Skip to main content Accessibility help
×
Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-26T05:00:22.226Z Has data issue: false hasContentIssue false

1 - Introduction to Cosmochemistry

Published online by Cambridge University Press:  10 February 2022

Harry McSween, Jr
Affiliation:
University of Tennessee, Knoxville
Gary Huss
Affiliation:
University of Hawaii, Manoa
Get access

Summary

Relationship between cosmochemistry and geochemistry, historical beginnings of cosmochemistry, tools of cosmochemistry

Type
Chapter
Information
Cosmochemistry , pp. 1 - 19
Publisher: Cambridge University Press
Print publication year: 2022

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Suggestions for Further Reading

Davis, A. M., editor (2014) Treatise on Geochemistry, 2nd Edition, Vol. 1: Meteorites and Cosmochemical Processes, and Vol. 2: Planets, Asteroids, Comets and the Solar System, 454 pp. and 415 pp., respectively, Elsevier, Oxford. Comprehensive review chapters of cosmochemistry and planetary geochemistry topics by authorities in the field; these volumes cover many of the subjects of the present book, but generally at a more advanced level.Google Scholar
Gregory, T. (2020) Meteorite: How Stones from Outer Space Made Our World, 299 pp., Hachette Book Group, New York. A popular account of meteorites, with especially well-researched historical accounts of meteorite falls and finds.Google Scholar
Lauretta, D. S., and McSween, H. Y., editors (2006) Meteorites and the Early Solar System II, 943 pp., University of Arizona Press, Tucson. Another comprehensive, modern collection of reviews by prominent meteoriticists. Everything you want to know about meteorites is here, but the chapters are at an advanced level.Google Scholar
Papike, J. J., editor (1998) Planetary Materials, Reviews in Mineralogy, 36, Mineralogical Society of America, Washington. Chapters on IDPs; chondritic and nonchondritic meteorites; lunar samples; and martian meteorites provide exhaustive references on these materials.Google Scholar
Aston, F. W. (1920) Isotopes and atomic weights. Nature, 105, 617619.Google Scholar
Black, D. C., and Pepin, R. O. (1969) Trapped neon in meteorites II. Earth & Planetary Science Letters, 6, 395405.Google Scholar
Burbidge, E. M., Burbidge, G. R., Fowler, W. A., and Hoyle, F. (1957) Synthesis of elements in stars. Reviews of Modern Physics, 29, 547650.CrossRefGoogle Scholar
Cameron, A. G. W. (1957) Stellar Evolution, Nuclear Astrophysics, and Nucleogenesis (CRL-41; AECL-454). Atomic Energy of Canada, Ltd., Chalk River, Ontario.Google Scholar
Hahn, O., Strassman, F., Mattauch, J., and Ewald, H. (1943) Geologische Altersbestimmungen mit der Strontiummethode. Chemische Zeitung, 67, 5556.Google Scholar
Holmes, A. (1946) An estimate of the age of the Earth. Nature, 157, 680684.Google Scholar
Houtermans, F. G. (1946) Die Isotopenhäufigkeiten im Natürlichen Blei und das Alter den Urans. Naturwissenschaften, 33, 185187.Google Scholar
Hoyle, F., and Wickramasinghe, C. (1981) Where microbes boldly went. New Scientist, 91, 412415.Google Scholar
Lauretta, D. S., and Killgore, M. (2005) A Color Atlas of Meteorites in Thin Section. Golden Retriever Press, Tucson, 301 pp.Google Scholar
Lee, T., Papanastassiou, D. A., and Wasserburg, G. J. (1977) Aluminum-26 in the early solar system: Fossil or fuel? Astrophysical Journal Letters, 211, L107L110.Google Scholar
Lockyer, J. N. (1890) The Meteoritic Hypothesis. Macmillan & Co., New York, 560 pp.Google Scholar
Lodders, K., and Fegley, B. Jr. (1998). The Planetary Scientist’s Companion. Oxford University Press, New York, 371 pp.CrossRefGoogle Scholar
McKay, D. S., Gibson, E. K., Thomas-Keprta, K. L., et al. (1996) Search for past life on Mars: Possible relic biogenic activity in Martian meteorite ALH 84001. Science, 273, 924930.Google Scholar
