Skip to main content Accessibility help
×
  • This product is now available open access under ISBN 9781009291033
  • This book is no longer available to purchase from Cambridge Core
  • Cited by 74
Publisher:
Cambridge University Press
Online publication date:
June 2014
Print publication year:
2014
Online ISBN:
9780511803512

Book description

Describing the fundamental theory of particle physics and its applications, this book provides a detailed account of the Standard Model, focusing on techniques that can produce information about real observed phenomena. The book begins with a pedagogic account of the Standard Model, introducing essential techniques such as effective field theory and path integral methods. It then focuses on the use of the Standard Model in the calculation of physical properties of particles. Rigorous methods are emphasized, but other useful models are also described. This second edition has been updated to include recent theoretical and experimental advances, such as the discovery of the Higgs boson. A new chapter is devoted to the theoretical and experimental understanding of neutrinos, and major advances in CP violation and electroweak physics have been given a modern treatment. This book is valuable to graduate students and researchers in particle physics, nuclear physics and related fields.

Refine List

Actions for selected content:

Select all | Deselect all
  • View selected items
  • Export citations
  • Download PDF (zip)
  • Save to Kindle
  • Save to Dropbox
  • Save to Google Drive

Save Search

You can save your searches here and later view and run them again in "My saved searches".

Please provide a title, maximum of 40 characters.
×

Contents

References
Aad, G.et al. (ATLAS collab.) (2011). Search for contact interactions in dimuon events from pp collisions at TeV with the ATLAS Detector, Phys. Rev. D84, 011101.
Aad, G.et al. (ATLAS collab.) (2012). Measurement of W+W− production in pp collisions at TeV with the ATLAS detector and limits on anomalous WWZ and WWy couplings, Phys. Rev. D87 112001.
Aad, G.et al. (ATLAS collab.) (2013 a). Search for a light charged Higgs boson in the decay channel H+ → in events using pp collisions at TeV with the ATLAS detector, Eur. Phys. J. C73, 2465.
Aad, G.et al. (ATLAS collab.) (2013 b). Evidence for the spin-0 nature of the Higgs bosonusing ATLAS data (arXiv:1307.1432[hep-ex]).
Aaij, R.et al. (LHCb collab.) (2012). A model-independent Dalitz plot analysis of B± → DK± with decays and constraints on the CKM angle γ, Phys. Lett. B718, 43.
Aaij, R.et al. (LHCb collab.) (2013 a). Observation of oscillations, Phys. Rev. Lett. 110, 101802.
Aaij, R.et al. (LHCb collab.) (2013 b). First evidence for the decay, Phys. Rev. Lett. 110, 021801.
Aaij, R.et al. (LHCb collab.) (2013 c). Measurement of mixing parameters and search for CP violation using D0 → K+π− decays (arXiv:1309.6534 [hep-ex]).
Aaij, R.et al. (LHCb collab.) (2013 d). Measurements of indirect CP asymmetries in D0 → K−K+ and D0 → π−π+ decays (arXiv:1310.7201[hep-ex]).
Aaltonen, T.et al. (CDF and D0 collab.) (2013). Higgs boson studies at the Tevatron, Phys. Rev. D88, 052014.
Abbott, L. (1982). Introduction to the background field method, Acta Phys. Pol. B13, 33.
Abe, K.et al. (SLD collab.) (2000). A high precision measurement of the left-right Z boson cross-section asymmetry, Phys. Rev. Lett. 84, 5945.
Abe, K.et al. (T2K collab.) (2013). Evidenceof electron neutrino appearance in a muon neutrino beam, Phys. Rev. D88, 032002.
Abe, Y.et al. (DOUBLE-CHOOZ collab.) (2012). Indication for the disappearance of reactor electron antineutrinos in the Double Chooz experiment, Phys. Rev. Lett. 108, 131801.1
Ablikim, M.et al. (BESIII collab.) (2013). Observation of a charged charmoniumlike structure in e+e− → π+π−J/ψ at, Phys. Rev. Lett. 110, 252001.
Abouzaid, E.et al. (KTeV collab.) (2008). Final results from the KTeV experiment on the decay KL → π0γγ, Phys. Rev. D77, 112004.
Ackerman, N.et al. (EXO-200 collab.) (2011). Observation of two-neutrino double-beta decay in 136Xe with EXO-200, Phys. Rev. Lett. 107, 212501.
Adam, J.et al. (MEG collab.) (2013). New constraint on the existence of the μ+ → e+γ decay (arXiv:1303.0754[hep-ex]).
Ade, P.A.R.et al. (Planck collab.) (2013). Planck 2013 results. XVI. cosmological parameters (arXiv:1303.5076 [astro-ph.CO]).
Ademollo, M. and Gatto, R. (1964). Nonrenormalization theorem for the strangeness-violating vector currents, Phys. Rev. Lett. 13, 264.
Adkins, G., Nappi, C., and Witten, E. (1983). Static properties of nucleons in the Skyrme model, Nucl. Phys. B228, 552.
Adler, S.L. (1969). Axial-vector vertex in spinor electrodynamics, Phys. Rev. 177, 2426.
Adler, S.L. (1970). Perturbation theory anomalies, in Lectures on Elementary Particle Physics, ed. S., Deser, M., Grisaru and H., Pendleton (MIT Press, Cambridge, MA).
Adler, S.L. and Bardeen, W.A. (1969). Absence of higher-order corrections in the anomalous axial-vector divergence equation, Phys. Rev. 182, 1517.
Adler, S.L. and Dashen, R. (1968). Current Algebras and Applications to Particle Physics (Benjamin, New York).
Aguilar, A.et al. (LSND collab.) (2001). Evidence for neutrino oscillations from the observation of anti-neutrino(electron) appearance in a anti-neutrino(muon) beam, Phys. Rev. D64, 112007.
Aharmim, B.et al. (SNO collab.) (2011). Combined analysis of all three phases of solar neutrino data from the Sudbury Neutrino Observatory, Prog. Part. Nucl. Phys. 71, 150.
Ahn, J.K.et al. (RENO collab.) (2012). Observation of reactor electron antineutrino disappearance in the RENO experiment, Phys. Rev. Lett. 108, 191802.
Ahrens, J.et al. (2005). Measurement of the π+ meson polarizabilities via the γp → γπ+n reaction, Eur. J. Phys. A23, 113.
Aidala, C.A., Bass, S.D., Hasch, D., and Mallot, G.K. (2013). The spin structure of the nucleon, Rev. Mod. Phys. 85, 655.
Akhundov, A.A., Arbuzov, A., Riemann, S., and Riemann, T. (2013). Zfitter 1985-2013 (arXiv:1302.1395 [hep-ph]).
Akhundov, A.A., Bardin, D.Yu., and Reimann, T. (1986). Electroweak one-loop corrections to the decay of the neutral vector boson, Nucl. Phys. B276, 1.
Alarcon, J.M., Camalich, J.M., and Oller, J.A. (2013). Low energy analysis of źN scattering and the pion-nucleon sigma term with covariant baryon chiral perturbation theory (arXiv:1301:3067[hep-ph]).
Alekhin, S., Djouadi, A., and Moch, S. (2012). The top quark and Higgs boson masses and the stability of the electroweak vacuum, Phys. Lett. B716, 214.
Ali, A., Hambrock, C., and Wang, W. (2012). Tetraquark interpretation of the charged bottomonium-like states Zb (10610) and Zb (10650) and implications, Phys. Rev. D85, 054011.
Altarelli, G. and Maiani, L. (1974). Octet enhancement of nonleptonic weak interactions in asymptotically free gauge theories, Phys. Lett. B52, 351.
Altarelli, G. and Ross, G.G. (1988). The anomalous gluon contribution to polarized leptoproduction, Phys. Lett. B212, 391.
Amaldi, U., de Boer, W., and Fürstenau, H. (1991). Comparison of grand unified theories with electroweak and strong coupling constants measured at LEP, Phys. Lett. 260, 447.
Amhis, Y.et al. (Heavy Flavor Averaging Group collab.) (2012). Averages of b-hadron, c-hadron, and tau-lepton properties as of early 2012 (arXiv:1207.1158 [hep-ex]).
Amsler, C. and Close, F.E. (1996). Is f0 (1500) a scalar glueball?, Phys. Rev. D53, 295.
An, F.P.et al. (DAYA-BAY collab.) (2012). Observation of electron-antineutrino disappearance at Daya Bay, Phys. Rev. Lett. 108, 171803.
Anderson, P.W. (1984). Basic Notions in Condensed Matter Physics (Benjamin/Cummings, Menlo Park, CA).
Anthony, P.L.et al. (SLAC E158 collab.) (2005). Precision measurement of the weak mixing angle in Moller scattering, Phys. Rev. Lett. 95, 081601.
Antipov, Yu.M.et al. (1985). Experimental estimation of the sum of pion electric and magnetic polarizabilities, Z. Phys. C26, 495.
Antognini, A.et al. (2013). Proton Structure from the Measurement of 2S – 2P Transition Frequencies of Muonic Hydrogen, Science 339, 417.
Antonelli, V., Miramonti, L., Pena-Garay, C., and Serenelli, A. (2012). Solar neutrinos (arXiv:1208.1356 [hep-ph]).
Anzai, C., Kiyo, Y., and Sumino, Y. (2010). Static QCD potential at three-loop order, Phys. Rev. Lett. 104, 112003.
Aoki, K., Hioki, Z., Kawabe, R., Konuma, M., and Muta, T. (1982). Electroweak theory, Suppl. Prog. Theor. Phys. 73, 1.
