Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-22T19:06:04.308Z Has data issue: false hasContentIssue false
This chapter is part of a book that is no longer available to purchase from Cambridge Core

References

John F. Donoghue
Affiliation:
University of Massachusetts, Amherst
Eugene Golowich
Affiliation:
University of Massachusetts, Amherst
Barry R. Holstein
Affiliation:
University of Massachusetts, Amherst
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aad, G.et al. (ATLAS collab.) (2011). Search for contact interactions in dimuon events from pp collisions at TeV with the ATLAS Detector, Phys. Rev. D84, 011101.Google Scholar
Aad, G.et al. (ATLAS collab.) (2012). Measurement of W+W− production in pp collisions at TeV with the ATLAS detector and limits on anomalous WWZ and WWy couplings, Phys. Rev. D87 112001.Google Scholar
Aad, G.et al. (ATLAS collab.) (2013 a). Search for a light charged Higgs boson in the decay channel H+ → in events using pp collisions at TeV with the ATLAS detector, Eur. Phys. J. C73, 2465.Google Scholar
Aad, G.et al. (ATLAS collab.) (2013 b). Evidence for the spin-0 nature of the Higgs bosonusing ATLAS data (arXiv:1307.1432[hep-ex]).
Aaij, R.et al. (LHCb collab.) (2012). A model-independent Dalitz plot analysis of B± → DK± with decays and constraints on the CKM angle γ, Phys. Lett. B718, 43.Google Scholar
Aaij, R.et al. (LHCb collab.) (2013 a). Observation of oscillations, Phys. Rev. Lett. 110, 101802.Google Scholar
Aaij, R.et al. (LHCb collab.) (2013 b). First evidence for the decay, Phys. Rev. Lett. 110, 021801.Google Scholar
Aaij, R.et al. (LHCb collab.) (2013 c). Measurement of mixing parameters and search for CP violation using D0 → K+π− decays (arXiv:1309.6534 [hep-ex]).
Aaij, R.et al. (LHCb collab.) (2013 d). Measurements of indirect CP asymmetries in D0 → K−K+ and D0 → π−π+ decays (arXiv:1310.7201[hep-ex]).
Aaltonen, T.et al. (CDF and D0 collab.) (2013). Higgs boson studies at the Tevatron, Phys. Rev. D88, 052014.Google Scholar
Abbott, L. (1982). Introduction to the background field method, Acta Phys. Pol. B13, 33.Google Scholar
Abe, K.et al. (SLD collab.) (2000). A high precision measurement of the left-right Z boson cross-section asymmetry, Phys. Rev. Lett. 84, 5945.CrossRefGoogle Scholar
Abe, K.et al. (T2K collab.) (2013). Evidenceof electron neutrino appearance in a muon neutrino beam, Phys. Rev. D88, 032002.Google Scholar
Abe, Y.et al. (DOUBLE-CHOOZ collab.) (2012). Indication for the disappearance of reactor electron antineutrinos in the Double Chooz experiment, Phys. Rev. Lett. 108, 131801.1Google Scholar
Ablikim, M.et al. (BESIII collab.) (2013). Observation of a charged charmoniumlike structure in e+e− → π+π−J/ψ at, Phys. Rev. Lett. 110, 252001.CrossRefGoogle Scholar
Abouzaid, E.et al. (KTeV collab.) (2008). Final results from the KTeV experiment on the decay KL → π0γγ, Phys. Rev. D77, 112004.Google Scholar
Ackerman, N.et al. (EXO-200 collab.) (2011). Observation of two-neutrino double-beta decay in 136Xe with EXO-200, Phys. Rev. Lett. 107, 212501.CrossRefGoogle Scholar
Adam, J.et al. (MEG collab.) (2013). New constraint on the existence of the μ+ → e+γ decay (arXiv:1303.0754[hep-ex]).
Ade, P.A.R.et al. (Planck collab.) (2013). Planck 2013 results. XVI. cosmological parameters (arXiv:1303.5076 [astro-ph.CO]).
Ademollo, M. and Gatto, R. (1964). Nonrenormalization theorem for the strangeness-violating vector currents, Phys. Rev. Lett. 13, 264.CrossRefGoogle Scholar
Adkins, G., Nappi, C., and Witten, E. (1983). Static properties of nucleons in the Skyrme model, Nucl. Phys. B228, 552.Google Scholar
Adler, S.L. (1969). Axial-vector vertex in spinor electrodynamics, Phys. Rev. 177, 2426.Google Scholar
Adler, S.L. (1970). Perturbation theory anomalies, in Lectures on Elementary Particle Physics, ed. S., Deser, M., Grisaru and H., Pendleton (MIT Press, Cambridge, MA).
Adler, S.L. and Bardeen, W.A. (1969). Absence of higher-order corrections in the anomalous axial-vector divergence equation, Phys. Rev. 182, 1517.Google Scholar
Adler, S.L. and Dashen, R. (1968). Current Algebras and Applications to Particle Physics (Benjamin, New York).
Aguilar, A.et al. (LSND collab.) (2001). Evidence for neutrino oscillations from the observation of anti-neutrino(electron) appearance in a anti-neutrino(muon) beam, Phys. Rev. D64, 112007.Google Scholar
Aharmim, B.et al. (SNO collab.) (2011). Combined analysis of all three phases of solar neutrino data from the Sudbury Neutrino Observatory, Prog. Part. Nucl. Phys. 71, 150.Google Scholar
Ahn, J.K.et al. (RENO collab.) (2012). Observation of reactor electron antineutrino disappearance in the RENO experiment, Phys. Rev. Lett. 108, 191802.CrossRefGoogle Scholar
Ahrens, J.et al. (2005). Measurement of the π+ meson polarizabilities via the γp → γπ+n reaction, Eur. J. Phys. A23, 113.Google Scholar
Aidala, C.A., Bass, S.D., Hasch, D., and Mallot, G.K. (2013). The spin structure of the nucleon, Rev. Mod. Phys. 85, 655.CrossRefGoogle Scholar
Akhundov, A.A., Arbuzov, A., Riemann, S., and Riemann, T. (2013). Zfitter 1985-2013 (arXiv:1302.1395 [hep-ph]).
Akhundov, A.A., Bardin, D.Yu., and Reimann, T. (1986). Electroweak one-loop corrections to the decay of the neutral vector boson, Nucl. Phys. B276, 1.Google Scholar
Alarcon, J.M., Camalich, J.M., and Oller, J.A. (2013). Low energy analysis of źN scattering and the pion-nucleon sigma term with covariant baryon chiral perturbation theory (arXiv:1301:3067[hep-ph]).
Alekhin, S., Djouadi, A., and Moch, S. (2012). The top quark and Higgs boson masses and the stability of the electroweak vacuum, Phys. Lett. B716, 214.CrossRefGoogle Scholar
Ali, A., Hambrock, C., and Wang, W. (2012). Tetraquark interpretation of the charged bottomonium-like states Zb (10610) and Zb (10650) and implications, Phys. Rev. D85, 054011.Google Scholar
Altarelli, G. and Maiani, L. (1974). Octet enhancement of nonleptonic weak interactions in asymptotically free gauge theories, Phys. Lett. B52, 351.CrossRefGoogle Scholar
Altarelli, G. and Ross, G.G. (1988). The anomalous gluon contribution to polarized leptoproduction, Phys. Lett. B212, 391.CrossRefGoogle Scholar
Amaldi, U., de Boer, W., and Fürstenau, H. (1991). Comparison of grand unified theories with electroweak and strong coupling constants measured at LEP, Phys. Lett. 260, 447.CrossRefGoogle Scholar
Amhis, Y.et al. (Heavy Flavor Averaging Group collab.) (2012). Averages of b-hadron, c-hadron, and tau-lepton properties as of early 2012 (arXiv:1207.1158 [hep-ex]).
Amsler, C. and Close, F.E. (1996). Is f0 (1500) a scalar glueball?, Phys. Rev. D53, 295.Google Scholar
An, F.P.et al. (DAYA-BAY collab.) (2012). Observation of electron-antineutrino disappearance at Daya Bay, Phys. Rev. Lett. 108, 171803.CrossRefGoogle Scholar
Anderson, P.W. (1984). Basic Notions in Condensed Matter Physics (Benjamin/Cummings, Menlo Park, CA).
Anthony, P.L.et al. (SLAC E158 collab.) (2005). Precision measurement of the weak mixing angle in Moller scattering, Phys. Rev. Lett. 95, 081601.CrossRefGoogle Scholar
Antipov, Yu.M.et al. (1985). Experimental estimation of the sum of pion electric and magnetic polarizabilities, Z. Phys. C26, 495.Google Scholar
Antognini, A.et al. (2013). Proton Structure from the Measurement of 2S – 2P Transition Frequencies of Muonic Hydrogen, Science 339, 417.Google Scholar
Antonelli, V., Miramonti, L., Pena-Garay, C., and Serenelli, A. (2012). Solar neutrinos (arXiv:1208.1356 [hep-ph]).
Anzai, C., Kiyo, Y., and Sumino, Y. (2010). Static QCD potential at three-loop order, Phys. Rev. Lett. 104, 112003.CrossRefGoogle Scholar
Aoki, K., Hioki, Z., Kawabe, R., Konuma, M., and Muta, T. (1982). Electroweak theory, Suppl. Prog. Theor. Phys. 73, 1.CrossRef
Aoyama, T., Hayakawa, M., Kinoshita, T., and Nio, M. (2012). Quantum electrodynamics calculation of lepton anomalous magnetic moments: numerical approach to the perturbation theory of QED, Prog. Theor. and Exptal. Phys. 2012, 01A107.Google Scholar
Appelquist, T. and Bernard, C. (1981). Nonlinear sigma model in the loop expansion, Phys. Rev. D23, 425.Google Scholar
Appelquist, T. and Carrazone, J. (1975). Infrared singularities and massive fields, Phys. Rev. D11, 2856.Google Scholar
Armstrong, D.S. and McKeown, R.D. (2012). Parity violating electron scattering and the electric and magnetic strange form factors of the nucleon, Ann. Rev. Nucl. Part. Sci. 62, 337.CrossRefGoogle Scholar
Asplund, M., Basu, S., Ferguson, J.W., and Serenelli, A. (2009). New solar composition: the problem with solar models revisited, Astrophys. J. 705, L123.Google Scholar
Aydemir, U., Anber, M.M., and Donoghue, J.F. (2012). Self-healing of unitarity in effective field theories and the onset of New Physics, Phys. Rev. D86, 014025.Google Scholar
Baak, M.et al. (Gfitter group) (2012). Updated status of the global electroweak fit and constraints on New Physics, Eur. Phys. J. C72, 2003.Google Scholar
Bahcall, J.N. (1964). Solar neutrinos I. Theoretical, Phys. Rev. Lett. 12, 300.CrossRefGoogle Scholar
Bahcall, J.N. (1990). Neutrino Astrophysics (Cambridge University Press, Cambridge).
