Skip to main content Accessibility help
×
  • Cited by 16
Publisher:
Cambridge University Press
Online publication date:
July 2014
Print publication year:
2001
Online ISBN:
9780511574764

Book description

This 2001 book is devoted to an invariant multidimensional process of recovering a function from its derivative. It considers additive functions defined on the family of all bounded BV sets that are continuous with respect to a suitable topology. A typical example is the flux of a continuous vector field. A very general Gauss-Green theorem follows from the sufficient conditions for the derivability of the flux. Since the setting is invariant with respect to local lipeomorphisms, a standard argument extends the Gauss-Green theorem to the Stokes theorem on Lipschitz manifolds. In addition, the author proves the Stokes theorem for a class of top-dimensional normal currents - a first step towards solving a difficult open problem of derivation and integration in middle dimensions. The book contains complete and detailed proofs and will provide valuable information to research mathematicians and advanced graduate students interested in geometric integration and related areas.

Reviews

Review of the hardback:‘…warmly recommended to researchers and advanced graduate students …’.

József Németh Source: Acta Sci. Math.

Review of the hardback:‘…I warmly recommended this book …’.

Thierry de Pauw Source: Bulletin of the Belgian Mathematical Society

Review of the hardback:' … written by one of the leading specialists in this field.'

Source: EMS

Review of the hardback:'Readers with a good background in analysis will find this an illuminating account.'

Source: Mathematika

Refine List

Actions for selected content:

Select all | Deselect all
  • View selected items
  • Export citations
  • Download PDF (zip)
  • Save to Kindle
  • Save to Dropbox
  • Save to Google Drive

Save Search

You can save your searches here and later view and run them again in "My saved searches".

