Skip to main content Accessibility help
×
Hostname: page-component-7479d7b7d-m9pkr Total loading time: 0 Render date: 2024-07-15T20:24:37.188Z Has data issue: false hasContentIssue false

5 - Presolar Grains

A Record of Stellar Nucleosynthesis and Processes in Interstellar Space

Published online by Cambridge University Press:  10 February 2022

Harry McSween, Jr
Affiliation:
University of Tennessee, Knoxville
Gary Huss
Affiliation:
University of Hawaii, Manoa
Get access

Summary

Types of presolar grains, how they are analyzed, and what their compositions reveal

Type
Chapter
Information
Cosmochemistry , pp. 85 - 109
Publisher: Cambridge University Press
Print publication year: 2022

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Suggestions for Further Reading

Lewis, R. S., Tang, M., Wacker, J. F., et al. (1987) Interstellar diamonds in meteorites. Nature, 326, 160162. The paper describing the discovery of the first presolar grains.Google Scholar
Bernatowicz, T. J., and Zinner, E. (1997) Astrophysical implications of the laboratory study of presolar materials. In AIP Conference Proceedings Vol. 402. American Institute of Physics, Woodbury, New York, 750 pp. An important volume describing the first decade of research on presolar grains.Google Scholar
Nittler, L. R., and Ciesla, F. (2016) Astrophysics with extraterrestrial materials. Annual Reviews of Astronomy & Astrophysics, 54, 5393. A recent overview of the use of presolar grains to investigate nucleosynthesis, galactic chemical evolution, and the origin of the solar system.CrossRefGoogle Scholar
Floss, C., and Haenecour, P. (2016) Presolar silicate grains: Abundances, isotopic and elemental compositions, and the effects of secondary processing. Geochemical Journal, 50, 325. This paper discussed presolar silicates in meteorites and the extent to which they survived solar system processing.CrossRefGoogle Scholar
Alexander, E. C. Jr., Lewis, R. S., Reynolds, J. H., and Michel, M. C. (1971) Plutonium-244: Confirmation as an extinct radioactivity. Science, 172, 837840.Google Scholar
Alexander, C. M. O’D., Swan, P., and Walker, R. M. (1990) In situ measurement of interstellar silicon carbide in two CM chondrite meteorites. Nature, 348, 715717.Google Scholar
Amari, S., Anders, E., Virag, A., and Zinner, E. (1990) Interstellar graphite in meteorites. Nature, 345, 238240.Google Scholar
Amari, S., Lewis, R. S., and Anders, E. (1994) Interstellar grains in meteorites. I. Isolation of SiC, graphite, and diamond; size distributions of graphite and SiC. Geochimica et Cosmochimica Acta, 58, 459470.CrossRefGoogle Scholar
Beer, H., Corvi, F., and Mutti, P. (1997) Neutron capture of the bottleneck isotopes 138Ba and 208Pb, s-process studies, and the r-process abundance distribution. Astrophysical Journal, 474, 843861.CrossRefGoogle Scholar
Bernatowicz, T. J., Cowsik, R., Gibbons, P. E., et al. (1996) Constraints on stellar grain formation from presolar graphite in the Murchison meteorite. Astrophysical Journal, 472, 760782.Google Scholar
Bernatowicz, T. J., Messenger, S., Pravdivtseva, O., et al. (2003) Pristine presolar silicon carbide. Geochimica et Cosmochimica Acta, 67, 46794691.Google Scholar
Black, D. C., and Pepin, R. O. (1969) Trapped neon in meteorites II. Earth & Planetary Science Letters, 6, 395405.Google Scholar
Bradley, J. P. (1994). Chemically anomalous, preaccretionally irradiated grains in interplanetary dust particles from comets. Science, 265, 925929.Google Scholar