Aoyama, T., Hayakawa, M., Kinoshita, T., and Nio, M. (2012). Quantum electrodynamics calculation of lepton anomalous magnetic moments: numerical approach to the perturbation theory of QED, Prog. Theor. and Exptal. Phys. 2012, 01A107.
Appelquist, T. and Bernard, C. (1981). Nonlinear sigma model in the loop expansion, Phys. Rev. D23, 425.
Appelquist, T. and Carrazone, J. (1975). Infrared singularities and massive fields, Phys. Rev. D11, 2856.
Armstrong, D.S. and McKeown, R.D. (2012). Parity violating electron scattering and the electric and magnetic strange form factors of the nucleon, Ann. Rev. Nucl. Part. Sci. 62, 337.
Asplund, M., Basu, S., Ferguson, J.W., and Serenelli, A. (2009). New solar composition: the problem with solar models revisited, Astrophys. J. 705, L123.
Aydemir, U., Anber, M.M., and Donoghue, J.F. (2012). Self-healing of unitarity in effective field theories and the onset of New Physics, Phys. Rev. D86, 014025.
Baak, M.et al. (Gfitter group) (2012). Updated status of the global electroweak fit and constraints on New Physics, Eur. Phys. J. C72, 2003.
Bahcall, J.N. (1964). Solar neutrinos I. Theoretical, Phys. Rev. Lett. 12, 300.
Bahcall, J.N. (1990). Neutrino Astrophysics (Cambridge University Press, Cambridge).
Bailey, J.A., Bernard, C., DeTar, C., et al. (2009). The B → πℓν semileptonic form factor from three-flavor lattice QCD: a model-independent determination of abs[Vub], Phys. Rev. D79, 054507.
Balachandran, A.P., Nair, V.P., Rajeev, S.G., and Stern, A. (1983). Soliton states inthe QCD effective lagrangian, Phys. Rev. D27, 1153.
Balantekin, A.B. and Haxton, W.C. (2013). Neutrino oscillations, Prog. Part. Nucl. Phys. 71, 150.
Bali, G.S.et al. (1993). A comprehensive lattice study of SU(3) glueballs, Phys. Lett. B309, 378.
Barbieri, R., Frigens, H., Giuliani, F., and Haber, H.E. (1990). Precision measurements in electroweak physics and supersymmetry, Nucl. Phys. B341, 309.
Barbieri, R., Pomarol, A., Rattazzi, R., and Strumia, A. (2004). Electroweak symmetry breaking after LEP-1 and LEP-2, Nucl. Phys. B703, 127.
Bardeen, W.A. (1969). Anomalous Ward identities in spinor field theories, Phys. Rev. 184, 1848.
Bardin, D. and Passarino, G. (1999). The Standard Model in the Making: Precision Study of the Electroweak Interactions (Oxford University Press, Oxford).
Barger, V. and Phillips, R.J.N. (1987). Collider Physics (Addison-Wesley, Redwood City, CA).
Bass, S.D. (2005). The spin structure of the proton, Rev. Mod. Phys. 77, 1257.
Bauer, C.W., Fleming, S., Pirjol, D., and Stewart, I.W. (2001). An effective field theory for collinear and soft gluons: heavy to light decays, Phys. Rev. D63, 114020.
Bauer, C.W., Lange, B.O., and Ovanesyan, G. (2011). On Glauber modes in Soft-Collinear Effective Theory, JHEP 1107, 077.
Beane, S.R., Bedaque, P.F., Parreno, A., and Savage, M.J. (2005). Exploring hyperons and hypernuclei with lattice QCD, Nucl. Phys. A747, 55.
Becher, T. (2010). Soft-collinear effective theory - Lectures on ‘The infrared structure of gauge theories’, ETH Zurich. see http://www.becher.itp.unibe.ch/lectures.html.
Becher, T. and Hill, R.J. (2006). Comment on form-factor shape and extraction of abs[Vub] from B → πℓν, Phys. Lett. B633, 61.
Beck, D.H. and Holstein, B.R. (2001). Nucleon structure and parity violating electron scattering, Int. J. Mod. Phys. E10, 1.
Bell, J.S. and Jackiw, R. (1967). A PCAC puzzle: π0 → γγ in the sigma model, Nuovo Cim. 60A, 47.
Bellini, G.et al. (Borexino collab.) (2012 a). First evidence of pepsolar neutrinos by direct detection in Borexino, Phys. Rev. Lett. 108, 051302.
Bellini, G.et al. (Borexino collab.) (2012 b). Absence of day-night asymmetry of 862 keV 7Be solar neutrino rate in Borexino and MSW oscillation parameters, Phys. Lett. B707, 22.
Beneke, M. and Braun, V.M. (1995). Naive non-abelianization and resummation of fermion bubble chains, Phys. Lett. B348, 513.
Beneke, M., Efthymiopoulos, I., et al. (2000). Top quark physics, Geneva 1999, Standard Model physics (and more) at the LHC (CERN, Geneva), p. 419.
Beneke, M. and Smirnov, V.A. (1998). Asymptotic expansion of Feynman integrals near threshold, Nucl. Phys. B522, 321.
Bennett, S.C., Cho, D., Masterson, B.P., Roberts, J.L., Tanner, C.E., Wieman, C.E., and Wood, C.S. (1997). Measurement of parity nonconservation and ananapole moment in cesium, Science 275, 1759.
Bennett, S.C. and Wieman, C.E. (1999). Measurement of the 6S → 7S transition polarizability in atomic cesium and an improved test of the Standard Model, Phys. Rev. Lett. 82, 2484 (Errata Bennett, S.C. and Wieman, C.E. (1999). Measurement of the 6S → 7S transition polarizability in atomic cesium and an improved test of the Standard Model, Phys. Rev. Lett.82, 4153 (1999); 83, 889 (1999)).
Benson, D., Bigi, I.I., Mannel, T., and Uraltsev, N. (2003). Imprecated, yet impeccable: on the theoretical evaluation of Γ(B π Xcℓν), Nucl. Phys. B665, 367.
Bergstrom, L. and Hulth, G. (1985). Induced Higgs couplings to neutral bosons in e+e-collisions, Nucl. Phys. B259, 137 (Erratum Bergstrom, L. and Hulth, G. (1985). Induced Higgs couplings to neutral bosons in e+e-collisions, Nucl. Phys.B276, 744 (1986)).
Berman, S.M. (1958). Radiative corrections to muon and neutron decay, Phys. Rev. 112, 267.
Bernard, C., et al. (2009). The form factor at zero recoil from three-flavor lattice QCD: a model independent determination of arg[Vcb], Phys. Rev. D79, 014506.
Bertlmann (2000). Anomalies in Quantum Field Theory (Oxford University Press, Oxford).
Bethke, S. (2009). The 2009 world average of alpha(s), Eur. Phys. J. C64, 689.
Bethke, S.et al. (2011). Workshop on precision measurements of αs (arXiv:1110.0016 [hep-ph]).
Bhattacharya, T., et al. (2012). Probing novel scalar and tensor interactions from (ultra)cold neutrons to the LHC, Phys. Rev. D85, 054512.
Bigi, I.I., Khoze, V.A., Uraltsev, N.G., and Sanda, A.I. (1989). The question of CP noninvariance as seen through the eyes of neutral beauty, in CP Violation, ed. C., Jarlskog (World Scientific, Singapore).
Bigi, I.I. and Sanda, A.I. (1981). Note on the observability of CP violation in B decays, Nucl. Phys. B193, 85.
Bigi, I.I. and Sanda, A.I. (2000). CP violation (Cambridge University Press, Cambridge).
Bigi, I.I., Shifman, M.A., Uraltsev, N.G., and Vainshtein, A.I. (1993). QCD predictions for lepton spectra in inclusive heavy flavor decays, Phys. Rev. Lett. 71, 496.
Bigi, I.I., Shifman, M.A., Uraltsev, N.G., and Vainshtein, A.I. (1994). The pole mass of the heavy quark. Perturbation theory and beyond, Phys. Rev. D50, 2234.
Bigi, I.I. and Uraltsev, N.G. (2001). oscillations as a probe of quark hadron duality, Nucl. Phys. B592, 92.
Bijnens, J. (1990). K14 decays and the low energy expansion, Nucl. Phys. B337, 635.
Bijnens, J., Borg, F., and Dhonte, P. (2003). K π 3π decays in chiral perturbation theory, Nucl. Phys. B648, 317.
Bijnens, J. and Jemos, I. (2012). A new global fit of the at next-to-next-to-leading order in Chiral Perturbation Theory, Nucl. Phys. B854, 631.
Bijnens, J. and Wise, M.B. (1984). Electromagnetic contribution to ϵ′/ϵ, Phys. Lett. B137, 245.
Birrell, N.D. and Davies, P.C.W. (1982). Quantum Fields in Curved Space (Cambridge University Press, Cambridge).
Bjorken, J.D. (1966). Applications of the chiral U(6) × (6) algebra of current densities, Phys. Rev. 148, 1467.
Blum, T.et al. (2011). K to ππ decay amplitudes from lattice QCD, Phys. Rev. D84, 114503.
Blum, T.et al. (2012). The K π (ππ)1=2 decay amplitude from lattice QCD, Phys. Rev. Lett. 108, 141601.
Bobrowski, M., Lenz, A., Riedl, J., and Rohrwild, J. (2010). How large can the SM contribution to CP violation in mixing be?, JHEP 1003, 009.
