

Andrew Salch Source: MatSciNet

‘The presentation is lucid, pedagogical, and also offers a fresh point of view on classical topics. It draws from several mostly unpublished sources, for instance Strickland’s manuscripts or various sets of notes by Goerss, Hopkins, and Lurie, and combines them in a single uniform treatment. Moreover, it contains a wealth of references to the published and unpublished literature that guides the interested reader to further topics that are only discussed in passing.’

Tobias Barthel Source: zbMATH Open

Refine List

Actions for selected content:

Select all | Deselect all
  • View selected items
  • Export citations
  • Download PDF (zip)
  • Save to Kindle
  • Save to Dropbox
  • Save to Google Drive

Save Search

You can save your searches here and later view and run them again in "My saved searches".

Please provide a title, maximum of 40 characters.
×

Contents

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Book summary page views

Total views: 0 *
Loading metrics...

* Views captured on Cambridge Core between #date#. This data will be updated every 24 hours.

Usage data cannot currently be displayed.