Bailey, J.A., Bernard, C., DeTar, C., et al. (2009). The B → πℓν semileptonic form factor from three-flavor lattice QCD: a model-independent determination of abs[Vub], Phys. Rev. D79, 054507.Google Scholar
Balachandran, A.P., Nair, V.P., Rajeev, S.G., and Stern, A. (1983). Soliton states inthe QCD effective lagrangian, Phys. Rev. D27, 1153.Google Scholar
Balantekin, A.B. and Haxton, W.C. (2013). Neutrino oscillations, Prog. Part. Nucl. Phys. 71, 150.CrossRefGoogle Scholar
Bali, G.S.et al. (1993). A comprehensive lattice study of SU(3) glueballs, Phys. Lett. B309, 378.Google Scholar
Barbieri, R., Frigens, H., Giuliani, F., and Haber, H.E. (1990). Precision measurements in electroweak physics and supersymmetry, Nucl. Phys. B341, 309.Google Scholar
Barbieri, R., Pomarol, A., Rattazzi, R., and Strumia, A. (2004). Electroweak symmetry breaking after LEP-1 and LEP-2, Nucl. Phys. B703, 127.Google Scholar
Bardeen, W.A. (1969). Anomalous Ward identities in spinor field theories, Phys. Rev. 184, 1848.Google Scholar
Bardin, D. and Passarino, G. (1999). The Standard Model in the Making: Precision Study of the Electroweak Interactions (Oxford University Press, Oxford).
Barger, V. and Phillips, R.J.N. (1987). Collider Physics (Addison-Wesley, Redwood City, CA).
Bass, S.D. (2005). The spin structure of the proton, Rev. Mod. Phys. 77, 1257.CrossRefGoogle Scholar
Bauer, C.W., Fleming, S., Pirjol, D., and Stewart, I.W. (2001). An effective field theory for collinear and soft gluons: heavy to light decays, Phys. Rev. D63, 114020.Google Scholar
Bauer, C.W., Lange, B.O., and Ovanesyan, G. (2011). On Glauber modes in Soft-Collinear Effective Theory, JHEP 1107, 077.Google Scholar
Beane, S.R., Bedaque, P.F., Parreno, A., and Savage, M.J. (2005). Exploring hyperons and hypernuclei with lattice QCD, Nucl. Phys. A747, 55.Google Scholar
Becher, T. (2010). Soft-collinear effective theory - Lectures on ‘The infrared structure of gauge theories’, ETH Zurich. see http://www.becher.itp.unibe.ch/lectures.html.
Becher, T. and Hill, R.J. (2006). Comment on form-factor shape and extraction of abs[Vub] from B → πℓν, Phys. Lett. B633, 61.Google Scholar
Beck, D.H. and Holstein, B.R. (2001). Nucleon structure and parity violating electron scattering, Int. J. Mod. Phys. E10, 1.Google Scholar
Bell, J.S. and Jackiw, R. (1967). A PCAC puzzle: π0 → γγ in the sigma model, Nuovo Cim. 60A, 47.Google Scholar
Bellini, G.et al. (Borexino collab.) (2012 a). First evidence of pepsolar neutrinos by direct detection in Borexino, Phys. Rev. Lett. 108, 051302.Google Scholar
Bellini, G.et al. (Borexino collab.) (2012 b). Absence of day-night asymmetry of 862 keV 7Be solar neutrino rate in Borexino and MSW oscillation parameters, Phys. Lett. B707, 22.
Beneke, M. and Braun, V.M. (1995). Naive non-abelianization and resummation of fermion bubble chains, Phys. Lett. B348, 513.Google Scholar
Beneke, M., Efthymiopoulos, I., et al. (2000). Top quark physics, Geneva 1999, Standard Model physics (and more) at the LHC (CERN, Geneva), p. 419.
Beneke, M. and Smirnov, V.A. (1998). Asymptotic expansion of Feynman integrals near threshold, Nucl. Phys. B522, 321.Google Scholar
Bennett, S.C., Cho, D., Masterson, B.P., Roberts, J.L., Tanner, C.E., Wieman, C.E., and Wood, C.S. (1997). Measurement of parity nonconservation and ananapole moment in cesium, Science 275, 1759.Google Scholar
Bennett, S.C. and Wieman, C.E. (1999). Measurement of the 6S → 7S transition polarizability in atomic cesium and an improved test of the Standard Model, Phys. Rev. Lett. 82, 2484 (Errata Bennett, S.C. and Wieman, C.E. (1999). Measurement of the 6S → 7S transition polarizability in atomic cesium and an improved test of the Standard Model, Phys. Rev. Lett.82, 4153 (1999); 83, 889 (1999)).Google Scholar
Benson, D., Bigi, I.I., Mannel, T., and Uraltsev, N. (2003). Imprecated, yet impeccable: on the theoretical evaluation of Γ(B π Xcℓν), Nucl. Phys. B665, 367.Google Scholar
Bergstrom, L. and Hulth, G. (1985). Induced Higgs couplings to neutral bosons in e+e-collisions, Nucl. Phys. B259, 137 (Erratum Bergstrom, L. and Hulth, G. (1985). Induced Higgs couplings to neutral bosons in e+e-collisions, Nucl. Phys.B276, 744 (1986)).Google Scholar
Berman, S.M. (1958). Radiative corrections to muon and neutron decay, Phys. Rev. 112, 267.Google Scholar
Bernard, C., et al. (2009). The form factor at zero recoil from three-flavor lattice QCD: a model independent determination of arg[Vcb], Phys. Rev. D79, 014506.Google Scholar
Bertlmann (2000). Anomalies in Quantum Field Theory (Oxford University Press, Oxford).
Bethke, S. (2009). The 2009 world average of alpha(s), Eur. Phys. J. C64, 689.Google Scholar
Bethke, S.et al. (2011). Workshop on precision measurements of αs (arXiv:1110.0016 [hep-ph]).
Bhattacharya, T., et al. (2012). Probing novel scalar and tensor interactions from (ultra)cold neutrons to the LHC, Phys. Rev. D85, 054512.Google Scholar
Bigi, I.I., Khoze, V.A., Uraltsev, N.G., and Sanda, A.I. (1989). The question of CP noninvariance as seen through the eyes of neutral beauty, in CP Violation, ed. C., Jarlskog (World Scientific, Singapore).
Bigi, I.I. and Sanda, A.I. (1981). Note on the observability of CP violation in B decays, Nucl. Phys. B193, 85.Google Scholar
Bigi, I.I. and Sanda, A.I. (2000). CP violation (Cambridge University Press, Cambridge).
Bigi, I.I., Shifman, M.A., Uraltsev, N.G., and Vainshtein, A.I. (1993). QCD predictions for lepton spectra in inclusive heavy flavor decays, Phys. Rev. Lett. 71, 496.CrossRefGoogle Scholar
Bigi, I.I., Shifman, M.A., Uraltsev, N.G., and Vainshtein, A.I. (1994). The pole mass of the heavy quark. Perturbation theory and beyond, Phys. Rev. D50, 2234.Google Scholar
Bigi, I.I. and Uraltsev, N.G. (2001). oscillations as a probe of quark hadron duality, Nucl. Phys. B592, 92.Google Scholar
Bijnens, J. (1990). K14 decays and the low energy expansion, Nucl. Phys. B337, 635.Google Scholar
Bijnens, J., Borg, F., and Dhonte, P. (2003). K π 3π decays in chiral perturbation theory, Nucl. Phys. B648, 317.Google Scholar
Bijnens, J. and Jemos, I. (2012). A new global fit of the at next-to-next-to-leading order in Chiral Perturbation Theory, Nucl. Phys. B854, 631.Google Scholar
Bijnens, J. and Wise, M.B. (1984). Electromagnetic contribution to ϵ′/ϵ, Phys. Lett. B137, 245.CrossRefGoogle Scholar
Birrell, N.D. and Davies, P.C.W. (1982). Quantum Fields in Curved Space (Cambridge University Press, Cambridge).
Bjorken, J.D. (1966). Applications of the chiral U(6) × (6) algebra of current densities, Phys. Rev. 148, 1467.Google Scholar
Blum, T.et al. (2011). K to ππ decay amplitudes from lattice QCD, Phys. Rev. D84, 114503.Google Scholar
Blum, T.et al. (2012). The K π (ππ)1=2 decay amplitude from lattice QCD, Phys. Rev. Lett. 108, 141601.CrossRefGoogle Scholar
Bobrowski, M., Lenz, A., Riedl, J., and Rohrwild, J. (2010). How large can the SM contribution to CP violation in mixing be?, JHEP 1003, 009.Google Scholar
Böhm, M., Hollik, W., and Speisberger, H. (1986). On the one-loop renormalization of the electroweak Standard Model, Fort. Phys. 34, 688.Google Scholar
Boito, D.et al. (2012). An updated determination of αs from τ decays, Phys. Rev. D85, 093015.Google Scholar
Bollini, C.G. and Giambiagi, J.J. (1972). Dimensional renormalization: the number of dimensions as a regularizing parameter, Nuovo Cim. 12B, 20.Google Scholar
Borasoy, B. and Holstein, B.R. (1999). Nonleptonic hyperon decays in chiral perturbation theory, Eur. Phys. J. C6, 85.Google Scholar
Braaten, E., Narison, S., and Pich, A. (1992). QCD analysis of the tau hadronic width, Nucl. Phys. B373, 581.Google Scholar
Brambilla, N.et al. (2011). Heavy quarkonium: progress, puzzles, and opportunities, Eur. Phys. J. C71, 1534.Google Scholar
Brambilla, N., Pineda, A., Soto, J., and Vairo, A. (2005). Effective field theories for heavy quarkonium, Rev. Mod. Phys. 77, 1423.CrossRefGoogle Scholar
Branco, G.C., Lavoura, L., and Silva, J.P. (1999). CP Violation (Oxford University Press, Oxford).