Böhm, M., Hollik, W., and Speisberger, H. (1986). On the one-loop renormalization of the electroweak Standard Model, Fort. Phys. 34, 688.
Boito, D.et al. (2012). An updated determination of αs from τ decays, Phys. Rev. D85, 093015.
Bollini, C.G. and Giambiagi, J.J. (1972). Dimensional renormalization: the number of dimensions as a regularizing parameter, Nuovo Cim. 12B, 20.
Borasoy, B. and Holstein, B.R. (1999). Nonleptonic hyperon decays in chiral perturbation theory, Eur. Phys. J. C6, 85.
Braaten, E., Narison, S., and Pich, A. (1992). QCD analysis of the tau hadronic width, Nucl. Phys. B373, 581.
Brambilla, N.et al. (2011). Heavy quarkonium: progress, puzzles, and opportunities, Eur. Phys. J. C71, 1534.
Brambilla, N., Pineda, A., Soto, J., and Vairo, A. (2005). Effective field theories for heavy quarkonium, Rev. Mod. Phys. 77, 1423.
Branco, G.C., Lavoura, L., and Silva, J.P. (1999). CP Violation (Oxford University Press, Oxford).
Brod, J. and Gorbahn, M. (2012). Next-to-next-to-leading-order charm-quark contribution to the CP violation parameter ϵK and ΔMK, Phys. Rev. Lett. 108, 121801.
Brod, J., Gorbahn, M., and Stamou, E. (2011). Two-loop electroweak corrections for the decays, Phys. Rev. D83, 034030.
Brodsky, S.J. and Lepage, G.P. (1980). Exclusive processes in perturbative quantum chromodynamics, Phys. Rev. D22, 2157.
Buchalla, G., Buras, A.J. and Harlander, M.K. (1990). The anatomy of ϵ′/ϵ in the Standard Model, Nucl. Phys. B337, 313.
Buchalla, G., Buras, A.J. and Lautenbacher, M.E. (1996). Weak decays beyond leading logarithms, Rev. Mod. Phys. 68, 1125.
Buchmüller, W. and Wyler, D. (1986). Effective lagrangian analysis of new interactions and flavor conservation, Nucl. Phys. B268, 621.
Buras, A.J., Girrbach, J., Guadagnoli, D., and Isidori, G. (2012). On the Standard Model prediction for BR(Bs,d → μ + μ−), Eur. Phys. J. C72, 2172.
Burgers, G. and Jegerlehner, F. (1989). Δr, or the relation between the electroweak couplings and the weak vector boson masses, in Z Physics at LEP 1, ed. Altarelli, G., Kleiss, R., and Verzegnassi, C. (CERN 89-08, Geneva).
Burgess, C.P., Godfrey, S., Konig, H., London, D., and Maksymyk, I. (1994). A global fit to extended oblique parameters, Phys. Lett. B326, 276.
Cabibbo, N. (1963). Unitary symmetry and leptonic decays, Phys. Rev. Lett. 10, 531.
Cabibbo, N., Swallow, E.C., and Winston, R. (2003). Semileptonic hyperon decays, Ann. Rev. Nucl. Part. Sci. 53, 39.
Cahn, R.N., Chanowitz, M.S., and Fleishon, N. (1979). Higgs particle production by Z π Hγ, Phys. Lett. B82, 113.
Callen, C.G., Coleman, S., Wess, J., and Zumino, B. (1969). Structure of phenomenological lagrangians II, Phys. Rev. 177, 2247.
Caprini, I., Colangelo, G., and Leutwyler, H. (2006). Mass and width of the lowest resonance in QCD, Phys. Rev. Lett. 96, 132001.
Caprini, I., Lellouch, L., and Neubert, M. (1998). Dispersive bounds on the shape of form-factors, Nucl. Phys. B530, 153.
Carruthers, P. (1966). Introduction to Unitary Symmetry (Wiley Interscience, New York).
Casas, J.A., Di Clemente, V., Ibarra, A., and Quiros, M. (2000). Massive neutrinos and the Higgs mass window, Phys. Rev D62, 053005.
Caswell, W.E. and Lepage, G.P. (1986). Effective lagrangian for bound state problems in QED, QCD and other field theories, Phys. Lett. B167, 437.
Chanowitz, M.S. and Ellis, J. (1972). Canonical anomalies and broken scale invariance, Phys. Lett. 40B, 397.
Chanowitz, M.S., Furman, M.A., and Hinchliffe, I. (1978). Weak interactions of ultraheavy termions, Phys. Lett. B78, 285.
Chatrchyan, S.et al. (CMS collab.) (2013). On the mass and spin-parity of the Higgs boson candidate via its decays to Zboson pairs, Phys. Rev. Lett. 110, 081803.
Chay, J., Georgi, H., and Grinstein, B. (1990). Lepton energy distributions in heavy meson decays from QCD, Phys. Lett. B247, 399.
Chen, Y.et al. (2006). Glueball spectrum and matrix elements on anisotropic lattices, Phys. Rev. D73, 014516.
Cheng, T.-P. and Dashen, R. (1971). Is SU(2) × SU(22) a better symmetry than SU(3)?, Phys. Rev. Lett. 26, 594.
Cheng, T.-P. and Li, L.-F. (1984). Gauge Theory of Elementary Particle Physics (Clarendon Press, Oxford).
Chetyrkin, K.G. (1997). Quark mass anomalous dimension to O, Phys. Lett. 404, 161.
Chetyrkin, K.G., Harlander, R., Seidensticker, T. and Steinhauser, M. (1999). Second order QCD corrections to Γ(t → Wb), Phys. Rev. D60, 114015.
Chetyrkin, K.G., Kniehl, B.A. and Steinhauser, M. (1998). Decoupling relations to and their connection to low-energy theorems, Nucl. Phys. B510, 6.
Chodos, A., Jaffe, R.L., Johnson, K., Thorn, C.B., and Weisskopf, V.F. (1974). New extended model of hadrons, Phys. Rev. D9, 3471.
Cirigliano, V., Donoghue, J.F., and Golowich, E. (2000). Dimension eight operators in the weak OPE, JHEP 0010, 048.
Cirigliano, V., Donoghue, J.F., Golowich, E., and Maltman, K. (2001). Determination of 〈(ππ)1=2/Q(7, 8)/K0〉 in the chiral limit, Phys. Lett. B522, 245.
Cirigliano, V., Ecker, G., Neufeld, A., Pich, A., and Portoles, J. (2012). Kaon decays in the Standard Model, Rev. Mod. Phys. 84, 399.
Cirigliano, V., Golowich, E., and Maltman, K. (2003). QCD condensates for the light quark V–A correlator, Phys. Rev. D68, 054013.
Cirigliano, V. and Rosell, I. (2007). Two-loop effective theory analysis of branching ratios, Phys. Rev. Lett. 99, 231801.
Ciuchini, M., Franco, E.Martinelli, G., Reina, L., and Silvestrini, L. (1995). An upgraded analysis of epsilon-prime epsilon at the next-to-leading order, Z. Phys. C68, 239.
Cohen, A.G., Glashow, S.L., and Ligeti, Z. (2009). Disentangling neutrino oscillations, Phys. Lett. B678, 191.
Colangelo, G., Gasser, J., and Leutwyler, H. (2001). ππ scattering, Nucl. Phys. B603, 125.
Colangelo, P. and Khodjamirian, A. (2000). QCD sum rules, a modern perspective, in At the Frontier of Particle Physics, ed. Shifman, M. (World Scientific, Singapore).
Coleman, S. (1985). Aspects of Symmetry: Selected Erice Lectures (Cambridge University Press, Cambridge).
Coleman, S. and Glashow, S.L. (1964). Departures from the eightfold way, Phys. Rev. B134, 671.
Coleman, S. and Mandula, J. (1967). All possible symmetries of the S-matrix, Phys. Rev. 159, 1251.
Coleman, S., Wess, J., and Zumino, B. (1969). Structure of phenomenological lagrangians I, Phys. Rev. 177, 2239.
Coleman, S. and Witten, E. (1980). Chiral symmetry breakdown in large-Nc chromodynamics, Phys. Rev. Lett. 45, 100.
Collins, J., Duncan, A., and Joglekar, S. (1977). Trace and dilation anomalies in gauge theories, Phys. Rev. D16, 438.
Collins, J., Wilczek, F., and Zee, A. (1978). Low energy manifestations of heavy particles: application to the neutral current, Phys. Rev. D18, 242.
Collins, J.C. (2011). Foundations of Perturbative QCD (Cambridge University Press, Cambridge).
Crewther, R. (1972). Nonperturbative evaluation of the anomalies in low energy theorems, Phys. Rev. Lett. 28, 1421.
Crewther, R. (1978). Effects of topological charge in gauge theory, Acta Phys. Austriaca (Proc. Suppl.) 19, 47.
Cronin, J.A. (1967). Phenomenological model of strong and weak interactions in chiral U(3), Phys. Rev. 161, 1483.
Czarnecki, A. and Marciano, W.J. (1996). Electroweak radiative corrections to polarized Moller scattering asymmetries, Phys. Rev. D53, 1066.
Czarnecki, A. and Marciano, W.J. (2007). Electroweak radiative corrections to muon capture, Phys. Rev. Lett. 99, 032003.
Czarnecki, A. and Melnikov, K. (1997). Two loop QCD corrections to b π c transitions at zero recoil: analytical results, Nucl. Phys. B505, 65.
Czarnecki, A. and Melnikov, K. (1999). Two loop QCD corrections to top quark width, Nucl. Phys. B544, 520.