Cameron, A. G. W. (1962) The formation of the Sun and planets. Icarus, 1, 1369.Google Scholar
Choi, B.-G., Huss, G. R., Wasserburg, G. J., and Gallino, R. (1998) Presolar corundum and spinel in ordinary chondrites: Origins from AGB stars and supernova. Science, 282, 12841289.Google Scholar
Clayton, D. D. (1997) Placing the Sun and mainstream SiC particles in galactic chemodynamic evolution. Astrophysical Journal, 484, L67L70.Google Scholar
Clayton, R. N., Grossman, L., and Mayeda, T. K. (1973) A component of primitive nuclear composition in carbonaceous meteorites. Science, 182, 485487.CrossRefGoogle ScholarPubMed
Clayton, R. N., Onuma, N., Grossman, L., and Mayeda, T. K. (1977) Distribution of the pre-solar component in Allende and other carbonaceous chondrites. Earth & Planetary Science Letters, 34, 209224.Google Scholar
Clayton, R. N., Hinton, R. W., and Davis, A. M. (1988) Isotopic variations in the rock-forming elements in meteorites. Philosophical Transactions of the Royal Society of London, A325, 483501.Google Scholar
Croat, T. K., Bernatowicz, T., Amari, S., et al. (2003) Structural, chemical, and isotopic microanalytical investigations of graphite from supernova. Geochimica et Cosmochimica Acta, 67, 47054725.Google Scholar
Daulton, T. L., Bernatowicz, T. J., Lewis, R. S., et al. (2003) Polytype distribution in circumstellar silicon carbide: Microstructural characterization by transmission electron microscopy. Geochimica et Cosmochimica Acta, 67, 47434767.Google Scholar
Dauphas, N., Remusat, L., Chen, J. H., et al. (2010) Neutron-rich chromium isotope anomalies in supernova nanoparticles. Astrophysical Journal, 720, 15771591.CrossRefGoogle Scholar
Gallino, R., Busso, M., Picchio, G., and Raiteri, C. M. (1990) On the astrophysical interpretation of isotope anomalies in meteoritic SiC grains. Nature, 348, 298302.Google Scholar
Gallino, R., Raiteri, C. M., and Busso, M. (1993) Carbon stars and isotopic Ba anomalies in meteoritic SiC grains. Astrophysical Journal, 410, 400411.CrossRefGoogle Scholar
Huss, G. R., and Lewis, R. S. (1994) Noble gases in presolar diamonds II: Component abundances reflect thermal processing. Meteoritics, 28, 811829.CrossRefGoogle Scholar
Huss, G. R., and Lewis, R. S. (1995) Presolar diamond, SiC, and graphite in primitive chondrites: Abundances as a function of meteorite class and petrologic type. Geochimica et Cosmochimica Acta, 59, 115160.Google Scholar
Huss, G. R., and Smith, J. A. (2007) Titanium isotopes in isotopically characterized silicon carbide grains from the Orgueil CI chondrite. Meteoritics & Planetary Science, 42, 10551075.CrossRefGoogle Scholar
Huss, G. R., Meshik, A. P., Smith, J. B., and Hohenberg, C. M. (2003) Presolar diamond, silicon carbide, and graphite in carbonaceous chondrites: Implications for thermal processing in the solar nebula. Geochimica et Cosmochimica Acta, 67, 48234848.Google Scholar
Huss, G. R., Rubin, A. E., and Grossman, J. N. (2006) Thermal metamorphism in chondrites. In Meteorites and the Early Solar System II, Lauretta, D. S., and McSween, H. Y., editors, pp. 567586, University of Arizona Press, Tucson.CrossRefGoogle Scholar
Iben, I. Jr., and Renzini, A. (1983) Asymptotic giant branch evolution and beyond. Annual Reviews of Astronomy & Astrophysics, 21, 271342.Google Scholar
Iliadis, C., Downen, L. N., José, J., et al. (2018) On presolar stardust grains from CO classical novae. Astrophysical Journal, 855, 76.Google Scholar
