[1] S.I., Ahmed and W.F., Pfeffer, A Riemann integral in a locally compact Hausdorff space, J. Austral. Math. Soc. 41, Series A (1986), 115–137.
[2] L., Ambrosio, A compact theorem for a new class of functions of bounded variation, Boll. Un. Mat. Ital. 3-B (1989), 857–881.
[3] T., Bagby and W.P., Ziemer, Pointwise differentiability and absolute continuity, Trans. Amer. Math. Soc. 191 (1974), 129–148.
[4] H., Bauer, Der Perronsche Integralbegriff und seine Beziehung zum Lebesgue-shen, Monatshefte Math. Phys. 26 (1915), 153–198.
[5] A.S., Besicovitch, On sufficient conditions for a function to be analytic, and behaviour of analytic functions in the neighbourhood of non-isolated singular points, Proc. London Math. Soc. 32 (1931), 1–9.
[6] B., Bongiorno, Essential variation, Measure Theory Oberwolfach, Lecture Notes in Math. no. 945, Springer-Verlag, New York, 1981, pp. 187-193.
[7] B., Bongiorno, U., Darji, and W.F., Pfeffer, On indefinite BV-integrals, Comment. Math. Univ. Carolinae 41 (2000), 843–853.
[8] B., Bongiorno, M., Giertz, and W.F., Pfeffer, Some nonabsolutely convergent integrals in the real line, Boll. Un. Mat. Ital. 6-B (1992), 371–402.
[9] B., Bongiorno, L. Di, Piazza, and D., Preiss, Infinite variations and derivatives in ℝm, J. Math. Anal. Appl. 224 (1998), 22–33.
[10] B., Bongiorno, L. Di, Piazza, and D., Preiss, A constructive minimal integral which includes Lebesgue integrable functions and derivatives, J. London Math. Soc. 62 (2000), 117–126.
[11] B., Bongiorno and P., Vetro, Su un teorema di F. Riesz, Atti Acc. Sei. Lettere Arti Palermo (IV) 37 (1979), 3–13.
[12] Z., Buczolich, Functions with all singular sets of Hausdorff dimension bigger than one, Real Anal. Exchange 15(1) (1989–1990), 299-306.
[13] Z., Buczolich, Density points and bi-Lipschitz finctions in ℝm, Proc. American Math. Soc. 116 (1992), 53–56.
[14] Z., Buczolich, A v-integrable function which is not Lebesgue integrable on any portion of the unit square, Acta Math. Hung. 59 (1992), 383–393.
[15] Z., Buczolich, The g-integral is not rotation invariant, Real Anal. Exchange 18(2) (1992–1993), 437-447.
[16] Z., Buczolich, Lipeomorphisms, sets of bounded variation and integrals, Acta Math. Hung. 87 (2000), 243–265.
[17] Z., Buczolich, T. De, Pauw, and W.F., Pfeffer, Charges, BV functions, and multipliers for generalized Riemann integrals, Indiana Univ. Math. J. 48 (1999), 1471–1511.
[18] Z., Buczolich and W.F., Pfeffer, Variations of additive functions, Czechoslovak Math. J. 47 (1997), 525–555.
[19] Z., Buczolich and W.F., Pfeffer, On absolute continuity, J. Math. Anal. Appi. 222 (1998), 64–78.
[20] G., Congedo and I., Tamanini, Note sulla regolarità dei minimi di funzionali del tipo dell'area, Rend. Acad. Sci. XL, Mem. Mat. 106 (XII, 17) (1988), 239–257.
[21] R., Engelking, General Topology, PWN, Warsaw, 1977.
[22] L.C., Evans and R.F., Gariepy, Measure Theory and Fine Properties of Functions, CRP Press, Boca Raton, 1992.
[23] K.J., Falconer, The Geometry of Fractal Sets, Cambridge Univ. Press, Cambridge, 1985.
[24] H., Federer, Geometric Measure Theory, Springer-Verlag, New York, 1969.
[25] H., Federer and W.H., Fleming, Normal and integral currents, Ann. of Math. 72 (1960), 458–520.