Dalgic, E., Gray, A., Wingate, M., Davies, C.T.H., Lepage, G.P., and Shigemitsu, J. (2006). B meson semileptonic form-factors from unquenched lattice QCD, Phys. Rev. D73, 074502.
D'Ambrosio, G. and Espriu, D. (1986). Rare decay modes of the K meson in the chiral lagrangian, Phys. Lett. B175, 237.
Das, T.et al. (1967). Electromagnetic mass difference of pions, Phys. Rev. Lett. 18, 759.
Dashen, R.F. (1969). Chiral SU(3) × SU(3) as a symmetry of the strong interactions, Phys. Rev. 183, 1245.
Dashen, R.F., Jenkins, E.E., and Manohar, A.V. (1994). The 1/N(c) expansion for baryons, Phys. Rev. D49, 4713 (Erratum Dashen, R.F., Jenkins, E.E., and Manohar, A.V. (1994). The 1/N(c) expansion for baryons, Phys. Rev.D51, 2489 (1995).
Davier, M., Hoecker, A., Malaescu, B., and Zhang, Z. (2011). Reevaluation of the hadronic contributions to the muon g-2 and to alpha(MZ), Eur. Phys. J. C71, 1515 (Erratum Davier, M., Hoecker, A., Malaescu, B., and Zhang, Z. (2011). Reevaluation of the hadronic contributions to the muon g-2 and to alpha(MZ), Eur. Phys. J.C72, 1874 (2012)).
Davis, R. (1964). Solar neutrinos. II: experimental, Phys. Rev. Lett. 12, 303.
De Bruyn, K., Fleischer, R., Knegjens, R., Koppenburg, P., Merk, M., Pellegrino, A., and Tuning, N. (2012). Probing New Physics via the effective lifetime, Phys. Rev. Lett. 109, 041801.
DeGrand, T. and Detar, C.E. (2010). Lattice Methods for Quantum Chromodynamics (World Scientific, Hackensack, NJ).
DeGrand, T., Jaffe, R.L., Johnson, K., and Kiskis, J. (1975). Masses and other parameters of light hadrons, Phys. Rev. D12, 2060.
Degrassi, G., Di Vita, S., Elias-Mir, J., Espinosa, J.R., Giudice, G., Isidori, G., and Strumia, A. (2012). Higgs mass and vacuum stability in the Standard Model at NNLO, JHEP 1208, 098.
Dehnadi, B., Hoang, A.H., Mateu, V., and Zebarjad, S.M. (2011). Charmmass determination from QCD charmonium sum rules at order (arXiv:1102.2264 [hep-ph]).
Denner, A., Nierste, U., and Scharf, R. (1991). A compact expression for the scalar one loop four point function, Nucl. Phys. B367, 637.
de Putter, R., et al. (2012). New neutrino mass bounds from Sloan Digital Sky Survey III data release 8 photometric luminous galaxies, Astrophys. J 761, 12.
De Roeck (2013). Higgs physics at CMS (plenary talk delivered on 6/24/13 at at 26th Intl. Symp. on Lept. Phot. Ints. at High Energies).
De Rujula, A., Georgi, H., and Glashow, S.L. (1975). Hadron masses in a gauge theory, Phys. Rev. D12, 147.
De Rujula, A., Lusignoli, M., Maiani, L., Petcov, S., and Petronzio, R. (1980). A fresh look at neutrino oscillations, Nucl. Phys. B168, 54.
Descotes-Genon, S., Hurth, T., Matias, J., and Virto, J. (2013). B → K*ℓℓ: The New Frontier of New Physics searches in flavor (arXiv:1305.4808 [hep-ph]).
DeWitt, B. (1967). Quantum theory of gravity: II, III, Phys. Rev. 162, 1195, 1239.
DiVecchia, P. and Veneziano, G. (1980). Chiral dynamics in the large Nc limit, Nucl. Phys. B171, 253.
Djouadi, A. (2008). The anatomy of electro-weak symmetry breaking. I: the Higgs boson in the Standard Model, Phys. Rept. 457, 1.
Djoudi, A., Kühn, J.H., and Zerwas, P.M. (1990). b-jet asymmetries in Z decays, Zeit. Phys. C46, 411.
Dobado, A. and Pelaez, J.R. (1997). The inverse amplitude method in chiral perturbation theory, Phys. Rev. D56, 3057.
Donoghue, J.F. (1994). General relativity as an effective field theory: the leading quantum corrections, Phys. Rev. D50, 3874.
Donoghue, J.F., Golowich, E., and Holstein, B.R. (1986 a). Dispersive effects in D0 anti-D0 Mixing, Phys. Rev. D33, 179.
Donoghue, J.F., Golowich, E., and Holstein, B.R. (1986 b). Low-energy weak interactions of quarks, Phys. Rep. 131, 319.
Donoghue, J.F., He, X.G., and Pakvasa, S. (1986). Hyperon decays and CP nonconservation, Phys. Rev. D34, 833.
Donoghue, J.F. and Holstein, B.R. (1989). Pion transitions and models of chiral symmetry, Phys. Rev. D40, 2378.
Donoghue, J.F. and Johnson, K. (1980). The pion and an improved static bag, Phys. Rev. D21, 1975.
Donoghue, J.F. and Li, L.F. (1979). Properties of charged Higgs bosons, Phys. Rev. D19, 945.
Donoghue, J.F. and Nappi, C. (1986). The quark content of the proton, Phys. Lett. B168, 105.
Donoghue, J.F., Ramirez, C., and Valencia, G. (1989). Spectrum of QCD and chiral lagrangians of the strong and weak interaction, Phys. Rev. D39, 1947.
Dubnicka, S.et al. (2010). Quark model description of the tetraquark state X(3872) in a relativistic constituent quark model with infrared confinement, Phys. Rev. D81, 114007.
Dzuba, V.A., Berengut, J.C., Flambaum, V.V., and Roberts, B. (2012). Revisiting parity non-conservation in cesium, Phys. Rev. Lett. 109, 203003.
Eberhardt, O., Herbert, G., Lacker, H., Lenz, A., Menzel, A., Nierste, U., and Wiebusch, M. (2012). Impact of a Higgs boson at a mass of 126 GeV on the Standard Model with three and four fermion generations, Phys. Rev. Lett. 109, 241802.
Ecker, G., Gasser, J., Pich, A., and de Rafael, E. (1989). The role of resonances in chiral perturbation theory, Nucl. Phys. B321, 311.
Ecker, G., Pich, A., and de Rafael, E. (1988). Radiative kaon decays and CP violation in chiral perturbation theory, Nucl. Phys. B303, 665.
Eichten, E. (1988). Heavy quarks on the lattice, Nucl. Phys. (Proc. Suppl.) 4, 170.
Eichten, E., Gottfried, K., Kinoshita, T., Lane, K.D. and Yan, T.-M. (1980). Charmonium: comparison with experiment, Phys. Rev. D21, 203.
Eichten, E. and Hill, B. (1990). Static effective field theory: 1/m Corrections, Phys. Lett. B243, 427
El-Khadra, A.X. and Luke, M. (2002). The mass of the b quark, Ann. Rev. Nucl. Part. Sci. 52, 201.
Ellis, J.R., Gabathuler, E., and Karliner, M. (1989). The OZI rule does not apply to baryons, Phys. Lett. B217, 173.
Ellis, J.R., Gaillard, M.K., and Nanopoulos, D.V. (1976). A phenomenological profile of the Higgs Boson, Nucl. Phys. B106, 292.
Ellis, J.R. and You, T. (2012). Global analysis of the Higgs candidate with mass 125 GeV, JHEP 1209, 123.
Ellis, R.K., Stirling, W.J., and Webber, B.R. (2003). QCD and Collider Physics (Cambridge University Press, Cambridge).
Ellis, R.K. and Zanderighi, G. (2008). Scalarone-loopintegrals for QCD, JHEP 0802, 002.
Engel, J., Ramsey-Musolf, M.J., and van Kolck, U. (2013). Electric dipole moments of nucleons, nuclei, and atoms: the Standard Model and beyond, Prog. Part. Nucl. Phys. 71, 21.
Epelbaum, E. and Meißner, U.G. (2012). Chiral dynamics of few- and many-nucleon systems, Ann. Rev. Nucl. Part. Sci. 62, 159.
Erler, J. (2000). Global fits to electroweak data using GAPP (arXiv:0005084 [hep-ph]).
Erler, J. and Ramsey-Musolf, M.J. (2005). The weak mixing angle at low energies, Phys. Rev. D72, 073003.
Erler, J. and Su, S. (2013). The weak neutral current, Prog. Part. Nucl. Phys. 71, 119.
Espinosa, J.R., Grojean, J., Muhlleitner, M., and Trott, M. (2012). First glimpses at Higgs' face, JHEP 1212, 045.
Faddeev, L.D. and Popov, V.N. (1967). Feynman diagrams for the Yang–Mills field, Phys. Lett. 25B, 29.
Falk, A.F., Grossman, Y., Ligeti, Z., and Petrov, A.A. (2002). SU(3) breaking and D0–anti-D0 mixing, Phys. Rev. D65, 054034.
Ferroglia, A. and Sirlin, A. (2012). Radiative corrections in precision electroweak physics: a historical perspective, Rev. Mod. Phys. 85, 1.
Fleischer, J., Jegerlehner, F., Tarasov, O.V., and Veretin, O.L. (1999). Two loop QCD corrections of the massive fermion propagator, Nucl. Phys. B539, 671 (Erratum Fleischer, J., Jegerlehner, F., Tarasov, O.V., and Veretin, O.L. (1999). Two loop QCD corrections of the massive fermion propagator, Nucl. Phys.B571 (2000) 511).