Brod, J. and Gorbahn, M. (2012). Next-to-next-to-leading-order charm-quark contribution to the CP violation parameter ϵK and ΔMK, Phys. Rev. Lett. 108, 121801.CrossRefGoogle Scholar
Brod, J., Gorbahn, M., and Stamou, E. (2011). Two-loop electroweak corrections for the decays, Phys. Rev. D83, 034030.Google Scholar
Brodsky, S.J. and Lepage, G.P. (1980). Exclusive processes in perturbative quantum chromodynamics, Phys. Rev. D22, 2157.Google Scholar
Buchalla, G., Buras, A.J. and Harlander, M.K. (1990). The anatomy of ϵ′/ϵ in the Standard Model, Nucl. Phys. B337, 313.Google Scholar
Buchalla, G., Buras, A.J. and Lautenbacher, M.E. (1996). Weak decays beyond leading logarithms, Rev. Mod. Phys. 68, 1125.CrossRefGoogle Scholar
Buchmüller, W. and Wyler, D. (1986). Effective lagrangian analysis of new interactions and flavor conservation, Nucl. Phys. B268, 621.Google Scholar
Buras, A.J., Girrbach, J., Guadagnoli, D., and Isidori, G. (2012). On the Standard Model prediction for BR(Bs,d → μ + μ−), Eur. Phys. J. C72, 2172.Google Scholar
Burgers, G. and Jegerlehner, F. (1989). Δr, or the relation between the electroweak couplings and the weak vector boson masses, in Z Physics at LEP 1, ed. Altarelli, G., Kleiss, R., and Verzegnassi, C. (CERN 89-08, Geneva).
Burgess, C.P., Godfrey, S., Konig, H., London, D., and Maksymyk, I. (1994). A global fit to extended oblique parameters, Phys. Lett. B326, 276.CrossRefGoogle Scholar
Cabibbo, N. (1963). Unitary symmetry and leptonic decays, Phys. Rev. Lett. 10, 531.CrossRefGoogle Scholar
Cabibbo, N., Swallow, E.C., and Winston, R. (2003). Semileptonic hyperon decays, Ann. Rev. Nucl. Part. Sci. 53, 39.CrossRefGoogle Scholar
Cahn, R.N., Chanowitz, M.S., and Fleishon, N. (1979). Higgs particle production by Z π Hγ, Phys. Lett. B82, 113.Google Scholar
Callen, C.G., Coleman, S., Wess, J., and Zumino, B. (1969). Structure of phenomenological lagrangians II, Phys. Rev. 177, 2247.Google Scholar
Caprini, I., Colangelo, G., and Leutwyler, H. (2006). Mass and width of the lowest resonance in QCD, Phys. Rev. Lett. 96, 132001.CrossRefGoogle Scholar
Caprini, I., Lellouch, L., and Neubert, M. (1998). Dispersive bounds on the shape of form-factors, Nucl. Phys. B530, 153.Google Scholar
Carruthers, P. (1966). Introduction to Unitary Symmetry (Wiley Interscience, New York).
Casas, J.A., Di Clemente, V., Ibarra, A., and Quiros, M. (2000). Massive neutrinos and the Higgs mass window, Phys. Rev D62, 053005.Google Scholar
Caswell, W.E. and Lepage, G.P. (1986). Effective lagrangian for bound state problems in QED, QCD and other field theories, Phys. Lett. B167, 437.CrossRefGoogle Scholar
Chanowitz, M.S. and Ellis, J. (1972). Canonical anomalies and broken scale invariance, Phys. Lett. 40B, 397.CrossRefGoogle Scholar
Chanowitz, M.S., Furman, M.A., and Hinchliffe, I. (1978). Weak interactions of ultraheavy termions, Phys. Lett. B78, 285.CrossRefGoogle Scholar
Chatrchyan, S.et al. (CMS collab.) (2013). On the mass and spin-parity of the Higgs boson candidate via its decays to Zboson pairs, Phys. Rev. Lett. 110, 081803.CrossRefGoogle Scholar
Chay, J., Georgi, H., and Grinstein, B. (1990). Lepton energy distributions in heavy meson decays from QCD, Phys. Lett. B247, 399.Google Scholar
Chen, Y.et al. (2006). Glueball spectrum and matrix elements on anisotropic lattices, Phys. Rev. D73, 014516.Google Scholar
Cheng, T.-P. and Dashen, R. (1971). Is SU(2) × SU(22) a better symmetry than SU(3)?, Phys. Rev. Lett. 26, 594.CrossRefGoogle Scholar
Cheng, T.-P. and Li, L.-F. (1984). Gauge Theory of Elementary Particle Physics (Clarendon Press, Oxford).
Chetyrkin, K.G. (1997). Quark mass anomalous dimension to O, Phys. Lett. 404, 161.CrossRefGoogle Scholar
Chetyrkin, K.G., Harlander, R., Seidensticker, T. and Steinhauser, M. (1999). Second order QCD corrections to Γ(t → Wb), Phys. Rev. D60, 114015.Google Scholar
Chetyrkin, K.G., Kniehl, B.A. and Steinhauser, M. (1998). Decoupling relations to and their connection to low-energy theorems, Nucl. Phys. B510, 6.Google Scholar
Chodos, A., Jaffe, R.L., Johnson, K., Thorn, C.B., and Weisskopf, V.F. (1974). New extended model of hadrons, Phys. Rev. D9, 3471.Google Scholar
Cirigliano, V., Donoghue, J.F., and Golowich, E. (2000). Dimension eight operators in the weak OPE, JHEP 0010, 048.Google Scholar
Cirigliano, V., Donoghue, J.F., Golowich, E., and Maltman, K. (2001). Determination of 〈(ππ)1=2/Q(7, 8)/K0〉 in the chiral limit, Phys. Lett. B522, 245.CrossRefGoogle Scholar
Cirigliano, V., Ecker, G., Neufeld, A., Pich, A., and Portoles, J. (2012). Kaon decays in the Standard Model, Rev. Mod. Phys. 84, 399.CrossRefGoogle Scholar
Cirigliano, V., Golowich, E., and Maltman, K. (2003). QCD condensates for the light quark V–A correlator, Phys. Rev. D68, 054013.Google Scholar
Cirigliano, V. and Rosell, I. (2007). Two-loop effective theory analysis of branching ratios, Phys. Rev. Lett. 99, 231801.CrossRefGoogle Scholar
Ciuchini, M., Franco, E.Martinelli, G., Reina, L., and Silvestrini, L. (1995). An upgraded analysis of epsilon-prime epsilon at the next-to-leading order, Z. Phys. C68, 239.Google Scholar
Cohen, A.G., Glashow, S.L., and Ligeti, Z. (2009). Disentangling neutrino oscillations, Phys. Lett. B678, 191.Google Scholar
Colangelo, G., Gasser, J., and Leutwyler, H. (2001). ππ scattering, Nucl. Phys. B603, 125.Google Scholar
Colangelo, P. and Khodjamirian, A. (2000). QCD sum rules, a modern perspective, in At the Frontier of Particle Physics, ed. Shifman, M. (World Scientific, Singapore).
Coleman, S. (1985). Aspects of Symmetry: Selected Erice Lectures (Cambridge University Press, Cambridge).
Coleman, S. and Glashow, S.L. (1964). Departures from the eightfold way, Phys. Rev. B134, 671.Google Scholar
Coleman, S. and Mandula, J. (1967). All possible symmetries of the S-matrix, Phys. Rev. 159, 1251.Google Scholar
Coleman, S., Wess, J., and Zumino, B. (1969). Structure of phenomenological lagrangians I, Phys. Rev. 177, 2239.Google Scholar
Coleman, S. and Witten, E. (1980). Chiral symmetry breakdown in large-Nc chromodynamics, Phys. Rev. Lett. 45, 100.CrossRefGoogle Scholar
Collins, J., Duncan, A., and Joglekar, S. (1977). Trace and dilation anomalies in gauge theories, Phys. Rev. D16, 438.Google Scholar
Collins, J., Wilczek, F., and Zee, A. (1978). Low energy manifestations of heavy particles: application to the neutral current, Phys. Rev. D18, 242.Google Scholar
Collins, J.C. (2011). Foundations of Perturbative QCD (Cambridge University Press, Cambridge).
Crewther, R. (1972). Nonperturbative evaluation of the anomalies in low energy theorems, Phys. Rev. Lett. 28, 1421.CrossRefGoogle Scholar
Crewther, R. (1978). Effects of topological charge in gauge theory, Acta Phys. Austriaca (Proc. Suppl.) 19, 47.Google Scholar
Cronin, J.A. (1967). Phenomenological model of strong and weak interactions in chiral U(3), Phys. Rev. 161, 1483.Google Scholar
Czarnecki, A. and Marciano, W.J. (1996). Electroweak radiative corrections to polarized Moller scattering asymmetries, Phys. Rev. D53, 1066.Google Scholar
Czarnecki, A. and Marciano, W.J. (2007). Electroweak radiative corrections to muon capture, Phys. Rev. Lett. 99, 032003.CrossRefGoogle Scholar
Czarnecki, A. and Melnikov, K. (1997). Two loop QCD corrections to b π c transitions at zero recoil: analytical results, Nucl. Phys. B505, 65.CrossRefGoogle Scholar
Czarnecki, A. and Melnikov, K. (1999). Two loop QCD corrections to top quark width, Nucl. Phys. B544, 520.Google Scholar
Dalgic, E., Gray, A., Wingate, M., Davies, C.T.H., Lepage, G.P., and Shigemitsu, J. (2006). B meson semileptonic form-factors from unquenched lattice QCD, Phys. Rev. D73, 074502.Google Scholar
D'Ambrosio, G. and Espriu, D. (1986). Rare decay modes of the K meson in the chiral lagrangian, Phys. Lett. B175, 237.CrossRefGoogle Scholar
Das, T.et al. (1967). Electromagnetic mass difference of pions, Phys. Rev. Lett. 18, 759.CrossRefGoogle Scholar
Dashen, R.F. (1969). Chiral SU(3) × SU(3) as a symmetry of the strong interactions, Phys. Rev. 183, 1245.Google Scholar
Dashen, R.F., Jenkins, E.E., and Manohar, A.V. (1994). The 1/N(c) expansion for baryons, Phys. Rev. D49, 4713 (Erratum Dashen, R.F., Jenkins, E.E., and Manohar, A.V. (1994). The 1/N(c) expansion for baryons, Phys. Rev.D51, 2489 (1995).Google Scholar
Davier, M., Hoecker, A., Malaescu, B., and Zhang, Z. (2011). Reevaluation of the hadronic contributions to the muon g-2 and to alpha(MZ), Eur. Phys. J. C71, 1515 (Erratum Davier, M., Hoecker, A., Malaescu, B., and Zhang, Z. (2011). Reevaluation of the hadronic contributions to the muon g-2 and to alpha(MZ), Eur. Phys. J.C72, 1874 (2012)).Google Scholar
Davis, R. (1964). Solar neutrinos. II: experimental, Phys. Rev. Lett. 12, 303.CrossRefGoogle Scholar
De Bruyn, K., Fleischer, R., Knegjens, R., Koppenburg, P., Merk, M., Pellegrino, A., and Tuning, N. (2012). Probing New Physics via the effective lifetime, Phys. Rev. Lett. 109, 041801.CrossRefGoogle Scholar
DeGrand, T. and Detar, C.E. (2010). Lattice Methods for Quantum Chromodynamics (World Scientific, Hackensack, NJ).