[26] E., Giusti, Minimal Surfaces and Functions of Bounded Variation, Birkhäuser, Basel, 1984.
[27] C., Goffman, T., Nishiura, and D., Waterman, Homeomorphisms in Analysis, Amer. Math. Soc., Providence, 1997.
[28] R.A., Gordon, The Integrals of Lebesgue, Denjoy, Perron, and Henstock, Amer. Math. Soc, Providence, 1994.
[29] P.R., Halmos, Measure Theory, Van Nostrand, New York, 1950.
[30] R., Henstock, Definitions of Riemann type of the variational integrals, Proc. London Math. Soc. 11 (1961), 79–87.
[31] I.N., Herstein, Topics in Algebra, Blaisdell, London, 1964.
[32] J., Holec and J., Mařík, Continuous additive mappings, Czechoslovak Math. J. 14 (1965), 237–243.
[33] J., Horváth, Topological Vector Spaces and Distributions, vol. 1, Addison-Wesley, London, 1966.
[34] E.J., Howard, Analyticity of almost everywhere differentiable functions, Proc. American Math. Soc. 110 (1990), 745–753.
[35] J., Jarník and J., Kurzweil, A nonabsolutely convergent integral which admits transformation and can be used for integration on manifolds, Czechoslovak Math. J. 35 (1986), 116–139.
[36] T., Jech, Set Theory, Academic Press, New York, 1978.
[37] R.L., Jeffery, The Theory of Functions of a Real Variable, Dover, New York, 1985.
[38] W.B., Jurkat, The divergence theorem and Perron integration with exceptional sets, Czechoslovak Math. J. 43 (1993), 27–45.
[39] W.B., Jurkat and D.J.F., Nonnenmacher, A generalized n-dimensional Riemann integral and the divergence theorem with singularities, Acta Sci. Math. Szeged 59 (1994), 241–256.
[40] K., Karták and J., Mařík, A non-absolutely convergent integral in Em and the theorem of Gauss, Czechoslovak Math. J. 15 (1965), 253–260.
[41] L., Kuipers and H., Niederreiter, Uniform Distribution of Sequences, John Wiley, New York, 1974.
[42] J., Kurzweil, Generalized ordinary differential equations and continuous dependence on a parameter, Czechoslovak Math. J. 82 (1957), 418–446.
[43] J., Kurzweil, Nichtabsolut Konvergente Integrale, Taubinger, Leipzig, 1980.
[44] J., Kurzweil, J., Mawhin, and W.F., Pfeffer, An integral defined by approximating BV partitions of unity, Czechoslovak Math. J. 41 (1991), 695–712.
[45] U., Massari and M., Miranda, Minimal Surfaces of Codimension One, North-Holland, Amsterdam, 1984.
[46] P., Mattila, Geometry of Sets and Measures in Euclidean Spaces, Cambridge Univ. Press, Cambridge, 1995.
[47] J., Mařík, Extensions of additive mappings, Czechoslovak Math. J. 15 (1965), 244–252.
[48] J., Mafik and J., Matyska, On a generalization of the Lebesgue integral in Em, Czechoslovak Math. J. 15 (1965), 261–269.
[49] J., Mawhin, Generalized multiple Perron integrals and the Green-Goursat theorem for differentiable vector fields, Czechoslovak J. Math. 31 (1981), 614–632.
[50] J., Mawhin, Generalized Riemann integrals and the divergence theorem for differentiate vector fields, E.B. Christoffel (Basel), Birkhäuser, 1981, pp. 704-714.
[51] V.G., Maz'ja, Sobolev Spaces, Springer-Verlag, New York, 1985.
[52] R.M., McLeod, The Generalized Riemann Integral, Math. Asso. Amer., Washington, D.C., 1980.
[53] E.J., McShane, A Riemann-type Integral that Includes Lebesgue-Stieltjes, Boch-ner and Stochastic Integrals, Mem. Amer. Math. Soc., 88, Providence, 1969.
[54] E.J., McShane, A unified theory of integration, Amer. Math. Monthly 80 (1973), 349–359.
[55] E.J., McShane, Unified Integration, Academic Press, New York, 1983.
[56] F., Morgan, Geometric Measure Theory, Academic Press, New York, 1988.