Lewis, R. S., Srinivasan, B., and Anders, E. (1975) Host phase of a strange xenon component in Allende. Science, 190, 12511262.CrossRefGoogle Scholar
Lewis, R. S., Amari, S., and Anders, E. (1994) Interstellar grains in meteorites. II. SiC and its noble gases. Geochimica et Cosmochimica Acta, 58, 471494.CrossRefGoogle Scholar
Liu, N., Steele, A., Nittler, L. R., et al. (2017) Coordinated EDX and micro-Raman analysis of presolar silicon carbide: A novel, nondestructive method to identify rare subgroup SiC. Meteoritics & Planetary Science, 52, 25502569.Google Scholar
Manuel, O. K., Hennecke, E. W,. and Sabu, D. D. (1972) Xenon in carbonaceous chondrites. Nature, 240, 99101.Google Scholar
Messenger, S., Keller, L. P., Stadermann, F. J., et al. (2003) Samples of stars beyond the solar system: Silicate grains in interplanetary dust. Science, 300, 105108.Google Scholar
Nagashima, K., Krot, A. N., and Yurimoto, H. (2004) Stardust silicates from primitive meteorites. Nature, 428, 921924.CrossRefGoogle ScholarPubMed
Nguyen, A. N., and Zinner, E. (2004) Discovery of ancient silicate stardust in a meteorite. Science, 303, 14961499.Google Scholar
Nittler, L. R., and Cowsik, R. (1997) Galactic age estimates from O-rich stardust in meteorites. Physical Review Letters, 78, 175178.CrossRefGoogle Scholar
Nittler, L. R., Amari, S., Zinner, E., et al. (1996) Extinct 44Ti in presolar graphite and SiC: Proof of a supernova origin. Astrophysical Journal Letters, 462, L31L34.CrossRefGoogle Scholar
Nittler, L. R., Alexander, C. M. O’D., Gao, X., et al. (1997) Stellar sapphires: The properties and origins of presolar Al2O3 in meteorites. Astrophysical Journal, 483, 475495.Google Scholar
Nittler, L. R., Alexander, C. M. O’D., Liu, N., and Wang, J. (2018) Extremely 54Cr- and 50Ti-rich presolar oxide grains in a primitive meteorite: Formation in rare types of supernovae and implications for the astrophysical context of solar system birth. Astrophysical Journal Letters, 856, L24.Google Scholar
Qin, L, Nittler, L. R., Alexander, C. M. O’D., et al. (2011) Extreme 54Cr-rich nano-oxides in the CI chondrite Orgueil: Implications for a late supernova injection into the solar system. Geochimica et Cosmochimica Acta, 75, 629644.Google Scholar
Reynolds, J. H., and Turner, G. (1964) Rare gases in the chondrite Renazzo. Journal of Geophysical Research, 49, 32633281.CrossRefGoogle Scholar
Smith, V. V., and Lambert, D. L. (1990) The chemical composition of red giants. III. Further CNO isotopic and s-process abundances in thermally pulsing asymptotic giant branch stars. Astrophysical Journal Supplement, 72, 387416.CrossRefGoogle Scholar
Srinivasan, B., and Anders, E. (1978) Noble gases in the Murchison meteorite: Possible relics of s-process nucleosynthesis. Science, 201, 5156.Google Scholar
Stephan, T., Trappitsch, R., Davis, A. M., et al. (2016) CHILI – the Chicago Instrument for Laser Ionization – a new tool for isotope measurement in cosmochemistry. International Journal of Mass Spectrometry, 407, 115.Google Scholar
Stroud, R. M., Nittler, L. R., and Alexander, C. M. O’D. (2004) Polymorphism in presolar Al2O3 grains from asymptotic giant branch stars. Science, 305, 14551457.Google Scholar
Stroud, R. M., Nittler, L. R., Alexander, C. M. O’D., and Zinner, E. (2007) Transmission electron microscopy and secondary ion mass spectrometry of an unusual Mg-rich presolar Al2O3 grain. Lunar and Planetary Science 38, abstract #2203.Google Scholar