DeGrand, T., Jaffe, R.L., Johnson, K., and Kiskis, J. (1975). Masses and other parameters of light hadrons, Phys. Rev. D12, 2060.Google Scholar
Degrassi, G., Di Vita, S., Elias-Mir, J., Espinosa, J.R., Giudice, G., Isidori, G., and Strumia, A. (2012). Higgs mass and vacuum stability in the Standard Model at NNLO, JHEP 1208, 098.Google Scholar
Dehnadi, B., Hoang, A.H., Mateu, V., and Zebarjad, S.M. (2011). Charmmass determination from QCD charmonium sum rules at order (arXiv:1102.2264 [hep-ph]).
Denner, A., Nierste, U., and Scharf, R. (1991). A compact expression for the scalar one loop four point function, Nucl. Phys. B367, 637.Google Scholar
de Putter, R., et al. (2012). New neutrino mass bounds from Sloan Digital Sky Survey III data release 8 photometric luminous galaxies, Astrophys. J 761, 12.Google Scholar
De Roeck (2013). Higgs physics at CMS (plenary talk delivered on 6/24/13 at at 26th Intl. Symp. on Lept. Phot. Ints. at High Energies).
De Rujula, A., Georgi, H., and Glashow, S.L. (1975). Hadron masses in a gauge theory, Phys. Rev. D12, 147.Google Scholar
De Rujula, A., Lusignoli, M., Maiani, L., Petcov, S., and Petronzio, R. (1980). A fresh look at neutrino oscillations, Nucl. Phys. B168, 54.Google Scholar
Descotes-Genon, S., Hurth, T., Matias, J., and Virto, J. (2013). B → K*ℓℓ: The New Frontier of New Physics searches in flavor (arXiv:1305.4808 [hep-ph]).
DeWitt, B. (1967). Quantum theory of gravity: II, III, Phys. Rev. 162, 1195, 1239.Google Scholar
DiVecchia, P. and Veneziano, G. (1980). Chiral dynamics in the large Nc limit, Nucl. Phys. B171, 253.Google Scholar
Djouadi, A. (2008). The anatomy of electro-weak symmetry breaking. I: the Higgs boson in the Standard Model, Phys. Rept. 457, 1.Google Scholar
Djoudi, A., Kühn, J.H., and Zerwas, P.M. (1990). b-jet asymmetries in Z decays, Zeit. Phys. C46, 411.Google Scholar
Dobado, A. and Pelaez, J.R. (1997). The inverse amplitude method in chiral perturbation theory, Phys. Rev. D56, 3057.Google Scholar
Donoghue, J.F. (1994). General relativity as an effective field theory: the leading quantum corrections, Phys. Rev. D50, 3874.Google Scholar
Donoghue, J.F., Golowich, E., and Holstein, B.R. (1986 a). Dispersive effects in D0 anti-D0 Mixing, Phys. Rev. D33, 179.Google Scholar
Donoghue, J.F., Golowich, E., and Holstein, B.R. (1986 b). Low-energy weak interactions of quarks, Phys. Rep. 131, 319.Google Scholar
Donoghue, J.F., He, X.G., and Pakvasa, S. (1986). Hyperon decays and CP nonconservation, Phys. Rev. D34, 833.Google Scholar
Donoghue, J.F. and Holstein, B.R. (1989). Pion transitions and models of chiral symmetry, Phys. Rev. D40, 2378.Google Scholar
Donoghue, J.F. and Johnson, K. (1980). The pion and an improved static bag, Phys. Rev. D21, 1975.Google Scholar
Donoghue, J.F. and Li, L.F. (1979). Properties of charged Higgs bosons, Phys. Rev. D19, 945.Google Scholar
Donoghue, J.F. and Nappi, C. (1986). The quark content of the proton, Phys. Lett. B168, 105.Google Scholar
Donoghue, J.F., Ramirez, C., and Valencia, G. (1989). Spectrum of QCD and chiral lagrangians of the strong and weak interaction, Phys. Rev. D39, 1947.Google Scholar
Dubnicka, S.et al. (2010). Quark model description of the tetraquark state X(3872) in a relativistic constituent quark model with infrared confinement, Phys. Rev. D81, 114007.Google Scholar
Dzuba, V.A., Berengut, J.C., Flambaum, V.V., and Roberts, B. (2012). Revisiting parity non-conservation in cesium, Phys. Rev. Lett. 109, 203003.CrossRefGoogle Scholar
Eberhardt, O., Herbert, G., Lacker, H., Lenz, A., Menzel, A., Nierste, U., and Wiebusch, M. (2012). Impact of a Higgs boson at a mass of 126 GeV on the Standard Model with three and four fermion generations, Phys. Rev. Lett. 109, 241802.CrossRefGoogle Scholar
Ecker, G., Gasser, J., Pich, A., and de Rafael, E. (1989). The role of resonances in chiral perturbation theory, Nucl. Phys. B321, 311.Google Scholar
Ecker, G., Pich, A., and de Rafael, E. (1988). Radiative kaon decays and CP violation in chiral perturbation theory, Nucl. Phys. B303, 665.Google Scholar
Eichten, E. (1988). Heavy quarks on the lattice, Nucl. Phys. (Proc. Suppl.) 4, 170.Google Scholar
Eichten, E., Gottfried, K., Kinoshita, T., Lane, K.D. and Yan, T.-M. (1980). Charmonium: comparison with experiment, Phys. Rev. D21, 203.Google Scholar
Eichten, E. and Hill, B. (1990). Static effective field theory: 1/m Corrections, Phys. Lett. B243, 427CrossRefGoogle Scholar
El-Khadra, A.X. and Luke, M. (2002). The mass of the b quark, Ann. Rev. Nucl. Part. Sci. 52, 201.CrossRefGoogle Scholar
Ellis, J.R., Gabathuler, E., and Karliner, M. (1989). The OZI rule does not apply to baryons, Phys. Lett. B217, 173.Google Scholar
Ellis, J.R., Gaillard, M.K., and Nanopoulos, D.V. (1976). A phenomenological profile of the Higgs Boson, Nucl. Phys. B106, 292.Google Scholar
Ellis, J.R. and You, T. (2012). Global analysis of the Higgs candidate with mass 125 GeV, JHEP 1209, 123.Google Scholar
Ellis, R.K., Stirling, W.J., and Webber, B.R. (2003). QCD and Collider Physics (Cambridge University Press, Cambridge).
Ellis, R.K. and Zanderighi, G. (2008). Scalarone-loopintegrals for QCD, JHEP 0802, 002.Google Scholar
Engel, J., Ramsey-Musolf, M.J., and van Kolck, U. (2013). Electric dipole moments of nucleons, nuclei, and atoms: the Standard Model and beyond, Prog. Part. Nucl. Phys. 71, 21.CrossRefGoogle Scholar
Epelbaum, E. and Meißner, U.G. (2012). Chiral dynamics of few- and many-nucleon systems, Ann. Rev. Nucl. Part. Sci. 62, 159.CrossRefGoogle Scholar
Erler, J. (2000). Global fits to electroweak data using GAPP (arXiv:0005084 [hep-ph]).
Erler, J. and Ramsey-Musolf, M.J. (2005). The weak mixing angle at low energies, Phys. Rev. D72, 073003.Google Scholar
Erler, J. and Su, S. (2013). The weak neutral current, Prog. Part. Nucl. Phys. 71, 119.CrossRefGoogle Scholar
Espinosa, J.R., Grojean, J., Muhlleitner, M., and Trott, M. (2012). First glimpses at Higgs' face, JHEP 1212, 045.Google Scholar
Faddeev, L.D. and Popov, V.N. (1967). Feynman diagrams for the Yang–Mills field, Phys. Lett. 25B, 29.Google Scholar
Falk, A.F., Grossman, Y., Ligeti, Z., and Petrov, A.A. (2002). SU(3) breaking and D0–anti-D0 mixing, Phys. Rev. D65, 054034.Google Scholar
Ferroglia, A. and Sirlin, A. (2012). Radiative corrections in precision electroweak physics: a historical perspective, Rev. Mod. Phys. 85, 1.Google Scholar
Fleischer, J., Jegerlehner, F., Tarasov, O.V., and Veretin, O.L. (1999). Two loop QCD corrections of the massive fermion propagator, Nucl. Phys. B539, 671 (Erratum Fleischer, J., Jegerlehner, F., Tarasov, O.V., and Veretin, O.L. (1999). Two loop QCD corrections of the massive fermion propagator, Nucl. Phys.B571 (2000) 511).Google Scholar
Fogli, G.L., Lisi, E., Marrone, A., Montanino, D., Palazzo, A., and Rotunno, A.M. (2012). Global analysis of neutrino masses, mixings and phases: entering the era of leptonic CP violation searches, Phys. Rev. D86, 013012.Google Scholar
Forero, D.V., Tortola, M., and Valle, J.W.F. (2012). Global status of neutrino oscillation parameters after Neutrino-2012, Phys. Rev. D86, 073012.Google Scholar
Forkel, H. (2005). Direct instantons, topological charge screening, and QCD glueball sum rules, Phys. Rev. D71, 054008.Google Scholar
Friedrich, J. (2012). Studies in pion dynamics at COMPASS, Proceedings of Science (CONFINEMENT) X, 120.Google Scholar
Fritzsch, H. and Gell-Mann, M. (1972). Current algebra: quarks and what else?, in Proc. XVI Int. Conf. on High Energy Physics, ed. J.D., Jackson and A., Roberts (National Accelerator Laboratory, Batavia, IL.).