[57] D.J.F., Nonnenmacher, Sets of finite perimeter and the Gauss-Green theorem, J. London Math. Soc. 52 (1995), 335–344.
[58] J.C., Oxtoby, Measure and Category, Springer-Verlag, New York, 1971.
[59] T. De, Pauw, Topologies for the space of BV-integrable functions in ℝm, J. Func. Anal. 144 (1997), 190–231.
[60] W.F., Pfeffer, Integrals and measures, Marcel Dekker, New York, 1977.
[61] W.F., Pfeffer, The divergence theorem, Trans. Amer. Math. Soc. 295 (1986), 665–685.
[62] W.F., Pfeffer, The multidimensional fundamental theorem of calculus, J. Australian Math. Soc. 43 (1987), 143–170.
[63] W.F., Pfeffer, A descriptive definition of a variational integral and applications, Indiana Univ. Math. J. 40 (1991), 259–270.
[64] W.F., Pfeffer, The Gauss-Green theorem, Adv. Math. 87 (1991), 93–147.
[65] W.F., Pfeffer, The Riemann Approach to Integration, Cambridge Univ. Press, New York, 1993.
[66] W.F., Pfeffer, The generalized Riemann-Stielijes integral, Real Anal. Exchange 21(2) (1995–1996), 521-547.
[67] W.F., Pfeffer, The Lebesgue and Denjoy-Perron integrals from a descriptive point of view, Ricerche Mat. 48 (1999), 211–223.
[68] W.F., Pfeffer and B.S., Thomson, Measures defined by gages, Canadian J. Math. 44 (1992), 1306–1316.
[69] W.F., Pfeffer and Wei-Chi, Yang, The multidimensional variational integral and its extensions, Real Anal. Exchange 15(1) (1989–1990), 111-169.
[70] K.P.S. Bhaskara, Rao and M. Bhaskara, Rao, Theory of Charges, Acad. Press, New York, 1983.
[71] C.A., Rogers, Hausdorff measures, Cambridge Univ. Press, Cambridge, 1970.
[72] P., Romanovski, Intégrale de Denjoy dans l'espace á n dimensions, Math. Sbornik 51 (1941), 281–307.
[73] W., Rudin, Real and Complex Analysis, McGraw-Hill, New York, 1987.
[74] W., Rudin, Functional Analysis, McGraw-Hill, New York, 1991.
[75] S., Saks, Theory of the Integral, Dover, New York, 1964.
[76] V.L., Shapiro, The divergence theorem for discontinuous vector fields, Ann. Math. 68 (1958), 604–624.
[77] L., Simon, Lectures on Geometric Measure Theory, Proc. CM.A. 3, Australian Natl. Univ., Cambera, 1983.
[78] E.H., Spanier, Algebraic Topology, McGraw-Hill, New York, 1966.
[79] M., Spivak, Calculus on Manifolds, Benjamin, London, 1965.
[80] E.M., Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Univ. Press, Princeton, 1970.
[81] I., Tamanini and C., Giacomelli, Approximation of Caccioppoli sets, with applications to problems in image segmentation, Ann. Univ. Ferrara VII (N.S.) 35 (1989), 187–213.
[82] I., Tamanini and C., Giacomelli, Un tipo di approssimazione “dall'interno” degli insiemi di perimetro finito, Rend. Mat. Acc. Lincei (9) 1 (1990), 181–187.
[83] B.S., Thomson, Spaces of conditionally integrable functions, J. London Math. Soc. 2 (1970), 358–360.
[84] B.S., Thomson, Derivatives of Interval Functions, Mem. Amer. Math. Soc., 452, Providence, 1991.
[85] B.S., Thomson, σ-finite Borel measures on the real line, Real Anal. Exch. 23 (1997–1998), 185-192.
[86] A.I., Volpert, The spaces BV and quasilinear equations, Math. USSR-Sbornik 2 (1967), 225–267.
[87] H., Whitney, Geometric Integration Theory, Princeton Univ. Press, Princeton, 1957.
[88] W.P., Ziemer, Weakly Differentiate Functions, Springer-Verlag, New York, 1989.