Patterson, C. C. (1956) Age of meteorites and the Earth. Geochimica et Cosmochimica Acta, 10, 230.Google Scholar
Railsback, L. B. (2003) An earth scientist’s periodic table of the elements and their ions. Geology, 31, 737740. An updated version (available in six languages) was released in 2012 and can be found online: railsback.org/PT.html.Google Scholar
Reynolds, J. H. (1960) Determination of the age of the elements. Physical Reviews Letters, 4, 810.CrossRefGoogle Scholar
Reynolds, J. H., and Turner, G. (1964) Rare gases in the chondrite Renazzo. Journal of Geophysical Research, 49, 32633281.CrossRefGoogle Scholar
Suess, H. E., and Urey, H. C. (1956) Abundances of the elements. Reviews of Modern Physics, 28, 5374.CrossRefGoogle Scholar
Van Schmus, W. R., and Wood, J. A. (1967) A chemical-petrologic classification for the chondritic meteorites. Geochimica et Cosmochimica Acta, 31, 747765.Google Scholar
Wasserburg, G. J., and Hayden, R. J. (1955) Age of meteorites by the 40Ar–40K method. Physics Review, 97, 8687.CrossRefGoogle Scholar
Aston, F. W. (1920) Isotopes and atomic weights. Nature, 105, 617619.Google Scholar
Black, D. C., and Pepin, R. O. (1969) Trapped neon in meteorites II. Earth & Planetary Science Letters, 6, 395405.Google Scholar
Burbidge, E. M., Burbidge, G. R., Fowler, W. A., and Hoyle, F. (1957) Synthesis of elements in stars. Reviews of Modern Physics, 29, 547650.CrossRefGoogle Scholar
Cameron, A. G. W. (1957) Stellar Evolution, Nuclear Astrophysics, and Nucleogenesis (CRL-41; AECL-454). Atomic Energy of Canada, Ltd., Chalk River, Ontario.Google Scholar
Hahn, O., Strassman, F., Mattauch, J., and Ewald, H. (1943) Geologische Altersbestimmungen mit der Strontiummethode. Chemische Zeitung, 67, 5556.Google Scholar
Holmes, A. (1946) An estimate of the age of the Earth. Nature, 157, 680684.Google Scholar
Houtermans, F. G. (1946) Die Isotopenhäufigkeiten im Natürlichen Blei und das Alter den Urans. Naturwissenschaften, 33, 185187.Google Scholar
Hoyle, F., and Wickramasinghe, C. (1981) Where microbes boldly went. New Scientist, 91, 412415.Google Scholar
Lauretta, D. S., and Killgore, M. (2005) A Color Atlas of Meteorites in Thin Section. Golden Retriever Press, Tucson, 301 pp.Google Scholar
Lee, T., Papanastassiou, D. A., and Wasserburg, G. J. (1977) Aluminum-26 in the early solar system: Fossil or fuel? Astrophysical Journal Letters, 211, L107L110.Google Scholar
Lockyer, J. N. (1890) The Meteoritic Hypothesis. Macmillan & Co., New York, 560 pp.Google Scholar
Lodders, K., and Fegley, B. Jr. (1998). The Planetary Scientist’s Companion. Oxford University Press, New York, 371 pp.CrossRefGoogle Scholar
McKay, D. S., Gibson, E. K., Thomas-Keprta, K. L., et al. (1996) Search for past life on Mars: Possible relic biogenic activity in Martian meteorite ALH 84001. Science, 273, 924930.Google Scholar
Patterson, C. C. (1956) Age of meteorites and the Earth. Geochimica et Cosmochimica Acta, 10, 230.Google Scholar
Railsback, L. B. (2003) An earth scientist’s periodic table of the elements and their ions. Geology, 31, 737740. An updated version (available in six languages) was released in 2012 and can be found online: railsback.org/PT.html.Google Scholar
Reynolds, J. H. (1960) Determination of the age of the elements. Physical Reviews Letters, 4, 810.CrossRefGoogle Scholar
Reynolds, J. H., and Turner, G. (1964) Rare gases in the chondrite Renazzo. Journal of Geophysical Research, 49, 32633281.CrossRefGoogle Scholar
Suess, H. E., and Urey, H. C. (1956) Abundances of the elements. Reviews of Modern Physics, 28, 5374.CrossRefGoogle Scholar
Van Schmus, W. R., and Wood, J. A. (1967) A chemical-petrologic classification for the chondritic meteorites. Geochimica et Cosmochimica Acta, 31, 747765.Google Scholar
Wasserburg, G. J., and Hayden, R. J. (1955) Age of meteorites by the 40Ar–40K method. Physics Review, 97, 8687.CrossRefGoogle Scholar