Please provide a title, maximum of 40 characters.
×

Contents

Bibliography
[1] S.I., Ahmed and W.F., Pfeffer, A Riemann integral in a locally compact Hausdorff space, J. Austral. Math. Soc. 41, Series A (1986 Google Scholar), 115–137.
[2] L., Ambrosio, A compact theorem for a new class of functions of bounded variation, Boll. Un. Mat. Ital. 3-B (1989 Google Scholar), 857–881.
[3] T., Bagby and W.P., Ziemer, Pointwise differentiability and absolute continuity, Trans. Amer. Math. Soc. 191 (1974 Google Scholar), 129–148.
[4] H., Bauer, Der Perronsche Integralbegriff und seine Beziehung zum Lebesgue-shen, Monatshefte Math. Phys. 26 (1915 Google Scholar), 153–198.
[5] A.S., Besicovitch, On sufficient conditions for a function to be analytic, and behaviour of analytic functions in the neighbourhood of non-isolated singular points, Proc. London Math. Soc. 32 (1931 Google Scholar), 1–9.
[6] B., Bongiorno, Essential variation, Measure Theory Oberwolfach, Lecture Notes in Math. no. 945, Springer-Verlag, New York, 1981 Google Scholar, pp. 187-193.
[7] B., Bongiorno, U., Darji, and W.F., Pfeffer, On indefinite BV-integrals, Comment. Math. Univ. Carolinae 41 (2000 Google Scholar), 843–853.
[8] B., Bongiorno, M., Giertz, and W.F., Pfeffer, Some nonabsolutely convergent integrals in the real line, Boll. Un. Mat. Ital. 6-B (1992 Google Scholar), 371–402.
[9] B., Bongiorno, L. Di, Piazza, and D., Preiss, Infinite variations and derivatives in ℝm, J. Math. Anal. Appl. 224 (1998 Google Scholar), 22–33.
[10] B., Bongiorno, L. Di, Piazza, and D., Preiss, A constructive minimal integral which includes Lebesgue integrable functions and derivatives, J. London Math. Soc. 62 (2000 Google Scholar), 117–126.
[11] B., Bongiorno and P., Vetro, Su un teorema di F. Riesz, Atti Acc. Sei. Lettere Arti Palermo (IV) 37 (1979 Google Scholar), 3–13.
[12] Z., Buczolich, Functions with all singular sets of Hausdorff dimension bigger than one, Real Anal. Exchange 15(1) (19891990 Google Scholar), 299-306.
[13] Z., Buczolich, Density points and bi-Lipschitz finctions in ℝm, Proc. American Math. Soc. 116 (1992 Google Scholar), 53–56.
[14] Z., Buczolich, A v-integrable function which is not Lebesgue integrable on any portion of the unit square, Acta Math. Hung. 59 (1992 Google Scholar), 383–393.
[15] Z., Buczolich, The g-integral is not rotation invariant, Real Anal. Exchange 18(2) (19921993 Google Scholar), 437-447.
[16] Z., Buczolich, Lipeomorphisms, sets of bounded variation and integrals, Acta Math. Hung. 87 (2000 Google Scholar), 243–265.
[17] Z., Buczolich, T. De, Pauw, and W.F., Pfeffer, Charges, BV functions, and multipliers for generalized Riemann integrals, Indiana Univ. Math. J. 48 (1999 Google Scholar), 1471–1511.
[18] Z., Buczolich and W.F., Pfeffer, Variations of additive functions, Czechoslovak Math. J. 47 (1997 Google Scholar), 525–555.
[19] Z., Buczolich and W.F., Pfeffer, On absolute continuity, J. Math. Anal. Appi. 222 (1998 Google Scholar), 64–78.
[20] G., Congedo and I., Tamanini, Note sulla regolarità dei minimi di funzionali del tipo dell'area, Rend. Acad. Sci. XL, Mem. Mat. 106 (XII, 17) (1988 Google Scholar), 239–257.
[21] R., Engelking, General Topology, PWN, Warsaw, 1977 Google Scholar.
[22] L.C., Evans and R.F., Gariepy, Measure Theory and Fine Properties of Functions, CRP Press, Boca Raton, 1992 Google Scholar.
[23] K.J., Falconer, The Geometry of Fractal Sets, Cambridge Univ. Press, Cambridge, 1985 Google Scholar.
[24] H., Federer, Geometric Measure Theory, Springer-Verlag, New York, 1969 Google Scholar.
[25] H., Federer and W.H., Fleming, Normal and integral currents, Ann. of Math. 72 (1960 Google Scholar), 458–520.
[26] E., Giusti, Minimal Surfaces and Functions of Bounded Variation, Birkhäuser, Basel, 1984 Google Scholar.