Fogli, G.L., Lisi, E., Marrone, A., Montanino, D., Palazzo, A., and Rotunno, A.M. (2012). Global analysis of neutrino masses, mixings and phases: entering the era of leptonic CP violation searches, Phys. Rev. D86, 013012.
Forero, D.V., Tortola, M., and Valle, J.W.F. (2012). Global status of neutrino oscillation parameters after Neutrino-2012, Phys. Rev. D86, 073012.
Forkel, H. (2005). Direct instantons, topological charge screening, and QCD glueball sum rules, Phys. Rev. D71, 054008.
Friedrich, J. (2012). Studies in pion dynamics at COMPASS, Proceedings of Science (CONFINEMENT) X, 120.
Fritzsch, H. and Gell-Mann, M. (1972). Current algebra: quarks and what else?, in Proc. XVI Int. Conf. on High Energy Physics, ed. J.D., Jackson and A., Roberts (National Accelerator Laboratory, Batavia, IL.).
Fujikawa, K. (1979). Path integral measure for gauge invariant field theories, Phys. Rev. Lett. 42, 1195.
Fujikawa, K. (1981). Energy momentum tensor in quantum field theory, Phys. Rev. D23, 2262.
Fujikawa, K. and Suzuki, H. (2004). Path Integrals and Quantum Anomalies (Oxford University Press, Oxford).
Gambino, P., Mannel, T., and Uraltsev, N. (2012). B → D* zero-recoil formfactor and the Heavy Quark Expansion in QCD: a systematic study, JHEP 1210, 169.
Gambino, P. and Sirlin, A. (1994). Relation between and, Phys. Rev. D49, 1160.
Gando, A.et al. (KamLAND collab.) (2011). Constraints on θ13 from a three-flavor oscillation analysis of reactor antineutrinos at KamLAND, Phys. Rev. C83, 052002.
Gando, A.et al. (KamLAND-Zen collab.) (2012). Measurement of the double-β decay half-life of 136Xe with the KamLAND-Zen experiment, Phys. Rev. C85, 045504.
Gaillard, M.K. and Lee, B.W. (1974). ΔI = 1/2 rule for nonleptonic decays in asymptotically free gauge theories, Phys. Rev. Lett. 33, 108.
Gasser, J. (1987). Chiral perturbation theory and effective lagrangians, Nucl. Phys. B279, 65.
Gasser, J. and Leutwyler, H. (1984). Chiral perturbation theory to one loop, Ann. Phys. (N.Y.) 158, 142.
Gasser, J. and Leutwyler, H. (1985a). Chiral perturbation theory: expansions in the mass of the strange quark, Nucl. Phys. B250, 465.
Gasser, J. and Leutwyler, H. (1985b). Low energy expansion of meson form factors, Nucl. Phys. B250, 517.
Gasser, J., Leutwyler, H., and Sainio, M.E. (1991). Sigma term update, Phys. Lett. B253, 252.
Gasser, J., Sainio, M.E., and Svarc, A. (1988). Nucleons with chiral loops, Nucl. Phys. B307, 779.
Gattringer, C. and Lang, C.B. (2010). Quantum Chromodynamics on the Lattice (Springer [Lect. Notes Phys. 788], Berlin).
Gavela, M.B., Hernandez, P., Orloff, J., and Pene, O. (1994). Standard Model CP violation and baryon asymmetry, Mod. Phys. Lett. A9, 795.
Gell-Mann, M. (1961). The Eightfold Way: a theory of strong interaction symmetry (CalTech Rept. CTSL-20).
Gell-Mann, M. and Levy, M. (1960). The axial vector current in beta decay, Nuovo Cim. 16, 705.
Gell-Mann, M. and Low, F.E. (1954). Quantum electrodynamics at small distances, Phys. Rev. 95, 1300.
Gell-Mann, M., Oakes, R. and Renner, B. (1968). Behavior of current divergences under SU(3) × SU(3), Phys. Rev. 175, 2195.
Gell-Mann, M., Ramond, P., and Slansky, R. (1979). Complex spinors and unified theories, A.I.P. Conf. Proc. C790927, 315.
Georgi, H. (1984). Weak Interactions and Modern Particle Theory (Benjamin/Cummings, Menlo Park, CA).
Georgi, H. (1990). An effective field theory for heavy quarks at low-energies, Phys. Lett. B240, 447.
Georgi, H. (1992). D–anti-D mixing in heavy quark effective field theory, Phys. Lett. B297, 353.
Georgi, H. and Glashow, S.L. (1974). Unity of all elementary particle forces, Phys. Rev. Lett. 32, 438.
Georgi, H., Grinstein, B. and Wise, M.B. (1990). Λb semileptonic form factors for mc ≠ ∞, Phys. Lett. B252, 456.
Georgi, H., Quinn, H.R., and Weinberg, S. (1974). Hierarchy of interactions in unified gauge theories, Phys. Rev. Lett. 33, 451.
Gerstein, I., Jackiw, R., Lee, B.W., and Weinberg, S. (1971). Chiral loops, Phys. Rev. D3, 2486.
Gilkey, P. (1975). The spectral geometry of a Riemannian manifold, J. Diff. Geom. 10, 601.
Gilman, F.J. and Wise, M.B. (1979). The ΔI = 1/2 rule and violation of CP in the six-quark model, Phys. Lett. B83, 83.
Giri, A., Grossman, Y., Soffer, A., and Zupan, J. (2003). Determining γ using B± → DK± with multibody D decays, Phys. Rev. D68, 054018.
Giunti, C. and Kim, C.W. (2007). Fundamentals of Neutrino Physics and Astrophysics (Oxford University Press, Oxford).
Glashow, S.L. (1961). Partial symmetries of weak interactions, Nucl. Phys. 22, 579.
Goity, J.L. (1986). The decays and in the chiral approach, Zeit. Phys. C34, 341.
Goity, J.L., Bernstein, A.M., and Holstein, B.R. (2002). The decay π0 ⤒ γγ to next to leading order in chiral perturbation theory, Phys. Rev. D66, 076014.
Goldberger, M. and Treiman, S.B. (1958). Conserved currents in the theory of the Fermi interaction, Phys. Rev. 110, 1478.
Goldberger, W.D. and Rothstein, I.Z. (2006). An effective field theory of gravity for extended objects, Phys. Rev. D73, 104029.
Goldstone, J. (1961). Field theories with superconductor solutions, Nuovo Cim. 19, 154.
Goldstone, J., Salam, A., and Weinberg, S. (1962). Broken symmetries, Phys. Rev. 127, 965.
Golowich, E., Haqq, E., and Karl, G. (1983). Are there baryons which contain constituent gluons?, Phys. Rev. D28, 160.
Golowich, E., Hewett, J., Pakvasa, S., and Petrov, A.A. (2007). Implications of mixing for New Physics, Phys. Rev. D76, 095009.
Golowich, E. and Holstein, B.R. (1975). Restrictions on the structure of the ΔS = 1 nonleptonic Hamiltonian, Phys. Rev. Lett. 35, 831.
Golowich, E. and Yang, T.C. (1979). Charged Higgs bosons and decays of heavy flavored mesons, Phys. Lett. B80, 245.
Gonzalez-Garcia, M.C., Maltoni, M., Salvado, J., and Schwetz, T. (2012). Global fit to three neutrino mixing: critical lookat present precision, JHEP 1212, 123.
Grevesse, N. and Sauval, A.I. (1998). Standard solar composition, Space Sci. Rev. 85, 161.
Gronau, M. (2000). U spin symmetry in charmless B decays, Phys. Lett. B492, 297.
Gronau, M. and London, D. (1990). Isospin analysis of CP asymmetries in B decays, Phys. Rev. Lett. 65, 3381.
Gronau, M. and Wyler, D. (1991). On determining a weak phase from CP asymmetries in charged B decays, Phys. Lett. B265, 172.
Gross, D.J. and Wilczek, F. (1973a). Ultraviolet behavior of nonabelian gauge theories, Phys. Rev. Lett. 30, 1343.
Gross, D.J. and Wilczek, F. (1973b). Asymptotically free gauge theories I, Phys. Rev. D8, 3633.
Grozin, A.G. (2004). Heavy Quark Effective Theory (Springer, NewYork).
Guberina, B., Peccei, R.D., and Rückl, R. (1980). Dimensional regularization techniques and their uses in calculating infrared safe weak decay processes, Nucl. Phys. B171, 333.
Gunion, J.F., Haber, H.E., Kane, G.L., and Dawson, S. (1990). The Higgs Hunters Guide (Addison-Wesley, Menlo Park, CA).
Haag, R. (1958). Quantum field theories with composite particles and asymptotic conditions, Phys. Rev. 112, 669.
Haber, H.E. and O'Neil, E. (2011). Basis-independent methods for the two-Higgs-doublet model III: the CP-conserving limit, custodial symmetry, and the oblique parameters S, T, U, Phys. Rev. D83, 055017.
Hagelin, J.S. and Littenberg, L. (1989). Rare kaon decays, Prog Part Nucl Phys. 23, 1.
Hardy, J.C. and Towner, I.S. (2009). Superallowed 0+ → 0+ nuclear beta decays: a new survey with precision test of the conserved vector current. hypothesis and the standard model, Phys. Rev. C79, 055502.