Takigawa, A., Tachibana, S., Huss, G. R., et al. (2014) Morphology and crystal structures of solar and presolar Al2O3 in unequilibrated ordinary chondrites. Geochimica et Cosmochimica Acta, 124, 309327.Google Scholar
Tang, M., and Anders, E. (1988) Isotopic anomalies of Ne, Xe, and C in meteorites. II. Interstellar diamond and SiC: Carriers of exotic noble gases. Geochimica et Cosmochimica Acta, 52, 12351244.Google Scholar
Voss, F., Wisshak, K., Guber, K., and Kappler, F. (1994) Stellar neutron capture cross sections of the Ba isotopes. Physical Review C, 50, 25822601.Google Scholar
Zinner, E. (2014) Presolar grains. In Treatise on Geochemistry, 2nd Edition, Vol. 1: Meteorites and Cosmochemical Processes, Davis, A. M., editor, pp. 181213, Elsevier, Oxford.Google Scholar
Alexander, E. C. Jr., Lewis, R. S., Reynolds, J. H., and Michel, M. C. (1971) Plutonium-244: Confirmation as an extinct radioactivity. Science, 172, 837840.Google Scholar
Alexander, C. M. O’D., Swan, P., and Walker, R. M. (1990) In situ measurement of interstellar silicon carbide in two CM chondrite meteorites. Nature, 348, 715717.Google Scholar
Amari, S., Anders, E., Virag, A., and Zinner, E. (1990) Interstellar graphite in meteorites. Nature, 345, 238240.Google Scholar
Amari, S., Lewis, R. S., and Anders, E. (1994) Interstellar grains in meteorites. I. Isolation of SiC, graphite, and diamond; size distributions of graphite and SiC. Geochimica et Cosmochimica Acta, 58, 459470.CrossRefGoogle Scholar
Beer, H., Corvi, F., and Mutti, P. (1997) Neutron capture of the bottleneck isotopes 138Ba and 208Pb, s-process studies, and the r-process abundance distribution. Astrophysical Journal, 474, 843861.CrossRefGoogle Scholar
Bernatowicz, T. J., Cowsik, R., Gibbons, P. E., et al. (1996) Constraints on stellar grain formation from presolar graphite in the Murchison meteorite. Astrophysical Journal, 472, 760782.Google Scholar
Bernatowicz, T. J., Messenger, S., Pravdivtseva, O., et al. (2003) Pristine presolar silicon carbide. Geochimica et Cosmochimica Acta, 67, 46794691.Google Scholar
Black, D. C., and Pepin, R. O. (1969) Trapped neon in meteorites II. Earth & Planetary Science Letters, 6, 395405.Google Scholar
Bradley, J. P. (1994). Chemically anomalous, preaccretionally irradiated grains in interplanetary dust particles from comets. Science, 265, 925929.Google Scholar
Cameron, A. G. W. (1962) The formation of the Sun and planets. Icarus, 1, 1369.Google Scholar
Choi, B.-G., Huss, G. R., Wasserburg, G. J., and Gallino, R. (1998) Presolar corundum and spinel in ordinary chondrites: Origins from AGB stars and supernova. Science, 282, 12841289.Google Scholar
Clayton, D. D. (1997) Placing the Sun and mainstream SiC particles in galactic chemodynamic evolution. Astrophysical Journal, 484, L67L70.Google Scholar
Clayton, R. N., Grossman, L., and Mayeda, T. K. (1973) A component of primitive nuclear composition in carbonaceous meteorites. Science, 182, 485487.CrossRefGoogle ScholarPubMed
Clayton, R. N., Onuma, N., Grossman, L., and Mayeda, T. K. (1977) Distribution of the pre-solar component in Allende and other carbonaceous chondrites. Earth & Planetary Science Letters, 34, 209224.Google Scholar
Clayton, R. N., Hinton, R. W., and Davis, A. M. (1988) Isotopic variations in the rock-forming elements in meteorites. Philosophical Transactions of the Royal Society of London, A325, 483501.Google Scholar
Croat, T. K., Bernatowicz, T., Amari, S., et al. (2003) Structural, chemical, and isotopic microanalytical investigations of graphite from supernova. Geochimica et Cosmochimica Acta, 67, 47054725.Google Scholar