Fujikawa, K. (1979). Path integral measure for gauge invariant field theories, Phys. Rev. Lett. 42, 1195.CrossRefGoogle Scholar
Fujikawa, K. (1981). Energy momentum tensor in quantum field theory, Phys. Rev. D23, 2262.Google Scholar
Fujikawa, K. and Suzuki, H. (2004). Path Integrals and Quantum Anomalies (Oxford University Press, Oxford).
Gambino, P., Mannel, T., and Uraltsev, N. (2012). B → D* zero-recoil formfactor and the Heavy Quark Expansion in QCD: a systematic study, JHEP 1210, 169.Google Scholar
Gambino, P. and Sirlin, A. (1994). Relation between and, Phys. Rev. D49, 1160.Google Scholar
Gando, A.et al. (KamLAND collab.) (2011). Constraints on θ13 from a three-flavor oscillation analysis of reactor antineutrinos at KamLAND, Phys. Rev. C83, 052002.Google Scholar
Gando, A.et al. (KamLAND-Zen collab.) (2012). Measurement of the double-β decay half-life of 136Xe with the KamLAND-Zen experiment, Phys. Rev. C85, 045504.Google Scholar
Gaillard, M.K. and Lee, B.W. (1974). ΔI = 1/2 rule for nonleptonic decays in asymptotically free gauge theories, Phys. Rev. Lett. 33, 108.CrossRefGoogle Scholar
Gasser, J. (1987). Chiral perturbation theory and effective lagrangians, Nucl. Phys. B279, 65.Google Scholar
Gasser, J. and Leutwyler, H. (1984). Chiral perturbation theory to one loop, Ann. Phys. (N.Y.) 158, 142.Google Scholar
Gasser, J. and Leutwyler, H. (1985a). Chiral perturbation theory: expansions in the mass of the strange quark, Nucl. Phys. B250, 465.Google Scholar
Gasser, J. and Leutwyler, H. (1985b). Low energy expansion of meson form factors, Nucl. Phys. B250, 517.Google Scholar
Gasser, J., Leutwyler, H., and Sainio, M.E. (1991). Sigma term update, Phys. Lett. B253, 252.Google Scholar
Gasser, J., Sainio, M.E., and Svarc, A. (1988). Nucleons with chiral loops, Nucl. Phys. B307, 779.Google Scholar
Gattringer, C. and Lang, C.B. (2010). Quantum Chromodynamics on the Lattice (Springer [Lect. Notes Phys. 788], Berlin).
Gavela, M.B., Hernandez, P., Orloff, J., and Pene, O. (1994). Standard Model CP violation and baryon asymmetry, Mod. Phys. Lett. A9, 795.Google Scholar
Gell-Mann, M. (1961). The Eightfold Way: a theory of strong interaction symmetry (CalTech Rept. CTSL-20).
Gell-Mann, M. and Levy, M. (1960). The axial vector current in beta decay, Nuovo Cim. 16, 705.Google Scholar
Gell-Mann, M. and Low, F.E. (1954). Quantum electrodynamics at small distances, Phys. Rev. 95, 1300.Google Scholar
Gell-Mann, M., Oakes, R. and Renner, B. (1968). Behavior of current divergences under SU(3) × SU(3), Phys. Rev. 175, 2195.Google Scholar
Gell-Mann, M., Ramond, P., and Slansky, R. (1979). Complex spinors and unified theories, A.I.P. Conf. Proc. C790927, 315.Google Scholar
Georgi, H. (1984). Weak Interactions and Modern Particle Theory (Benjamin/Cummings, Menlo Park, CA).
Georgi, H. (1990). An effective field theory for heavy quarks at low-energies, Phys. Lett. B240, 447.CrossRefGoogle Scholar
Georgi, H. (1992). D–anti-D mixing in heavy quark effective field theory, Phys. Lett. B297, 353.CrossRefGoogle Scholar
Georgi, H. and Glashow, S.L. (1974). Unity of all elementary particle forces, Phys. Rev. Lett. 32, 438.CrossRefGoogle Scholar
Georgi, H., Grinstein, B. and Wise, M.B. (1990). Λb semileptonic form factors for mc ≠ ∞, Phys. Lett. B252, 456.CrossRefGoogle Scholar
Georgi, H., Quinn, H.R., and Weinberg, S. (1974). Hierarchy of interactions in unified gauge theories, Phys. Rev. Lett. 33, 451.CrossRefGoogle Scholar
Gerstein, I., Jackiw, R., Lee, B.W., and Weinberg, S. (1971). Chiral loops, Phys. Rev. D3, 2486.Google Scholar
Gilkey, P. (1975). The spectral geometry of a Riemannian manifold, J. Diff. Geom. 10, 601.CrossRefGoogle Scholar
Gilman, F.J. and Wise, M.B. (1979). The ΔI = 1/2 rule and violation of CP in the six-quark model, Phys. Lett. B83, 83.CrossRefGoogle Scholar
Giri, A., Grossman, Y., Soffer, A., and Zupan, J. (2003). Determining γ using B± → DK± with multibody D decays, Phys. Rev. D68, 054018.Google Scholar
Giunti, C. and Kim, C.W. (2007). Fundamentals of Neutrino Physics and Astrophysics (Oxford University Press, Oxford).
Glashow, S.L. (1961). Partial symmetries of weak interactions, Nucl. Phys. 22, 579.Google Scholar
Goity, J.L. (1986). The decays and in the chiral approach, Zeit. Phys. C34, 341.Google Scholar
Goity, J.L., Bernstein, A.M., and Holstein, B.R. (2002). The decay π0 ⤒ γγ to next to leading order in chiral perturbation theory, Phys. Rev. D66, 076014.Google Scholar
Goldberger, M. and Treiman, S.B. (1958). Conserved currents in the theory of the Fermi interaction, Phys. Rev. 110, 1478.Google Scholar
Goldberger, W.D. and Rothstein, I.Z. (2006). An effective field theory of gravity for extended objects, Phys. Rev. D73, 104029.Google Scholar
Goldstone, J. (1961). Field theories with superconductor solutions, Nuovo Cim. 19, 154.Google Scholar
Goldstone, J., Salam, A., and Weinberg, S. (1962). Broken symmetries, Phys. Rev. 127, 965.Google Scholar
Golowich, E., Haqq, E., and Karl, G. (1983). Are there baryons which contain constituent gluons?, Phys. Rev. D28, 160.Google Scholar
Golowich, E., Hewett, J., Pakvasa, S., and Petrov, A.A. (2007). Implications of mixing for New Physics, Phys. Rev. D76, 095009.Google Scholar
Golowich, E. and Holstein, B.R. (1975). Restrictions on the structure of the ΔS = 1 nonleptonic Hamiltonian, Phys. Rev. Lett. 35, 831.CrossRefGoogle Scholar
Golowich, E. and Yang, T.C. (1979). Charged Higgs bosons and decays of heavy flavored mesons, Phys. Lett. B80, 245.CrossRefGoogle Scholar
Gonzalez-Garcia, M.C., Maltoni, M., Salvado, J., and Schwetz, T. (2012). Global fit to three neutrino mixing: critical lookat present precision, JHEP 1212, 123.Google Scholar
Grevesse, N. and Sauval, A.I. (1998). Standard solar composition, Space Sci. Rev. 85, 161.Google Scholar
Gronau, M. (2000). U spin symmetry in charmless B decays, Phys. Lett. B492, 297.Google Scholar
Gronau, M. and London, D. (1990). Isospin analysis of CP asymmetries in B decays, Phys. Rev. Lett. 65, 3381.CrossRefGoogle Scholar
Gronau, M. and Wyler, D. (1991). On determining a weak phase from CP asymmetries in charged B decays, Phys. Lett. B265, 172.Google Scholar
Gross, D.J. and Wilczek, F. (1973a). Ultraviolet behavior of nonabelian gauge theories, Phys. Rev. Lett. 30, 1343.Google Scholar
Gross, D.J. and Wilczek, F. (1973b). Asymptotically free gauge theories I, Phys. Rev. D8, 3633.Google Scholar
Grozin, A.G. (2004). Heavy Quark Effective Theory (Springer, NewYork).
Guberina, B., Peccei, R.D., and Rückl, R. (1980). Dimensional regularization techniques and their uses in calculating infrared safe weak decay processes, Nucl. Phys. B171, 333.Google Scholar
Gunion, J.F., Haber, H.E., Kane, G.L., and Dawson, S. (1990). The Higgs Hunters Guide (Addison-Wesley, Menlo Park, CA).
Haag, R. (1958). Quantum field theories with composite particles and asymptotic conditions, Phys. Rev. 112, 669.Google Scholar
Haber, H.E. and O'Neil, E. (2011). Basis-independent methods for the two-Higgs-doublet model III: the CP-conserving limit, custodial symmetry, and the oblique parameters S, T, U, Phys. Rev. D83, 055017.CrossRefGoogle Scholar
Hagelin, J.S. and Littenberg, L. (1989). Rare kaon decays, Prog Part Nucl Phys. 23, 1.Google Scholar
Hardy, J.C. and Towner, I.S. (2009). Superallowed 0+ → 0+ nuclear beta decays: a new survey with precision test of the conserved vector current. hypothesis and the standard model, Phys. Rev. C79, 055502.Google Scholar
Hardy, J.C. and Towner, I.S. (2010). The evaluation of Vud and its impact on the unitarity of the Cabibbo–Kobayashi–Maskawa quark-mixing matrix, Rpt. Prog. Phys. 73, 046301.CrossRefGoogle Scholar
Harnett, D.et al. (2011). Near maximal mixing of scalar gluonium and quark mesons: a Gaussian sum rule analysis, Nucl. Phys. A850, 110.Google Scholar
Harrison, P.F., Perkins, D.H., and Scott, W.G., (2002). Tri-bimaximal mixing and the neutrino oscillation data, Phys. Lett B530, 167.Google Scholar
Hart, A.et al. (2006). A lattice study of the masses of singlet 0++ mesons, Phys. Rev. D74, 114504.Google Scholar
Hart, A. and Teper, M. (2002). Glueball spectrum in O(a) improved lattice QCD, Phys. Rev. D65, 034502.Google Scholar
Haxton, W.C., Robertson, R.G.H., and Serenelli, A.M. (2012). Solarneutrinos: status and prospects (arXiv:1208.5723 [astro-phSR]).
He, X.G. (1999). SU(3) analysis of annihilation contributions and CP violating relations in B → PP decays, Eur. Phys. J. C9, 443.Google Scholar
Heinemeyer, S.et al. (The LHC Higgs Cross Section Working Group collab.) (2013). Handbook of LHC Higgs cross sections: 3. Higgs properties (arXiv:1307.1347 [hep-ph]).