Hardy, J.C. and Towner, I.S. (2010). The evaluation of Vud and its impact on the unitarity of the Cabibbo–Kobayashi–Maskawa quark-mixing matrix, Rpt. Prog. Phys. 73, 046301.
Harnett, D.et al. (2011). Near maximal mixing of scalar gluonium and quark mesons: a Gaussian sum rule analysis, Nucl. Phys. A850, 110.
Harrison, P.F., Perkins, D.H., and Scott, W.G., (2002). Tri-bimaximal mixing and the neutrino oscillation data, Phys. Lett B530, 167.
Hart, A.et al. (2006). A lattice study of the masses of singlet 0++ mesons, Phys. Rev. D74, 114504.
Hart, A. and Teper, M. (2002). Glueball spectrum in O(a) improved lattice QCD, Phys. Rev. D65, 034502.
Haxton, W.C., Robertson, R.G.H., and Serenelli, A.M. (2012). Solarneutrinos: status and prospects (arXiv:1208.5723 [astro-phSR]).
He, X.G. (1999). SU(3) analysis of annihilation contributions and CP violating relations in B → PP decays, Eur. Phys. J. C9, 443.
Heinemeyer, S.et al. (The LHC Higgs Cross Section Working Group collab.) (2013). Handbook of LHC Higgs cross sections: 3. Higgs properties (arXiv:1307.1347 [hep-ph]).
Hinshaw, G.et al. (WMAP collab.) (2013). Nine-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: cosmological parameter results (arXiv:1212.5226v2 [astro-ph.CO]).
Hoang, A.H., Ligeti, Z., and Manohar, A.V. (1999). B decays in the upsilon expansion, Phys. Rev. D59, 074017.
Hoang, A.H., Smith, M.C., Stelzer, T., and Willenbrock, S. (1998). Quarkonia and the pole mass, Phys. Rev. D59, 114014.
Hoang, A.H. and Stewart, I.W. (2003). Ultrasoft renormalization in nonrelativistic QCD, Phys. Rev. D67, 114020.
Hoang, A.H. and Teubner, T. (1999). Top quark pair production close to threshold: top mass, width and momentum distribution, Phys. Rev. D60, 114027.
Höhler, G. (1983). Pion–nucleon scattering, in Landolt Börnstein New Series 1-9b2, ed. H., Schopper (Springer, Berlin).
Hollik, W.F.L. (1990). Radiative corrections in the Standard Model, Fort. Phys. 38, 165.
Holstein, B.R. (1989). Weak Interactions in Nuclei (Princeton University Press, Princeton, NJ).
Hughes, R.J. (1981). More comments on asymptotic freedom, Nucl. Phys. B186, 376.
Iizuka, J. (1966). A systematics and phenomenology of meson family, Prog. Theor. Phys. Suppl. 37–38, 21.
Inami, T. and Lim, C.S. (1981). Effects of superheavy quarks and leptons on low energy weak processes and, Prog. Theor. Phys. 65, 297.
Ioffe, B.L. (1981). Calculation of baryon masses in QCD, Nucl. Phys. B188, 317.
Ioffe, B.L., Fadin, V.S., and Lipatov, L.N. (2010). Quantum Chromodynamics: Perturbative and Nonperturbative Aspects (Cambridge University Press, Cambridge).
Ioffe, B.L. and Shifman, M.A. (1980). The decay ψ′ → J/ψ + π0(η) and quark masses, Phys. Lett. 95B, 99.
Isgur, N. and Karl, G. (1978). P-wave baryons in the quark model, Phys. Rev. D18, 4187.
Isgur, N. and Wise, M.B. (1989). Weak decays of heavy mesons in the staticquark approximation, Phys. Lett. B232, 113.
Isgur, N. and Wise, M.B. (1990). Weak transitionform factors between heavy mesons, Phys. Lett. 237, 527.
Itzykson, C. and Zuber, J.-B. (1980). Quantum Field Theory (McGraw-Hill, New York).
Jackiw, R. and Rebbi, C. (1976). Vacuum periodicity in a Yang–Mills quantum theory, Phys. Rev. Lett. 37, 172.
Jacobs, K. (2013). Higgs physics at ATLAS (plenary talk delivered on 6/24/13 at at 26th Intl. Symp. on Lept. Phot. Ints. at High Energies).
Jaffe, R.L. (1977). Perhaps a stable dibaryon, Phys. Rev. Lett. 38, 195.
Jaffe, R.L., Johnson, K., and Ryzak, Z. (1986). Qualitative features of the glueball spectrum, Ann. Phys. (N.Y.) 168, 334.
Jaffe, R.L. and Manohar, A. (1990). The g1 problem: deep inelastic electron scattering and the spin of the proton, Nucl. Phys. B337, 509.
Jarlskog, C. (1985). Commutators of the quark mass matrices in the standard electroweak model and a measure of maximal CP violation, Phys. Rev. Lett. 55, 1039.
Jarlskog, C. (1989). Introduction to CP violation, in CP Violation, ed. C., Jarlskog (World Scientific, Singapore).
Jenkins, E.E. (1998). Large N(c) baryons, Ann. Rev. Nucl. Part. Sci. 48, 81.
Ji, X.-D. (1994). Chiral odd and spin dependent quark fragmentation functions and their applications, Phys. Rev. D49, 114.
Ji, X.-D., Tang, J., and Hoodbhoy, P. (1996). Spin structure of the nucleon in the asymptotic limit, Phys. Rev. Lett. 76, 740.
Johnson, K. (1978). A field theory lagrangian for the MIT bag model, Phys. Lett. 78B, 259.
Johnson, K. and Thorn, C.B. (1976). Stringlike solutions of the bag model, Phys. Rev. D13, 1934.
Kambor, J. and Holstein, B.R. (1994). KS → γγ, KL → π0γγ and unitarity, Phys. Rev. D49, 2346.
Kambor, J., Missimer, J., and Wyler, D. (1990). The chiral loop expansion of the nonleptonic weak interactions of mesons, Nucl. Phys. B346, 17.
Kaymakcalan, Ö., Rajeev, S., and Schecter, J. (1984). Nonabelian anomaly and vector meson decays, Phys. Rev. D30, 594.
Kayser, B., Kopp, J., Roberston, R.G.H., and Vogel, P. (2010). On a theory of neutrino oscillations with entanglement, Phys. Rev. D82, 093003.
Keung, W.Y. and Marciano, W.J. (1984). Higgs scalar decays: H → W + X, Phys. Rev. D30, 248.
King, S.F. and Luhn, C. (2013). Neutrino mass and mixing with discrete symmetry, Rept. Prog. Phys. 76, 056201.
Kinoshita, T. and Sirlin, A. (1959). Radiative corrections to Fermi interactions, Phys. Rev. 113, 1652.
Klinkhamer, F.R. and Manton, N.S. (1984). A saddle point solution in the Weinberg–Salam theory, Phys. Rev. D30, 2212.
Kobayashi, M. and Maskawa, T. (1973). CP violation in the renormalizable theory of weak interactions, Prog. Theo. Phys. 49, 652.
Kühn, J.H., Steinhauser, M., and Sturm, C. (2007). Heavy quark masses from sum rules in four-loop approximation, Nucl. Phys. B778, 192.
Kumar, K.S., Mantry, S., Marciano, W.J., and Souder, P.A. (2013). Lowenergy measurements of the weak mixing angle (arXiv:1302.6263 [hep-ex]).
Kuzmin, V.A., Rubakov, V.A. and Shaposhnikov, M.E. (1985). On the anomalous electroweak baryon number nonconservation in the early universe, Phys. Lett. B155, 36.
Kwong, W., Quigg, C., and Rosner, J.L. (1987). Heavy–quark systems, Ann. Rev. Nucl. Part. Sci. 37, 325.
Laiho, J., Lunghi, E., and Van de Water, R.S. (2010). Lattice QCD inputs to the CKM unitarity triangle analysis, Phys. Rev. D81, 034503.
Langacker, P. (1981). Grand unified theories and proton decay, Phys. Rep. C72, 185.
Langacker, P. (2010). The Standard Model and Beyond (Taylor and Francis, Boca Raton, FL).
Lee, B.W., Quigg, C., and Thacker, H.B. (1977). Weak interactions at very high energies: the role of the Higgs-boson mass, Phys. Rev. D16, 1519.
Lee, B.W. and Swift, A.R. (1964). Dynamical basis of the sum rule, Phys. Rev. B136, 228.
Lee, T.D. (1973). A theory of spontaneous T violation, Phys. Rev. D8, 1226.
Lee, T.D. (1982). Particle Physics and Introduction to Field Theory (Harwood, New York).
Lehmann, H. (1972). Chiral invariance and effective range expansion for pion pion scattering, Phys. Lett. B41, 529.
Leibrandt, G. (1975). Introduction to the technique of dimensional regularization, Rev. Mod. Phys. 47, 849.
Lenz, A. and Nierste, U. (2007). Theoretical update of mixing, JHEP 0706, 072.
Lenz, A. and Nierste, U. (2011). Numerical updates of lifetimes and mixing parameters of B mesons, (arXiv:1102.4274[hep-ph]).
Lepage, G.P. (1998). Perturbative improvement for lattice QCD: an update, Nucl. Phys. Proc. Suppl. 60A, 267.
Lepage, G.P. and Thacker, B.A. (1988). Effective lagrangians for simulation of heavy quarksystems, Nucl. Phys.(Proc.Suppl.) 4, 199.
Leutwyler, H. and Roos, M. (1984). Determination of the elements Vus and Vud of the Kobayashi–Maskawa matrix, Z. Phys. C25, 91.