[27] C., Goffman, T., Nishiura, and D., Waterman, Homeomorphisms in Analysis, Amer. Math. Soc., Providence, 1997 Google Scholar.
[28] R.A., Gordon, The Integrals of Lebesgue, Denjoy, Perron, and Henstock, Amer. Math. Soc, Providence, 1994 Google Scholar.
[29] P.R., Halmos, Measure Theory, Van Nostrand, New York, 1950 Google Scholar.
[30] R., Henstock, Definitions of Riemann type of the variational integrals, Proc. London Math. Soc. 11 (1961 Google Scholar), 79–87.
[31] I.N., Herstein, Topics in Algebra, Blaisdell, London, 1964 Google Scholar.
[32] J., Holec and J., Mařík, Continuous additive mappings, Czechoslovak Math. J. 14 (1965 Google Scholar), 237–243.
[33] J., Horváth, Topological Vector Spaces and Distributions, vol. 1, Addison-Wesley, London, 1966 Google Scholar.
[34] E.J., Howard, Analyticity of almost everywhere differentiable functions, Proc. American Math. Soc. 110 (1990 Google Scholar), 745–753.
[35] J., Jarník and J., Kurzweil, A nonabsolutely convergent integral which admits transformation and can be used for integration on manifolds, Czechoslovak Math. J. 35 (1986 Google Scholar), 116–139.
[36] T., Jech, Set Theory, Academic Press, New York, 1978 Google Scholar.
[37] R.L., Jeffery, The Theory of Functions of a Real Variable, Dover, New York, 1985 Google Scholar.
[38] W.B., Jurkat, The divergence theorem and Perron integration with exceptional sets, Czechoslovak Math. J. 43 (1993 Google Scholar), 27–45.
[39] W.B., Jurkat and D.J.F., Nonnenmacher, A generalized n-dimensional Riemann integral and the divergence theorem with singularities, Acta Sci. Math. Szeged 59 (1994 Google Scholar), 241–256.
[40] K., Karták and J., Mařík, A non-absolutely convergent integral in Em and the theorem of Gauss, Czechoslovak Math. J. 15 (1965 Google Scholar), 253–260.
[41] L., Kuipers and H., Niederreiter, Uniform Distribution of Sequences, John Wiley, New York, 1974 Google Scholar.
[42] J., Kurzweil, Generalized ordinary differential equations and continuous dependence on a parameter, Czechoslovak Math. J. 82 (1957 Google Scholar), 418–446.
[43] J., Kurzweil, Nichtabsolut Konvergente Integrale, Taubinger, Leipzig, 1980 Google Scholar.
[44] J., Kurzweil, J., Mawhin, and W.F., Pfeffer, An integral defined by approximating BV partitions of unity, Czechoslovak Math. J. 41 (1991 Google Scholar), 695–712.
[45] U., Massari and M., Miranda, Minimal Surfaces of Codimension One, North-Holland, Amsterdam, 1984 Google Scholar.
[46] P., Mattila, Geometry of Sets and Measures in Euclidean Spaces, Cambridge Univ. Press, Cambridge, 1995 Google Scholar.
[47] J., Mařík, Extensions of additive mappings, Czechoslovak Math. J. 15 (1965 Google Scholar), 244–252.
[48] J., Mafik and J., Matyska, On a generalization of the Lebesgue integral in Em, Czechoslovak Math. J. 15 (1965 Google Scholar), 261–269.
[49] J., Mawhin, Generalized multiple Perron integrals and the Green-Goursat theorem for differentiable vector fields, Czechoslovak J. Math. 31 (1981 Google Scholar), 614–632.
[50] J., Mawhin, Generalized Riemann integrals and the divergence theorem for differentiate vector fields, E.B. Christoffel (Basel), Birkhäuser, 1981 Google Scholar, pp. 704-714.
[51] V.G., Maz'ja, Sobolev Spaces, Springer-Verlag, New York, 1985 Google Scholar.
[52] R.M., McLeod, The Generalized Riemann Integral, Math. Asso. Amer., Washington, D.C., 1980 Google Scholar.
[53] E.J., McShane, A Riemann-type Integral that Includes Lebesgue-Stieltjes, Boch-ner and Stochastic Integrals, Mem. Amer. Math. Soc., 88, Providence, 1969 Google Scholar.
[54] E.J., McShane, A unified theory of integration, Amer. Math. Monthly 80 (1973 Google Scholar), 349–359.
[55] E.J., McShane, Unified Integration, Academic Press, New York, 1983 Google Scholar.
[56] F., Morgan, Geometric Measure Theory, Academic Press, New York, 1988 Google Scholar.