Daulton, T. L., Bernatowicz, T. J., Lewis, R. S., et al. (2003) Polytype distribution in circumstellar silicon carbide: Microstructural characterization by transmission electron microscopy. Geochimica et Cosmochimica Acta, 67, 47434767.Google Scholar
Dauphas, N., Remusat, L., Chen, J. H., et al. (2010) Neutron-rich chromium isotope anomalies in supernova nanoparticles. Astrophysical Journal, 720, 15771591.CrossRefGoogle Scholar
Gallino, R., Busso, M., Picchio, G., and Raiteri, C. M. (1990) On the astrophysical interpretation of isotope anomalies in meteoritic SiC grains. Nature, 348, 298302.Google Scholar
Gallino, R., Raiteri, C. M., and Busso, M. (1993) Carbon stars and isotopic Ba anomalies in meteoritic SiC grains. Astrophysical Journal, 410, 400411.CrossRefGoogle Scholar
Huss, G. R., and Lewis, R. S. (1994) Noble gases in presolar diamonds II: Component abundances reflect thermal processing. Meteoritics, 28, 811829.CrossRefGoogle Scholar
Huss, G. R., and Lewis, R. S. (1995) Presolar diamond, SiC, and graphite in primitive chondrites: Abundances as a function of meteorite class and petrologic type. Geochimica et Cosmochimica Acta, 59, 115160.Google Scholar
Huss, G. R., and Smith, J. A. (2007) Titanium isotopes in isotopically characterized silicon carbide grains from the Orgueil CI chondrite. Meteoritics & Planetary Science, 42, 10551075.CrossRefGoogle Scholar
Huss, G. R., Meshik, A. P., Smith, J. B., and Hohenberg, C. M. (2003) Presolar diamond, silicon carbide, and graphite in carbonaceous chondrites: Implications for thermal processing in the solar nebula. Geochimica et Cosmochimica Acta, 67, 48234848.Google Scholar
Huss, G. R., Rubin, A. E., and Grossman, J. N. (2006) Thermal metamorphism in chondrites. In Meteorites and the Early Solar System II, Lauretta, D. S., and McSween, H. Y., editors, pp. 567586, University of Arizona Press, Tucson.CrossRefGoogle Scholar
Iben, I. Jr., and Renzini, A. (1983) Asymptotic giant branch evolution and beyond. Annual Reviews of Astronomy & Astrophysics, 21, 271342.Google Scholar
Iliadis, C., Downen, L. N., José, J., et al. (2018) On presolar stardust grains from CO classical novae. Astrophysical Journal, 855, 76.Google Scholar
Lewis, R. S., Srinivasan, B., and Anders, E. (1975) Host phase of a strange xenon component in Allende. Science, 190, 12511262.CrossRefGoogle Scholar
Lewis, R. S., Amari, S., and Anders, E. (1994) Interstellar grains in meteorites. II. SiC and its noble gases. Geochimica et Cosmochimica Acta, 58, 471494.CrossRefGoogle Scholar
Liu, N., Steele, A., Nittler, L. R., et al. (2017) Coordinated EDX and micro-Raman analysis of presolar silicon carbide: A novel, nondestructive method to identify rare subgroup SiC. Meteoritics & Planetary Science, 52, 25502569.Google Scholar
Manuel, O. K., Hennecke, E. W,. and Sabu, D. D. (1972) Xenon in carbonaceous chondrites. Nature, 240, 99101.Google Scholar
Messenger, S., Keller, L. P., Stadermann, F. J., et al. (2003) Samples of stars beyond the solar system: Silicate grains in interplanetary dust. Science, 300, 105108.Google Scholar
Nagashima, K., Krot, A. N., and Yurimoto, H. (2004) Stardust silicates from primitive meteorites. Nature, 428, 921924.CrossRefGoogle ScholarPubMed
Nguyen, A. N., and Zinner, E. (2004) Discovery of ancient silicate stardust in a meteorite. Science, 303, 14961499.Google Scholar