Hinshaw, G.et al. (WMAP collab.) (2013). Nine-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: cosmological parameter results (arXiv:1212.5226v2 [astro-ph.CO]).
Hoang, A.H., Ligeti, Z., and Manohar, A.V. (1999). B decays in the upsilon expansion, Phys. Rev. D59, 074017.Google Scholar
Hoang, A.H., Smith, M.C., Stelzer, T., and Willenbrock, S. (1998). Quarkonia and the pole mass, Phys. Rev. D59, 114014.Google Scholar
Hoang, A.H. and Stewart, I.W. (2003). Ultrasoft renormalization in nonrelativistic QCD, Phys. Rev. D67, 114020.Google Scholar
Hoang, A.H. and Teubner, T. (1999). Top quark pair production close to threshold: top mass, width and momentum distribution, Phys. Rev. D60, 114027.CrossRefGoogle Scholar
Höhler, G. (1983). Pion–nucleon scattering, in Landolt Börnstein New Series 1-9b2, ed. H., Schopper (Springer, Berlin).
Hollik, W.F.L. (1990). Radiative corrections in the Standard Model, Fort. Phys. 38, 165.Google Scholar
Holstein, B.R. (1989). Weak Interactions in Nuclei (Princeton University Press, Princeton, NJ).
Hughes, R.J. (1981). More comments on asymptotic freedom, Nucl. Phys. B186, 376.Google Scholar
Iizuka, J. (1966). A systematics and phenomenology of meson family, Prog. Theor. Phys. Suppl. 37–38, 21.Google Scholar
Inami, T. and Lim, C.S. (1981). Effects of superheavy quarks and leptons on low energy weak processes and, Prog. Theor. Phys. 65, 297.CrossRefGoogle Scholar
Ioffe, B.L. (1981). Calculation of baryon masses in QCD, Nucl. Phys. B188, 317.Google Scholar
Ioffe, B.L., Fadin, V.S., and Lipatov, L.N. (2010). Quantum Chromodynamics: Perturbative and Nonperturbative Aspects (Cambridge University Press, Cambridge).
Ioffe, B.L. and Shifman, M.A. (1980). The decay ψ′ → J/ψ + π0(η) and quark masses, Phys. Lett. 95B, 99.Google Scholar
Isgur, N. and Karl, G. (1978). P-wave baryons in the quark model, Phys. Rev. D18, 4187.Google Scholar
Isgur, N. and Wise, M.B. (1989). Weak decays of heavy mesons in the staticquark approximation, Phys. Lett. B232, 113.Google Scholar
Isgur, N. and Wise, M.B. (1990). Weak transitionform factors between heavy mesons, Phys. Lett. 237, 527.CrossRefGoogle Scholar
Itzykson, C. and Zuber, J.-B. (1980). Quantum Field Theory (McGraw-Hill, New York).
Jackiw, R. and Rebbi, C. (1976). Vacuum periodicity in a Yang–Mills quantum theory, Phys. Rev. Lett. 37, 172.CrossRefGoogle Scholar
Jacobs, K. (2013). Higgs physics at ATLAS (plenary talk delivered on 6/24/13 at at 26th Intl. Symp. on Lept. Phot. Ints. at High Energies).
Jaffe, R.L. (1977). Perhaps a stable dibaryon, Phys. Rev. Lett. 38, 195.CrossRefGoogle Scholar
Jaffe, R.L., Johnson, K., and Ryzak, Z. (1986). Qualitative features of the glueball spectrum, Ann. Phys. (N.Y.) 168, 334.Google Scholar
Jaffe, R.L. and Manohar, A. (1990). The g1 problem: deep inelastic electron scattering and the spin of the proton, Nucl. Phys. B337, 509.Google Scholar
Jarlskog, C. (1985). Commutators of the quark mass matrices in the standard electroweak model and a measure of maximal CP violation, Phys. Rev. Lett. 55, 1039.CrossRefGoogle Scholar
Jarlskog, C. (1989). Introduction to CP violation, in CP Violation, ed. C., Jarlskog (World Scientific, Singapore).
Jenkins, E.E. (1998). Large N(c) baryons, Ann. Rev. Nucl. Part. Sci. 48, 81.CrossRefGoogle Scholar
Ji, X.-D. (1994). Chiral odd and spin dependent quark fragmentation functions and their applications, Phys. Rev. D49, 114.Google Scholar
Ji, X.-D., Tang, J., and Hoodbhoy, P. (1996). Spin structure of the nucleon in the asymptotic limit, Phys. Rev. Lett. 76, 740.CrossRefGoogle Scholar
Johnson, K. (1978). A field theory lagrangian for the MIT bag model, Phys. Lett. 78B, 259.CrossRefGoogle Scholar
Johnson, K. and Thorn, C.B. (1976). Stringlike solutions of the bag model, Phys. Rev. D13, 1934.Google Scholar
Kambor, J. and Holstein, B.R. (1994). KS → γγ, KL → π0γγ and unitarity, Phys. Rev. D49, 2346.Google Scholar
Kambor, J., Missimer, J., and Wyler, D. (1990). The chiral loop expansion of the nonleptonic weak interactions of mesons, Nucl. Phys. B346, 17.Google Scholar
Kaymakcalan, Ö., Rajeev, S., and Schecter, J. (1984). Nonabelian anomaly and vector meson decays, Phys. Rev. D30, 594.Google Scholar
Kayser, B., Kopp, J., Roberston, R.G.H., and Vogel, P. (2010). On a theory of neutrino oscillations with entanglement, Phys. Rev. D82, 093003.Google Scholar
Keung, W.Y. and Marciano, W.J. (1984). Higgs scalar decays: H → W + X, Phys. Rev. D30, 248.CrossRefGoogle Scholar
King, S.F. and Luhn, C. (2013). Neutrino mass and mixing with discrete symmetry, Rept. Prog. Phys. 76, 056201.CrossRefGoogle Scholar
Kinoshita, T. and Sirlin, A. (1959). Radiative corrections to Fermi interactions, Phys. Rev. 113, 1652.Google Scholar
Klinkhamer, F.R. and Manton, N.S. (1984). A saddle point solution in the Weinberg–Salam theory, Phys. Rev. D30, 2212.Google Scholar
Kobayashi, M. and Maskawa, T. (1973). CP violation in the renormalizable theory of weak interactions, Prog. Theo. Phys. 49, 652.CrossRefGoogle Scholar
Kühn, J.H., Steinhauser, M., and Sturm, C. (2007). Heavy quark masses from sum rules in four-loop approximation, Nucl. Phys. B778, 192.Google Scholar
Kumar, K.S., Mantry, S., Marciano, W.J., and Souder, P.A. (2013). Lowenergy measurements of the weak mixing angle (arXiv:1302.6263 [hep-ex]).
Kuzmin, V.A., Rubakov, V.A. and Shaposhnikov, M.E. (1985). On the anomalous electroweak baryon number nonconservation in the early universe, Phys. Lett. B155, 36.CrossRefGoogle Scholar
Kwong, W., Quigg, C., and Rosner, J.L. (1987). Heavy–quark systems, Ann. Rev. Nucl. Part. Sci. 37, 325.CrossRefGoogle Scholar
Laiho, J., Lunghi, E., and Van de Water, R.S. (2010). Lattice QCD inputs to the CKM unitarity triangle analysis, Phys. Rev. D81, 034503.Google Scholar
Langacker, P. (1981). Grand unified theories and proton decay, Phys. Rep. C72, 185.CrossRefGoogle Scholar
Langacker, P. (2010). The Standard Model and Beyond (Taylor and Francis, Boca Raton, FL).
Lee, B.W., Quigg, C., and Thacker, H.B. (1977). Weak interactions at very high energies: the role of the Higgs-boson mass, Phys. Rev. D16, 1519.Google Scholar
Lee, B.W. and Swift, A.R. (1964). Dynamical basis of the sum rule, Phys. Rev. B136, 228.Google Scholar
Lee, T.D. (1973). A theory of spontaneous T violation, Phys. Rev. D8, 1226.Google Scholar
Lee, T.D. (1982). Particle Physics and Introduction to Field Theory (Harwood, New York).
Lehmann, H. (1972). Chiral invariance and effective range expansion for pion pion scattering, Phys. Lett. B41, 529.CrossRefGoogle Scholar
Leibrandt, G. (1975). Introduction to the technique of dimensional regularization, Rev. Mod. Phys. 47, 849.CrossRefGoogle Scholar
Lenz, A. and Nierste, U. (2007). Theoretical update of mixing, JHEP 0706, 072.Google Scholar
Lenz, A. and Nierste, U. (2011). Numerical updates of lifetimes and mixing parameters of B mesons, (arXiv:1102.4274[hep-ph]).
Lepage, G.P. (1998). Perturbative improvement for lattice QCD: an update, Nucl. Phys. Proc. Suppl. 60A, 267.Google Scholar
Lepage, G.P. and Thacker, B.A. (1988). Effective lagrangians for simulation of heavy quarksystems, Nucl. Phys.(Proc.Suppl.) 4, 199.Google Scholar
Leutwyler, H. and Roos, M. (1984). Determination of the elements Vus and Vud of the Kobayashi–Maskawa matrix, Z. Phys. C25, 91.Google Scholar
Le Yaouanc, A., Oliver, L., Pène, O., and Raynal, J.-C. (1985). Quark model of light mesons with dynamically broken chiral symmetry, Phys. Rev. D31, 137.Google Scholar
Le Yaouanc, A., Oliver, L., Pène, O., and Raynal, J.-C. (1988). Hadron Transitions in the Quark Model (Gordon and Breach, New York).