Le Yaouanc, A., Oliver, L., Pène, O., and Raynal, J.-C. (1985). Quark model of light mesons with dynamically broken chiral symmetry, Phys. Rev. D31, 137.
Le Yaouanc, A., Oliver, L., Pène, O., and Raynal, J.-C. (1988). Hadron Transitions in the Quark Model (Gordon and Breach, New York).
Lipkin, H.J. (1984). The theoretical basis and phenomenology of the OZI rule, Nucl. Phys. B244, 147.
Lipkin, H.J. (2005). Is observed direct CP violation in Bd → K+π− due to New Physics? Check Standard Model prediction of equal violation in Bs → K−π+, Phys. Lett. B621, 126.
Liu, Z.Q.et al. (Belle collab.) (2013). Study of e+e− → π+π− → J/ψ and observation of a charged charmonium-like state at Belle, Phys. Rev. Lett. 110, 252002.
Lucha, W., Melikhov, D., and Simula, S. (2011). OPE, charm-quark mass, and decay constants of D and Ds mesons from QCD sum rules, Phys. Lett. B701, 82.
Luke, M. (1990). Effects of subleading operators in the heavy quark effective theory, Phys. Lett. B252, 447.
Ma, E. and Maniatis, M. (2010). Symbiotic symmetries of the two-Higgs-doublet model, Phys. Lett. B683, 33.
Maki, Z., Nakagawa, M., and Sakata, S. (1962). Remarks on the unified model of elementary particles, Prog. Theor. Phys. 28, 870.
Mangano, G., Miele, G., Pastor, S., Pinto, T., Pisanti, O., and Serpico, T. (2005). Relic neutrino decoupling including flavor oscillations, Nucl. Phys. B729, 221.
Mannel, T. (1994). Operator product expansion for inclusive semileptonic decays in heavy quark effective field theory, Nucl. Phys. B413, 396.
Mannel, T. (2004). Effective Field Theories in Flavour Physics (Springer, New York).
Manohar, A.V. and Mateu, V. (2008). Dispersion relation bounds for ππ scattering, Phys. Rev. D77, 094019.
Manohar, A.V. and Stewart, I.W. (2007). The zero-bin and mode factorization in quantum field theory, Phys. Rev. D76, 074002.
Manohar, A.V. and Wise, M.B. (1994). Inclusive semileptonic B and polarized Λb decays from QCD, Phys. Rev. D49, 1310.
Manohar, A. and Wise, M.B. (2007). Heavy Quark Physics (Cambridge University Press, Cambridge).
Marciano, W.J. (1979). Weak mixing angle and grand unified gauge theories, Phys. Rev. D20, 274.
Marciano, W.J. (1999). Fermi constants and New Physics, Phys. Rev. D60, 093006.
Marciano, W.J. (2011). Precision electroweak tests of the Standard Model, J. Phys. Conf. Ser. 312, 102002.
Marciano, W.J. and Querjeiro, A. (1986). Bound on the W boson electric dipole moment, Phys. Rev. D33, 3449.
Marciano, W.J. and Sirlin, A. (1980). Radiativecorrections to neutrino-induced neutral-current phenomena in the SU(2)L × U(1) theory, Phys. Rev. D22, 2695.
Marciano, W.J. and Sirlin, A. (1981). Precise SU(5) predictions for, mW and mz, Phys. Rev. Lett. 46, 163.
Marshak, R.E., Riazuddin, , and Ryan, C.P. (1969). Theory of Weak Interactions in Particle Physics (Wiley, New York).
Martin, A. (1981). A simultaneous fit of and spectra, Phys. Lett. 100B, 511.
Melnikov, K. and Ritbergen, T.V. (2000). Thethree loop relation between the MS-barand the pole quark masses, Phys. Lett. B482, 99.
Mereghetti, E., Hockings, W.H., and van Kolck, U. (2010). The effective chiral lagrangian from the θ term, Annals Phys. 325, 2363.
Mikheev, S.P. and Smirnov, A.Y. (1985). Resonance amplification of oscillations in matter and spectroscopy of solarneutrinos, Sov. J. Nucl. Phys. 42, 913.
Misiak, M.Asatrian, H.M., et al. (2007). Estimate of B → Xsγ at, Phys. Rev. Lett. 98, 022002.
Mohapatra, R.N., Antusch, S.et al. (2007). Theory of neutrinos: a White Paper, Rept. Prog. Phys. 70, 1757.
Mohr, P.J., Newell, D.B., and Taylor, B.N. (2012). CODATA recommended values of the fundamental physical constants: 2010, Rev. Mod. Phys. 84, 1527.
Morningstar, C.J. and Peardon, M.J. (1999). The glueball spectrum from an anisotropic lattice study, Phys. Rev. D60, 034509.
Muller, T. (2012). New results from the top quark (plenary talk delivered 7/10/12 at 36th Intl. Conf. for High Energy Physics [indico.cern.ch/conferenceTimeTable.py?confId= 181298]).
Nambu, Y. and Lurie, D. (1962). Chirality conservation and soft pion production, Phys. Rev. 125, 1429.
Narison, S. (1989). QCD Spectral Sum Rules (World Scientific, Singapore).
Neubert, M. (2005). Effective field theory and heavy quark physics, TASI-2004 (hep-ph/0512222).
Noecker, M.C., Masterson, B.P., and Wieman, C.E. (1988). Precision measurement of parity nonconservation in atomic cesium, Phys. Rev. Lett. 61, 310.
Ochs, W. (2013). The status of glueballs, J. Phys. G40, 043001.
Ohl, T., Ricciardi, G., and Simmons, E.H. (1993). D–anti-D mixing in heavy quark effective field theory: the sequel, Nucl. Phys. B403, 605.
Okubo, S. (1962). Note on unitary symmetry in strong interactions, Prog. Theo. Phys. 27, 949.
Okubo, S. (1963). φ meson and unitarity symmetry model, Phys. Lett. 5, 165.
Okun, L. (1982). Leptons and Quarks (North-Holland, Amsterdam).
Ovrut, B. and Schnitzer, H. (1980). Decoupling theorems for effective field theories, Phys. Rev. D22, 2518.
Pak, N.K. and Rossi, P. (1985). Gauged Goldstone boson effective action from direct integration of Bardeen anomaly, Nucl. Phys. B250, 279.
Parke, S.J. (1986). Nonadiabatic level crossing in resonant neutrino oscillation, Phys. Rev. Lett. 57, 1275.
Peccei, R.D. (1989). The strong CP problem, in CP Violation, ed. C., Jarlskog (World Scientific, Singapore).
Peccei, R.D. and Quinn, H.R. (1977). CP conservation in the presence of instantons, Phys. Rev. Lett. 38, 1440.
Pelaez, J.R. (2004). On the nature of light scalar mesons from their large N(c) behavior, Phys. Rev. Lett. 92, 102001.
Peskin, M.E. and Takeuchi, T. (1990). New constraint on a strongly interacting Higgs sector, Phys. Rev. Lett. 65, 964.
Pich, A. (2013). Review of αs determinations (arXiv:1303.2262 [hep-ph]).
Pineda, A. and Soto, J. (1998). Effective field theory for ultrasoft momenta in NRQCD and NRQED, Nucl. Phys. Proc. Suppl. 64, 428.
Politzer, H.D. (1973). Reliable perturbative results for strong interactions?, Phys. Rev. Lett. 30, 1346.
Politzer, H.D. (1974). Asymptotic freedom: an approachto strong interactions, Phys. Rep. 14C, 274.
Pontecorvo, B. (1968). Neutrino experiments and the problem of conservation of leptonic charge, Sov. Phys. JETP 26, 984.
Porsev, S.G., Beloy, K., and Derevianko, A. (2009). Precision determination of electroweak coupling from atomic parity violation and implications for particle physics, Phys. Rev. Lett. 102, 181601.
Porto, R.A., Ross, A., and Rothstein, I.Z. (2011). Spin induced multipole moments for the gravitational wave flux from binary inspirals to third Post-Newtonian order, JCAP 1103, 009.
Quaresma, M. (2012). Study of the nucleon spin structure by the Drell–Yan process in the COMPASS-II experiment, Acta. Phys. Polon. Suppl. 5, 1163.
Rafael, E. de (1998). An introduction to sum rules in QCD: course (arXiv:9802448 [hep-ph]).
Ramond, P. (1989). Field Theory: A Modern Primer (Addison-Wesley, Menlo Park, CA).
Reinders, L.J., Rubenstein, H., and Yazaki, S. (1985). Hadron properties from QCD sum rules, Phys. Rep. 127, 1.
Richards, C.S.et al. (2010). Glueball mass measurments from improved staggered fermion simulations, Phys. Rev. D86, 034501.
Richardson, J. L. (1979). The heavy quark potential and the ⋎, J/ψ systems, Phys. Lett. 82B, 272.
Riggenbach, C., Gasser, J., Donoghue, J.F., and Holstein, B.R. (1991). Chiral symmetry and the large Nc limit in Kl4 decays, Phys. Rev. 43, 127.
Ritbergen, T. van, Vermaseren, J.A.M., and Larin, S.A. (1997). The four loop beta function in quantum chromodynamics, Phys. Lett. B400, 379.
Rothe, H.J. (2012). Lattice Gauge Theories: An Introduction (4th Edition) (World Scientific, Singapore).
Rosenzweig, C., Schechter, J., and Trahern, C.G. (1980). Is the effective lagrangian for QCD a σ model, Phys. Rev. D21, 3388.