[57] D.J.F., Nonnenmacher, Sets of finite perimeter and the Gauss-Green theorem, J. London Math. Soc. 52 (1995 Google Scholar), 335–344.
[58] J.C., Oxtoby, Measure and Category, Springer-Verlag, New York, 1971 Google Scholar.
[59] T. De, Pauw, Topologies for the space of BV-integrable functions in ℝm, J. Func. Anal. 144 (1997 Google Scholar), 190–231.
[60] W.F., Pfeffer, Integrals and measures, Marcel Dekker, New York, 1977 Google Scholar.
[61] W.F., Pfeffer, The divergence theorem, Trans. Amer. Math. Soc. 295 (1986 Google Scholar), 665–685.
[62] W.F., Pfeffer, The multidimensional fundamental theorem of calculus, J. Australian Math. Soc. 43 (1987 Google Scholar), 143–170.
[63] W.F., Pfeffer, A descriptive definition of a variational integral and applications, Indiana Univ. Math. J. 40 (1991 Google Scholar), 259–270.
[64] W.F., Pfeffer, The Gauss-Green theorem, Adv. Math. 87 (1991 Google Scholar), 93–147.
[65] W.F., Pfeffer, The Riemann Approach to Integration, Cambridge Univ. Press, New York, 1993 Google Scholar.
[66] W.F., Pfeffer, The generalized Riemann-Stielijes integral, Real Anal. Exchange 21(2) (19951996 Google Scholar), 521-547.
[67] W.F., Pfeffer, The Lebesgue and Denjoy-Perron integrals from a descriptive point of view, Ricerche Mat. 48 (1999 Google Scholar), 211–223.
[68] W.F., Pfeffer and B.S., Thomson, Measures defined by gages, Canadian J. Math. 44 (1992 Google Scholar), 1306–1316.
[69] W.F., Pfeffer and Wei-Chi, Yang, The multidimensional variational integral and its extensions, Real Anal. Exchange 15(1) (19891990 Google Scholar), 111-169.
[70] K.P.S. Bhaskara, Rao and M. Bhaskara, Rao, Theory of Charges, Acad. Press, New York, 1983 Google Scholar.
[71] C.A., Rogers, Hausdorff measures, Cambridge Univ. Press, Cambridge, 1970 Google Scholar.
[72] P., Romanovski, Intégrale de Denjoy dans l'espace á n dimensions, Math. Sbornik 51 (1941 Google Scholar), 281–307.
[73] W., Rudin, Real and Complex Analysis, McGraw-Hill, New York, 1987 Google Scholar.
[74] W., Rudin, Functional Analysis, McGraw-Hill, New York, 1991 Google Scholar.
[75] S., Saks, Theory of the Integral, Dover, New York, 1964 Google Scholar.
[76] V.L., Shapiro, The divergence theorem for discontinuous vector fields, Ann. Math. 68 (1958 Google Scholar), 604–624.
[77] L., Simon, Lectures on Geometric Measure Theory, Proc. CM.A. 3, Australian Natl. Univ., Cambera, 1983 Google Scholar.
[78] E.H., Spanier, Algebraic Topology, McGraw-Hill, New York, 1966 Google Scholar.
[79] M., Spivak, Calculus on Manifolds, Benjamin, London, 1965 Google Scholar.
[80] E.M., Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Univ. Press, Princeton, 1970 Google Scholar.
[81] I., Tamanini and C., Giacomelli, Approximation of Caccioppoli sets, with applications to problems in image segmentation, Ann. Univ. Ferrara VII (N.S.) 35 (1989 Google Scholar), 187–213.
[82] I., Tamanini and C., Giacomelli, Un tipo di approssimazione “dall'interno” degli insiemi di perimetro finito, Rend. Mat. Acc. Lincei (9) 1 (1990 Google Scholar), 181–187.
[83] B.S., Thomson, Spaces of conditionally integrable functions, J. London Math. Soc. 2 (1970 Google Scholar), 358–360.
[84] B.S., Thomson, Derivatives of Interval Functions, Mem. Amer. Math. Soc., 452, Providence Google Scholar, 1991.
[85] B.S., Thomson, σ-finite Borel measures on the real line, Real Anal. Exch. 23 (19971998 Google Scholar), 185-192.
[86] A.I., Volpert, The spaces BV and quasilinear equations, Math. USSR-Sbornik 2 (1967 Google Scholar), 225–267.
[87] H., Whitney, Geometric Integration Theory, Princeton Univ. Press, Princeton, 1957 Google Scholar.
[88] W.P., Ziemer, Weakly Differentiate Functions, Springer-Verlag, New York, 1989 Google Scholar.

Metrics

Usage data cannot currently be displayed.