Other References

Aston, F. W. (1920) Isotopes and atomic weights. Nature, 105, 617619.Google Scholar
Black, D. C., and Pepin, R. O. (1969) Trapped neon in meteorites II. Earth & Planetary Science Letters, 6, 395405.Google Scholar
Burbidge, E. M., Burbidge, G. R., Fowler, W. A., and Hoyle, F. (1957) Synthesis of elements in stars. Reviews of Modern Physics, 29, 547650.CrossRefGoogle Scholar
Cameron, A. G. W. (1957) Stellar Evolution, Nuclear Astrophysics, and Nucleogenesis (CRL-41; AECL-454). Atomic Energy of Canada, Ltd., Chalk River, Ontario.Google Scholar
Hahn, O., Strassman, F., Mattauch, J., and Ewald, H. (1943) Geologische Altersbestimmungen mit der Strontiummethode. Chemische Zeitung, 67, 5556.Google Scholar
Holmes, A. (1946) An estimate of the age of the Earth. Nature, 157, 680684.Google Scholar
Houtermans, F. G. (1946) Die Isotopenhäufigkeiten im Natürlichen Blei und das Alter den Urans. Naturwissenschaften, 33, 185187.Google Scholar
Hoyle, F., and Wickramasinghe, C. (1981) Where microbes boldly went. New Scientist, 91, 412415.Google Scholar
Lauretta, D. S., and Killgore, M. (2005) A Color Atlas of Meteorites in Thin Section. Golden Retriever Press, Tucson, 301 pp.Google Scholar
Lee, T., Papanastassiou, D. A., and Wasserburg, G. J. (1977) Aluminum-26 in the early solar system: Fossil or fuel? Astrophysical Journal Letters, 211, L107L110.Google Scholar
Lockyer, J. N. (1890) The Meteoritic Hypothesis. Macmillan & Co., New York, 560 pp.Google Scholar
Lodders, K., and Fegley, B. Jr. (1998). The Planetary Scientist’s Companion. Oxford University Press, New York, 371 pp.CrossRefGoogle Scholar
McKay, D. S., Gibson, E. K., Thomas-Keprta, K. L., et al. (1996) Search for past life on Mars: Possible relic biogenic activity in Martian meteorite ALH 84001. Science, 273, 924930.Google Scholar
Patterson, C. C. (1956) Age of meteorites and the Earth. Geochimica et Cosmochimica Acta, 10, 230.Google Scholar
Railsback, L. B. (2003) An earth scientist’s periodic table of the elements and their ions. Geology, 31, 737740. An updated version (available in six languages) was released in 2012 and can be found online: railsback.org/PT.html.Google Scholar
Reynolds, J. H. (1960) Determination of the age of the elements. Physical Reviews Letters, 4, 810.CrossRefGoogle Scholar
Reynolds, J. H., and Turner, G. (1964) Rare gases in the chondrite Renazzo. Journal of Geophysical Research, 49, 32633281.CrossRefGoogle Scholar
Suess, H. E., and Urey, H. C. (1956) Abundances of the elements. Reviews of Modern Physics, 28, 5374.CrossRefGoogle Scholar
Van Schmus, W. R., and Wood, J. A. (1967) A chemical-petrologic classification for the chondritic meteorites. Geochimica et Cosmochimica Acta, 31, 747765.Google Scholar
Wasserburg, G. J., and Hayden, R. J. (1955) Age of meteorites by the 40Ar–40K method. Physics Review, 97, 8687.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×