Nittler, L. R., and Cowsik, R. (1997) Galactic age estimates from O-rich stardust in meteorites. Physical Review Letters, 78, 175178.CrossRefGoogle Scholar
Nittler, L. R., Amari, S., Zinner, E., et al. (1996) Extinct 44Ti in presolar graphite and SiC: Proof of a supernova origin. Astrophysical Journal Letters, 462, L31L34.CrossRefGoogle Scholar
Nittler, L. R., Alexander, C. M. O’D., Gao, X., et al. (1997) Stellar sapphires: The properties and origins of presolar Al2O3 in meteorites. Astrophysical Journal, 483, 475495.Google Scholar
Nittler, L. R., Alexander, C. M. O’D., Liu, N., and Wang, J. (2018) Extremely 54Cr- and 50Ti-rich presolar oxide grains in a primitive meteorite: Formation in rare types of supernovae and implications for the astrophysical context of solar system birth. Astrophysical Journal Letters, 856, L24.Google Scholar
Qin, L, Nittler, L. R., Alexander, C. M. O’D., et al. (2011) Extreme 54Cr-rich nano-oxides in the CI chondrite Orgueil: Implications for a late supernova injection into the solar system. Geochimica et Cosmochimica Acta, 75, 629644.Google Scholar
Reynolds, J. H., and Turner, G. (1964) Rare gases in the chondrite Renazzo. Journal of Geophysical Research, 49, 32633281.CrossRefGoogle Scholar
Smith, V. V., and Lambert, D. L. (1990) The chemical composition of red giants. III. Further CNO isotopic and s-process abundances in thermally pulsing asymptotic giant branch stars. Astrophysical Journal Supplement, 72, 387416.CrossRefGoogle Scholar
Srinivasan, B., and Anders, E. (1978) Noble gases in the Murchison meteorite: Possible relics of s-process nucleosynthesis. Science, 201, 5156.Google Scholar
Stephan, T., Trappitsch, R., Davis, A. M., et al. (2016) CHILI – the Chicago Instrument for Laser Ionization – a new tool for isotope measurement in cosmochemistry. International Journal of Mass Spectrometry, 407, 115.Google Scholar
Stroud, R. M., Nittler, L. R., and Alexander, C. M. O’D. (2004) Polymorphism in presolar Al2O3 grains from asymptotic giant branch stars. Science, 305, 14551457.Google Scholar
Stroud, R. M., Nittler, L. R., Alexander, C. M. O’D., and Zinner, E. (2007) Transmission electron microscopy and secondary ion mass spectrometry of an unusual Mg-rich presolar Al2O3 grain. Lunar and Planetary Science 38, abstract #2203.Google Scholar
Takigawa, A., Tachibana, S., Huss, G. R., et al. (2014) Morphology and crystal structures of solar and presolar Al2O3 in unequilibrated ordinary chondrites. Geochimica et Cosmochimica Acta, 124, 309327.Google Scholar
Tang, M., and Anders, E. (1988) Isotopic anomalies of Ne, Xe, and C in meteorites. II. Interstellar diamond and SiC: Carriers of exotic noble gases. Geochimica et Cosmochimica Acta, 52, 12351244.Google Scholar
Voss, F., Wisshak, K., Guber, K., and Kappler, F. (1994) Stellar neutron capture cross sections of the Ba isotopes. Physical Review C, 50, 25822601.Google Scholar
Zinner, E. (2014) Presolar grains. In Treatise on Geochemistry, 2nd Edition, Vol. 1: Meteorites and Cosmochemical Processes, Davis, A. M., editor, pp. 181213, Elsevier, Oxford.Google Scholar

Other References

Alexander, E. C. Jr., Lewis, R. S., Reynolds, J. H., and Michel, M. C. (1971) Plutonium-244: Confirmation as an extinct radioactivity. Science, 172, 837840.Google Scholar
Alexander, C. M. O’D., Swan, P., and Walker, R. M. (1990) In situ measurement of interstellar silicon carbide in two CM chondrite meteorites. Nature, 348, 715717.Google Scholar