Lipkin, H.J. (1984). The theoretical basis and phenomenology of the OZI rule, Nucl. Phys. B244, 147.Google Scholar
Lipkin, H.J. (2005). Is observed direct CP violation in Bd → K+π− due to New Physics? Check Standard Model prediction of equal violation in Bs → K−π+, Phys. Lett. B621, 126.CrossRefGoogle Scholar
Liu, Z.Q.et al. (Belle collab.) (2013). Study of e+e− → π+π− → J/ψ and observation of a charged charmonium-like state at Belle, Phys. Rev. Lett. 110, 252002.CrossRefGoogle Scholar
Lucha, W., Melikhov, D., and Simula, S. (2011). OPE, charm-quark mass, and decay constants of D and Ds mesons from QCD sum rules, Phys. Lett. B701, 82.CrossRefGoogle Scholar
Luke, M. (1990). Effects of subleading operators in the heavy quark effective theory, Phys. Lett. B252, 447.Google Scholar
Ma, E. and Maniatis, M. (2010). Symbiotic symmetries of the two-Higgs-doublet model, Phys. Lett. B683, 33.Google Scholar
Maki, Z., Nakagawa, M., and Sakata, S. (1962). Remarks on the unified model of elementary particles, Prog. Theor. Phys. 28, 870.CrossRefGoogle Scholar
Mangano, G., Miele, G., Pastor, S., Pinto, T., Pisanti, O., and Serpico, T. (2005). Relic neutrino decoupling including flavor oscillations, Nucl. Phys. B729, 221.Google Scholar
Mannel, T. (1994). Operator product expansion for inclusive semileptonic decays in heavy quark effective field theory, Nucl. Phys. B413, 396.Google Scholar
Mannel, T. (2004). Effective Field Theories in Flavour Physics (Springer, New York).
Manohar, A.V. and Mateu, V. (2008). Dispersion relation bounds for ππ scattering, Phys. Rev. D77, 094019.Google Scholar
Manohar, A.V. and Stewart, I.W. (2007). The zero-bin and mode factorization in quantum field theory, Phys. Rev. D76, 074002.Google Scholar
Manohar, A.V. and Wise, M.B. (1994). Inclusive semileptonic B and polarized Λb decays from QCD, Phys. Rev. D49, 1310.Google Scholar
Manohar, A. and Wise, M.B. (2007). Heavy Quark Physics (Cambridge University Press, Cambridge).
Marciano, W.J. (1979). Weak mixing angle and grand unified gauge theories, Phys. Rev. D20, 274.Google Scholar
Marciano, W.J. (1999). Fermi constants and New Physics, Phys. Rev. D60, 093006.Google Scholar
Marciano, W.J. (2011). Precision electroweak tests of the Standard Model, J. Phys. Conf. Ser. 312, 102002.CrossRefGoogle Scholar
Marciano, W.J. and Querjeiro, A. (1986). Bound on the W boson electric dipole moment, Phys. Rev. D33, 3449.Google Scholar
Marciano, W.J. and Sirlin, A. (1980). Radiativecorrections to neutrino-induced neutral-current phenomena in the SU(2)L × U(1) theory, Phys. Rev. D22, 2695.Google Scholar
Marciano, W.J. and Sirlin, A. (1981). Precise SU(5) predictions for, mW and mz, Phys. Rev. Lett. 46, 163.CrossRefGoogle Scholar
Marshak, R.E., Riazuddin, , and Ryan, C.P. (1969). Theory of Weak Interactions in Particle Physics (Wiley, New York).
Martin, A. (1981). A simultaneous fit of and spectra, Phys. Lett. 100B, 511.CrossRefGoogle Scholar
Melnikov, K. and Ritbergen, T.V. (2000). Thethree loop relation between the MS-barand the pole quark masses, Phys. Lett. B482, 99.CrossRefGoogle Scholar
Mereghetti, E., Hockings, W.H., and van Kolck, U. (2010). The effective chiral lagrangian from the θ term, Annals Phys. 325, 2363.Google Scholar
Mikheev, S.P. and Smirnov, A.Y. (1985). Resonance amplification of oscillations in matter and spectroscopy of solarneutrinos, Sov. J. Nucl. Phys. 42, 913.Google Scholar
Misiak, M.Asatrian, H.M., et al. (2007). Estimate of B → Xsγ at, Phys. Rev. Lett. 98, 022002.Google Scholar
Mohapatra, R.N., Antusch, S.et al. (2007). Theory of neutrinos: a White Paper, Rept. Prog. Phys. 70, 1757.CrossRefGoogle Scholar
Mohr, P.J., Newell, D.B., and Taylor, B.N. (2012). CODATA recommended values of the fundamental physical constants: 2010, Rev. Mod. Phys. 84, 1527.CrossRefGoogle Scholar
Morningstar, C.J. and Peardon, M.J. (1999). The glueball spectrum from an anisotropic lattice study, Phys. Rev. D60, 034509.Google Scholar
Muller, T. (2012). New results from the top quark (plenary talk delivered 7/10/12 at 36th Intl. Conf. for High Energy Physics [indico.cern.ch/conferenceTimeTable.py?confId= 181298]).
Nambu, Y. and Lurie, D. (1962). Chirality conservation and soft pion production, Phys. Rev. 125, 1429.Google Scholar
Narison, S. (1989). QCD Spectral Sum Rules (World Scientific, Singapore).
Neubert, M. (2005). Effective field theory and heavy quark physics, TASI-2004 (hep-ph/0512222).
Noecker, M.C., Masterson, B.P., and Wieman, C.E. (1988). Precision measurement of parity nonconservation in atomic cesium, Phys. Rev. Lett. 61, 310.CrossRefGoogle Scholar
Ochs, W. (2013). The status of glueballs, J. Phys. G40, 043001.CrossRefGoogle Scholar
Ohl, T., Ricciardi, G., and Simmons, E.H. (1993). D–anti-D mixing in heavy quark effective field theory: the sequel, Nucl. Phys. B403, 605.Google Scholar
Okubo, S. (1962). Note on unitary symmetry in strong interactions, Prog. Theo. Phys. 27, 949.CrossRefGoogle Scholar
Okubo, S. (1963). φ meson and unitarity symmetry model, Phys. Lett. 5, 165.Google Scholar
Okun, L. (1982). Leptons and Quarks (North-Holland, Amsterdam).
Ovrut, B. and Schnitzer, H. (1980). Decoupling theorems for effective field theories, Phys. Rev. D22, 2518.Google Scholar
Pak, N.K. and Rossi, P. (1985). Gauged Goldstone boson effective action from direct integration of Bardeen anomaly, Nucl. Phys. B250, 279.Google Scholar
Parke, S.J. (1986). Nonadiabatic level crossing in resonant neutrino oscillation, Phys. Rev. Lett. 57, 1275.CrossRefGoogle Scholar
Peccei, R.D. (1989). The strong CP problem, in CP Violation, ed. C., Jarlskog (World Scientific, Singapore).
Peccei, R.D. and Quinn, H.R. (1977). CP conservation in the presence of instantons, Phys. Rev. Lett. 38, 1440.CrossRefGoogle Scholar
Pelaez, J.R. (2004). On the nature of light scalar mesons from their large N(c) behavior, Phys. Rev. Lett. 92, 102001.CrossRefGoogle Scholar
Peskin, M.E. and Takeuchi, T. (1990). New constraint on a strongly interacting Higgs sector, Phys. Rev. Lett. 65, 964.CrossRefGoogle Scholar
Pich, A. (2013). Review of αs determinations (arXiv:1303.2262 [hep-ph]).
Pineda, A. and Soto, J. (1998). Effective field theory for ultrasoft momenta in NRQCD and NRQED, Nucl. Phys. Proc. Suppl. 64, 428.CrossRefGoogle Scholar
Politzer, H.D. (1973). Reliable perturbative results for strong interactions?, Phys. Rev. Lett. 30, 1346.CrossRefGoogle Scholar
Politzer, H.D. (1974). Asymptotic freedom: an approachto strong interactions, Phys. Rep. 14C, 274.Google Scholar
Pontecorvo, B. (1968). Neutrino experiments and the problem of conservation of leptonic charge, Sov. Phys. JETP 26, 984.Google Scholar
Porsev, S.G., Beloy, K., and Derevianko, A. (2009). Precision determination of electroweak coupling from atomic parity violation and implications for particle physics, Phys. Rev. Lett. 102, 181601.CrossRefGoogle Scholar
Porto, R.A., Ross, A., and Rothstein, I.Z. (2011). Spin induced multipole moments for the gravitational wave flux from binary inspirals to third Post-Newtonian order, JCAP 1103, 009.Google Scholar
Quaresma, M. (2012). Study of the nucleon spin structure by the Drell–Yan process in the COMPASS-II experiment, Acta. Phys. Polon. Suppl. 5, 1163.CrossRefGoogle Scholar
Rafael, E. de (1998). An introduction to sum rules in QCD: course (arXiv:9802448 [hep-ph]).
Ramond, P. (1989). Field Theory: A Modern Primer (Addison-Wesley, Menlo Park, CA).
Reinders, L.J., Rubenstein, H., and Yazaki, S. (1985). Hadron properties from QCD sum rules, Phys. Rep. 127, 1.CrossRefGoogle Scholar
Richards, C.S.et al. (2010). Glueball mass measurments from improved staggered fermion simulations, Phys. Rev. D86, 034501.Google Scholar
Richardson, J. L. (1979). The heavy quark potential and the ⋎, J/ψ systems, Phys. Lett. 82B, 272.CrossRefGoogle Scholar
Riggenbach, C., Gasser, J., Donoghue, J.F., and Holstein, B.R. (1991). Chiral symmetry and the large Nc limit in Kl4 decays, Phys. Rev. 43, 127.Google Scholar
Ritbergen, T. van, Vermaseren, J.A.M., and Larin, S.A. (1997). The four loop beta function in quantum chromodynamics, Phys. Lett. B400, 379.Google Scholar
Rothe, H.J. (2012). Lattice Gauge Theories: An Introduction (4th Edition) (World Scientific, Singapore).
Rosenzweig, C., Schechter, J., and Trahern, C.G. (1980). Is the effective lagrangian for QCD a σ model, Phys. Rev. D21, 3388.Google Scholar
Roy, S.M. (1971). Exact integral equation for pion pion scattering involving only physical region partial waves, Phys. Lett. B36, 353.Google Scholar
Sakharov, A.D. (1967). Violation of CP invariance, C asymmetry, and baryon asymmetry of the universe, JETP Lett. 5, 24.Google Scholar
Sakurai, J.J. (1969). Currents and Mesons (University of Chicago Press, Chicago).
Salam, A. (1969). Weak and electromagnetic interactions, in Elementary Particle Theory; Nobel Symposium No.8, ed. N., Svartholm (Almqvist and Wiksell, Stockholm).
Schael, S.et al. (ALEPH and DELPHI and L3 and OPAL and SLD and LEP Electroweak Working Group and SLD Electroweak Group and SLD Heavy Flavour Group collabs.) (2006). Precision electroweak measurements on the Z resonance, Phys. Rept. 427, 257.CrossRefGoogle Scholar
S., Schaelet al. (ALEPH and DELPHI and L3 and OPAL and LEP Electroweak Working Group collab.) (2013). Electroweak measurements in electron-positron collisions at W-boson-pairenergies at LEP (arXiv:1302.3415 [hep-ex]).
