Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-05T04:04:11.361Z Has data issue: false hasContentIssue false

5 - Integration

Published online by Cambridge University Press:  05 July 2014

Washek F. Pfeffer
Affiliation:
University of California, Davis
Get access

Summary

For a locally BV set E, let R(E) := D[CH*(E))}. It follows from Theorem 3.6.6 the derivation D: CH*(E) → R(E) is bijective, and we shall investigate its inverse IE: R(E) → CH*(E). We show that IE, which has properties analogous to those of the indefinite Lebesgue integral, can be applied to partial derivatives of pointwise Lipschitz functions, and we prove unrestricted versions of the Gauss-Green and Stokes theorems. We also show that an averaging process akin to the classical Riemann integral provides a direct definition of IE.

The R-integral

In this section we define the R-integral and prove some of its basic properties; most of them follow readily from the corresponding properties of AC* charges established in Section 3.6.

Definition 5.1.1. Let E be a locally BV set. A function f defined on E is called R-integrable in E if there is an FCH*(E), called the indefinite R-integral of f, such that DF(x) = f(x) for almost all xE.

The family of all R-integrable functions in a locally BV set E is denoted by R(E). It follows from Theorem 3.6.6 that the indefinite R-integral F of a function fR(E) is uniquely determined by f, and we denote it by (R) ∫ f dLm or (R) ∫ f(x) dx.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Integration
  • Washek F. Pfeffer, University of California, Davis
  • Book: Derivation and Integration
  • Online publication: 05 July 2014
  • Chapter DOI: https://doi.org/10.1017/CBO9780511574764.006
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Integration
  • Washek F. Pfeffer, University of California, Davis
  • Book: Derivation and Integration
  • Online publication: 05 July 2014
  • Chapter DOI: https://doi.org/10.1017/CBO9780511574764.006
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Integration
  • Washek F. Pfeffer, University of California, Davis
  • Book: Derivation and Integration
  • Online publication: 05 July 2014
  • Chapter DOI: https://doi.org/10.1017/CBO9780511574764.006
Available formats
×