Roy, S.M. (1971). Exact integral equation for pion pion scattering involving only physical region partial waves, Phys. Lett. B36, 353.
Sakharov, A.D. (1967). Violation of CP invariance, C asymmetry, and baryon asymmetry of the universe, JETP Lett. 5, 24.
Sakurai, J.J. (1969). Currents and Mesons (University of Chicago Press, Chicago).
Salam, A. (1969). Weak and electromagnetic interactions, in Elementary Particle Theory; Nobel Symposium No.8, ed. N., Svartholm (Almqvist and Wiksell, Stockholm).
Schael, S.et al. (ALEPH and DELPHI and L3 and OPAL and SLD and LEP Electroweak Working Group and SLD Electroweak Group and SLD Heavy Flavour Group collabs.) (2006). Precision electroweak measurements on the Z resonance, Phys. Rept. 427, 257.
S., Schaelet al. (ALEPH and DELPHI and L3 and OPAL and LEP Electroweak Working Group collab.) (2013). Electroweak measurements in electron-positron collisions at W-boson-pairenergies at LEP (arXiv:1302.3415 [hep-ex]).
Schnitzer, H.J. (1984). The soft pion Skyrmion lagrangian and strong CP violation, Phys. Lett. B139, 217.
Schulman, L.S. (1981). Techniques and Applications of Path Integration (Wiley, New York).
Schwinger, J. (1951). On gauge invariance and vacuum polarization, Phys. Rev. 82, 664.
Schwinger, J. (1954). The theory of quantized fields, Phys. Rev. 93, 615.
Shifman, M.A. (2010). Vacuum structure and QCD sum rules: introduction, Int. J. Mod. Phys. A25, 226.
Shifman, M.A., Uraltsev, N.G., and Vainshtein, A.I. (1995). Operator product expansion sum rules for heavy flavor transitions and the determination of abs[Vcb], Phys. Rev. D51, 2217.
Shifman, M.A., Vainshtein, A.I., Voloshin, M.B., and Zakharov, V.I. (1979). Low-energy theorems for Higgs boson couplings to photons, Sov. J. Nucl. Phys. 30, 711.
Shifman, M.A., Vainshtein, A., and Zakharov, V. (1977). Nonleptonic decays of K mesons and hyperons, JETP 45, 670.
Shifman, M.A., Vainshtein, A., and Zakharov, V. (1979a). QCD and resonance physics: I, II, III, Nucl. Phys. B147, 385, 488, 519.
Shifman, M.A., Vainshtein, A., and Zakharov, V. (1979b). Nonleptonic decays of strange particles, Nucl. Phys. B120, 316.
Shifman, M.A. and Voloshin, M. (1988). On production of D* and D mesons in B meson decay, Sov. J. Nucl. Phys. 47, 511.
Shore, G.M. (1981). On the Meissner effect in gauge theories, Ann. Phys. 134, 259.
Shore, G.M. (2008). The U(1)A anomaly and QCD phenomenology, Lect. Notes Phys. 737, 235.
Sikivie, P., Susskind, L., Voloshin, M., and Zakharov, V. (1980). Isospin breaking in technicolor models, Nucl. Phys. B173, 189.
Sirlin, A. (1980). Radiative corrections in the SU(2)L × U(1) theory: a simple renormalization framework, Phys. Rev. D22, 971.
Skiba, W. (2010). TASI lectures on effective field theory and precision electroweak measurements (arXiv:1006.2142[hep-ph]).
Skyrme, T.H.R. (1961). A non-linear field theory, Proc. R. Soc. Lon. A260, 127.
Skyrme, T.H.R. (1962). A unified field theory of mesons and baryons, Nucl. Phys. 31, 556.
Smirnov, V.A. (2002). Applied asymptotic expansions in momenta and masses, Springer Tracts Mod. Phys. 177, 1.
Smirnov, V.A. (2012). Analytic tools for Feynman integrals, Springer Tracts Mod. Phys. 250, 1.
Spira, M., Djouadi, A., Graudenz, D., and Zerwas, P.M. (1995). Higgs boson production at the LHC, Nucl. Phys. B453, 17.
Sutherland, D. (1967). Current algebra and some non-strong meson decays, Nucl. Phys. B2, 433.
't Hooft, G. (1974). A planar diagram theory of the strong interactions, Nucl. Phys. B72, 461.
't Hooft, G. (1976a). Computation of the quantum effects due to a four-dimensional pseudoparticle, Phys. Rev. D14, 3432.
't Hooft, G. (1976b). Symmetry breaking through Bell–Jackiw anomalies, Phys. Rev. Lett. 37, 8.
't Hooft, G., Isidori, G., Maiani, L., Polosa, A., and Riquer, V. (2008). A theory of scalar mesons, Phys. Lett. B662, 424.
't Hooft, G. and Veltman, M. (1972). Regularization and renormalization of gauge fields, Nucl. Phys. B44, 189.
't Hooft, G. and Veltman, M.J.G. (1979). Scalar one loop integrals, Nucl. Phys. B153, 365.
van Kolck, U. (2008). Nuclear Physics from QCD, Proceedings of Science (CONFINEMENT) 8, 030.
Veltman, M. (1967). Theoretical aspects of high energy neutrino interactions, Proc. R. Soc. Lon. A301, 103.
Veltman, M. (1977a). Limit on mass differences in the Weinberg model, Nucl. Phys. B123, 89.
Veltman, M. (1977b). Second threshold in weak interactions, Acta Phys. Polonica B8, 475.
Vermaseren, J.A.M., Larin, S.A., and van Ritbergen, T. (1997). The four loop quarkmass anomalous dimension and the invariant quark mass, Phys. Lett. B405, 327.
Vesterinen, M. (on behalf of the LHCb collab.) (2013). LHCb semileptonic asymmetry, (arXiv:1306.0092 [hep-ex]).
Vetterli, D.et al. (1989). Effects of vacuum polarization in hadron-hadron scattering, Phys. Rev. Lett. 62, 1453.
Webber, D.M.et al. (MuLan collab.) (2011). Measurement of the positive muon lifetime and determination of the Fermi constant to part-per-million precision, Phys. Rev. Lett. 106, 041803.
Weinberg, S. (1966). Pion scattering lengths, Phys. Rev. Lett. 17, 616.
Weinberg, S. (1967a). Precise relations between the spectra of vector and axial vector mesons, Phys. Rev. Lett. 18, 507.
Weinberg, S. (1967b). A model for leptons, Phys. Rev. Lett. 19, 1264.
Weinberg, S. (1968). Nonlinear realizations of chiral symmetry, Phys. Rev. 166, 1568.
Weinberg, S. (1973). New approach to the renormalization group, Phys. Rev. D8, 3497.
Weinberg, S. (1979a). Baryon and lepton nonconserving processes, Phys. Rev. Lett. 43, 1566.
Weinberg, S. (1979b). Phenomenological lagrangians, Physica A96, 327.
Weinberg, S. (1990). Nuclear forces from chiral lagrangians, Phys. Lett. B 251, 288.
Weinstein, J. and Isgur, N. (1983). system in a potential model, Phys. Rev. D27, 588.
Wess, J. and Zumino, B. (1971). Consequences of anomalous Ward identities, Phys. Lett. B37, 95.
Wilkinson, D.T. and Marrs, R.E. (1972). Finite size effects in allowed beta decay, Nucl. Inst. Meth. 105, 505.
Willenbrock, S. (2004). Symmetries of the Standard Model (arXiv:0410370 [hep-ph]).
Wilson, K. (1969). Nonlagrangian models of current algebra, Phys. Rev. 179, 1499.
Wise, M.B. (1991). New symmetries of the strong interaction (Proceedings of the 1991 Lake Louise Winter Institute and Caltech preprint CALT-68-1721).
Witten, E. (1979). Current algebra for the UA(1) ‘Goldstone boson’, Nucl. Phys. B156, 269.
Witten, E. (1983a). Global aspects of current algebra, Nucl. Phys. B223, 422.
Witten, E. (1983b). Current algebra, baryons and quark confinement, Nucl. Phys. B223, 433.
Wolfenstein, L. (1978). Neutrino oscillations in matter, Phys. Rev. D17, 2369.
Wolfenstein, L. (1983). Parametrization of the Kobayashi–Maskawa matrix, Phys. Rev. Lett. 51, 1945.
Wolfenstein, L. (1985). D0 anti-D0 mixing, Phys. Lett. B164, 170.
Yang, C.N. (1950). Selection rules for the dematerialization of a particle into two photons, Phys. Rev. 77, 242.
Yang, C.N. and Mills, R.L. (1954). Conservation of isotopic spin and isotopic gauge theory, Phys. Rev. 96, 191.
Zeller, G.P.et al. (NuTeV collab.) (2001). A precise determination of electroweak parameters in neutrino nucleon scattering, Phys. Rev. Lett. 88, 091802 (Erratum Zeller, G.P. et al. (NuTeV collab.) (2001). A precise determination of electroweak parameters in neutrino nucleon scattering, Phys. Rev. Lett.90, 239902 (2003)).
Zhan, X.et al. (2011). High precision measurement of the proton elastic form factor ratio μpGE/GM at low Q2, Phys. Lett. B705, 59.
Zweig, G. (1965). Fractional charged particles and SU(6), in Symmetries in Elementary Particle Physics, ed. A., Zichichi (Academic Press, New York).

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Book summary page views

Total views: 0 *
Loading metrics...

* Views captured on Cambridge Core between #date#. This data will be updated every 24 hours.

Usage data cannot currently be displayed.