Schnitzer, H.J. (1984). The soft pion Skyrmion lagrangian and strong CP violation, Phys. Lett. B139, 217.CrossRefGoogle Scholar
Schulman, L.S. (1981). Techniques and Applications of Path Integration (Wiley, New York).
Schwinger, J. (1951). On gauge invariance and vacuum polarization, Phys. Rev. 82, 664.Google Scholar
Schwinger, J. (1954). The theory of quantized fields, Phys. Rev. 93, 615.Google Scholar
Shifman, M.A. (2010). Vacuum structure and QCD sum rules: introduction, Int. J. Mod. Phys. A25, 226.Google Scholar
Shifman, M.A., Uraltsev, N.G., and Vainshtein, A.I. (1995). Operator product expansion sum rules for heavy flavor transitions and the determination of abs[Vcb], Phys. Rev. D51, 2217.Google Scholar
Shifman, M.A., Vainshtein, A.I., Voloshin, M.B., and Zakharov, V.I. (1979). Low-energy theorems for Higgs boson couplings to photons, Sov. J. Nucl. Phys. 30, 711.Google Scholar
Shifman, M.A., Vainshtein, A., and Zakharov, V. (1977). Nonleptonic decays of K mesons and hyperons, JETP 45, 670.Google Scholar
Shifman, M.A., Vainshtein, A., and Zakharov, V. (1979a). QCD and resonance physics: I, II, III, Nucl. Phys. B147, 385, 488, 519.Google Scholar
Shifman, M.A., Vainshtein, A., and Zakharov, V. (1979b). Nonleptonic decays of strange particles, Nucl. Phys. B120, 316.Google Scholar
Shifman, M.A. and Voloshin, M. (1988). On production of D* and D mesons in B meson decay, Sov. J. Nucl. Phys. 47, 511.Google Scholar
Shore, G.M. (1981). On the Meissner effect in gauge theories, Ann. Phys. 134, 259.Google Scholar
Shore, G.M. (2008). The U(1)A anomaly and QCD phenomenology, Lect. Notes Phys. 737, 235.CrossRefGoogle Scholar
Sikivie, P., Susskind, L., Voloshin, M., and Zakharov, V. (1980). Isospin breaking in technicolor models, Nucl. Phys. B173, 189.Google Scholar
Sirlin, A. (1980). Radiative corrections in the SU(2)L × U(1) theory: a simple renormalization framework, Phys. Rev. D22, 971.Google Scholar
Skiba, W. (2010). TASI lectures on effective field theory and precision electroweak measurements (arXiv:1006.2142[hep-ph]).
Skyrme, T.H.R. (1961). A non-linear field theory, Proc. R. Soc. Lon. A260, 127.Google Scholar
Skyrme, T.H.R. (1962). A unified field theory of mesons and baryons, Nucl. Phys. 31, 556.Google Scholar
Smirnov, V.A. (2002). Applied asymptotic expansions in momenta and masses, Springer Tracts Mod. Phys. 177, 1.Google Scholar
Smirnov, V.A. (2012). Analytic tools for Feynman integrals, Springer Tracts Mod. Phys. 250, 1.Google Scholar
Spira, M., Djouadi, A., Graudenz, D., and Zerwas, P.M. (1995). Higgs boson production at the LHC, Nucl. Phys. B453, 17.Google Scholar
Sutherland, D. (1967). Current algebra and some non-strong meson decays, Nucl. Phys. B2, 433.Google Scholar
't Hooft, G. (1974). A planar diagram theory of the strong interactions, Nucl. Phys. B72, 461.Google Scholar
't Hooft, G. (1976a). Computation of the quantum effects due to a four-dimensional pseudoparticle, Phys. Rev. D14, 3432.Google Scholar
't Hooft, G. (1976b). Symmetry breaking through Bell–Jackiw anomalies, Phys. Rev. Lett. 37, 8.Google Scholar
't Hooft, G., Isidori, G., Maiani, L., Polosa, A., and Riquer, V. (2008). A theory of scalar mesons, Phys. Lett. B662, 424.Google Scholar
't Hooft, G. and Veltman, M. (1972). Regularization and renormalization of gauge fields, Nucl. Phys. B44, 189.Google Scholar
't Hooft, G. and Veltman, M.J.G. (1979). Scalar one loop integrals, Nucl. Phys. B153, 365.Google Scholar
van Kolck, U. (2008). Nuclear Physics from QCD, Proceedings of Science (CONFINEMENT) 8, 030.Google Scholar
Veltman, M. (1967). Theoretical aspects of high energy neutrino interactions, Proc. R. Soc. Lon. A301, 103.Google Scholar
Veltman, M. (1977a). Limit on mass differences in the Weinberg model, Nucl. Phys. B123, 89.Google Scholar
Veltman, M. (1977b). Second threshold in weak interactions, Acta Phys. Polonica B8, 475.Google Scholar
Vermaseren, J.A.M., Larin, S.A., and van Ritbergen, T. (1997). The four loop quarkmass anomalous dimension and the invariant quark mass, Phys. Lett. B405, 327.CrossRefGoogle Scholar
Vesterinen, M. (on behalf of the LHCb collab.) (2013). LHCb semileptonic asymmetry, (arXiv:1306.0092 [hep-ex]).
Vetterli, D.et al. (1989). Effects of vacuum polarization in hadron-hadron scattering, Phys. Rev. Lett. 62, 1453.CrossRefGoogle Scholar
Webber, D.M.et al. (MuLan collab.) (2011). Measurement of the positive muon lifetime and determination of the Fermi constant to part-per-million precision, Phys. Rev. Lett. 106, 041803.CrossRefGoogle Scholar
Weinberg, S. (1966). Pion scattering lengths, Phys. Rev. Lett. 17, 616.CrossRefGoogle Scholar
Weinberg, S. (1967a). Precise relations between the spectra of vector and axial vector mesons, Phys. Rev. Lett. 18, 507.Google Scholar
Weinberg, S. (1967b). A model for leptons, Phys. Rev. Lett. 19, 1264.Google Scholar
Weinberg, S. (1968). Nonlinear realizations of chiral symmetry, Phys. Rev. 166, 1568.Google Scholar
Weinberg, S. (1973). New approach to the renormalization group, Phys. Rev. D8, 3497.Google Scholar
Weinberg, S. (1979a). Baryon and lepton nonconserving processes, Phys. Rev. Lett. 43, 1566.Google Scholar
Weinberg, S. (1979b). Phenomenological lagrangians, Physica A96, 327.Google Scholar
Weinberg, S. (1990). Nuclear forces from chiral lagrangians, Phys. Lett. B 251, 288.CrossRefGoogle Scholar
Weinstein, J. and Isgur, N. (1983). system in a potential model, Phys. Rev. D27, 588.Google Scholar
Wess, J. and Zumino, B. (1971). Consequences of anomalous Ward identities, Phys. Lett. B37, 95.CrossRefGoogle Scholar
Wilkinson, D.T. and Marrs, R.E. (1972). Finite size effects in allowed beta decay, Nucl. Inst. Meth. 105, 505.CrossRefGoogle Scholar
Willenbrock, S. (2004). Symmetries of the Standard Model (arXiv:0410370 [hep-ph]).
Wilson, K. (1969). Nonlagrangian models of current algebra, Phys. Rev. 179, 1499.Google Scholar
Wise, M.B. (1991). New symmetries of the strong interaction (Proceedings of the 1991 Lake Louise Winter Institute and Caltech preprint CALT-68-1721).
Witten, E. (1979). Current algebra for the UA(1) ‘Goldstone boson’, Nucl. Phys. B156, 269.Google Scholar
Witten, E. (1983a). Global aspects of current algebra, Nucl. Phys. B223, 422.Google Scholar
Witten, E. (1983b). Current algebra, baryons and quark confinement, Nucl. Phys. B223, 433.Google Scholar
Wolfenstein, L. (1978). Neutrino oscillations in matter, Phys. Rev. D17, 2369.Google Scholar
Wolfenstein, L. (1983). Parametrization of the Kobayashi–Maskawa matrix, Phys. Rev. Lett. 51, 1945.CrossRefGoogle Scholar
Wolfenstein, L. (1985). D0 anti-D0 mixing, Phys. Lett. B164, 170.Google Scholar
Yang, C.N. (1950). Selection rules for the dematerialization of a particle into two photons, Phys. Rev. 77, 242.Google Scholar
Yang, C.N. and Mills, R.L. (1954). Conservation of isotopic spin and isotopic gauge theory, Phys. Rev. 96, 191.Google Scholar
Zeller, G.P.et al. (NuTeV collab.) (2001). A precise determination of electroweak parameters in neutrino nucleon scattering, Phys. Rev. Lett. 88, 091802 (Erratum Zeller, G.P. et al. (NuTeV collab.) (2001). A precise determination of electroweak parameters in neutrino nucleon scattering, Phys. Rev. Lett.90, 239902 (2003)).Google Scholar
Zhan, X.et al. (2011). High precision measurement of the proton elastic form factor ratio μpGE/GM at low Q2, Phys. Lett. B705, 59.Google Scholar
Zweig, G. (1965). Fractional charged particles and SU(6), in Symmetries in Elementary Particle Physics, ed. A., Zichichi (Academic Press, New York).

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • John F. Donoghue, University of Massachusetts, Amherst, Eugene Golowich, University of Massachusetts, Amherst, Barry R. Holstein, University of Massachusetts, Amherst
  • Book: Dynamics of the Standard Model
  • Online publication: 05 June 2014
  • Chapter DOI: https://doi.org/10.1017/CBO9780511803512.021
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • John F. Donoghue, University of Massachusetts, Amherst, Eugene Golowich, University of Massachusetts, Amherst, Barry R. Holstein, University of Massachusetts, Amherst
  • Book: Dynamics of the Standard Model
  • Online publication: 05 June 2014
  • Chapter DOI: https://doi.org/10.1017/CBO9780511803512.021
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • John F. Donoghue, University of Massachusetts, Amherst, Eugene Golowich, University of Massachusetts, Amherst, Barry R. Holstein, University of Massachusetts, Amherst
  • Book: Dynamics of the Standard Model
  • Online publication: 05 June 2014
  • Chapter DOI: https://doi.org/10.1017/CBO9780511803512.021
Available formats
×