Amari, S., Anders, E., Virag, A., and Zinner, E. (1990) Interstellar graphite in meteorites. Nature, 345, 238240.Google Scholar
Amari, S., Lewis, R. S., and Anders, E. (1994) Interstellar grains in meteorites. I. Isolation of SiC, graphite, and diamond; size distributions of graphite and SiC. Geochimica et Cosmochimica Acta, 58, 459470.CrossRefGoogle Scholar
Beer, H., Corvi, F., and Mutti, P. (1997) Neutron capture of the bottleneck isotopes 138Ba and 208Pb, s-process studies, and the r-process abundance distribution. Astrophysical Journal, 474, 843861.CrossRefGoogle Scholar
Bernatowicz, T. J., Cowsik, R., Gibbons, P. E., et al. (1996) Constraints on stellar grain formation from presolar graphite in the Murchison meteorite. Astrophysical Journal, 472, 760782.Google Scholar
Bernatowicz, T. J., Messenger, S., Pravdivtseva, O., et al. (2003) Pristine presolar silicon carbide. Geochimica et Cosmochimica Acta, 67, 46794691.Google Scholar
Black, D. C., and Pepin, R. O. (1969) Trapped neon in meteorites II. Earth & Planetary Science Letters, 6, 395405.Google Scholar
Bradley, J. P. (1994). Chemically anomalous, preaccretionally irradiated grains in interplanetary dust particles from comets. Science, 265, 925929.Google Scholar
Cameron, A. G. W. (1962) The formation of the Sun and planets. Icarus, 1, 1369.Google Scholar
Choi, B.-G., Huss, G. R., Wasserburg, G. J., and Gallino, R. (1998) Presolar corundum and spinel in ordinary chondrites: Origins from AGB stars and supernova. Science, 282, 12841289.Google Scholar
Clayton, D. D. (1997) Placing the Sun and mainstream SiC particles in galactic chemodynamic evolution. Astrophysical Journal, 484, L67L70.Google Scholar
Clayton, R. N., Grossman, L., and Mayeda, T. K. (1973) A component of primitive nuclear composition in carbonaceous meteorites. Science, 182, 485487.CrossRefGoogle ScholarPubMed
Clayton, R. N., Onuma, N., Grossman, L., and Mayeda, T. K. (1977) Distribution of the pre-solar component in Allende and other carbonaceous chondrites. Earth & Planetary Science Letters, 34, 209224.Google Scholar
Clayton, R. N., Hinton, R. W., and Davis, A. M. (1988) Isotopic variations in the rock-forming elements in meteorites. Philosophical Transactions of the Royal Society of London, A325, 483501.Google Scholar
Croat, T. K., Bernatowicz, T., Amari, S., et al. (2003) Structural, chemical, and isotopic microanalytical investigations of graphite from supernova. Geochimica et Cosmochimica Acta, 67, 47054725.Google Scholar
Daulton, T. L., Bernatowicz, T. J., Lewis, R. S., et al. (2003) Polytype distribution in circumstellar silicon carbide: Microstructural characterization by transmission electron microscopy. Geochimica et Cosmochimica Acta, 67, 47434767.Google Scholar
Dauphas, N., Remusat, L., Chen, J. H., et al. (2010) Neutron-rich chromium isotope anomalies in supernova nanoparticles. Astrophysical Journal, 720, 15771591.CrossRefGoogle Scholar
Gallino, R., Busso, M., Picchio, G., and Raiteri, C. M. (1990) On the astrophysical interpretation of isotope anomalies in meteoritic SiC grains. Nature, 348, 298302.Google Scholar
Gallino, R., Raiteri, C. M., and Busso, M. (1993) Carbon stars and isotopic Ba anomalies in meteoritic SiC grains. Astrophysical Journal, 410, 400411.CrossRefGoogle Scholar
Huss, G. R., and Lewis, R. S. (1994) Noble gases in presolar diamonds II: Component abundances reflect thermal processing. Meteoritics, 28, 811829.CrossRefGoogle Scholar
Huss, G. R., and Lewis, R. S. (1995) Presolar diamond, SiC, and graphite in primitive chondrites: Abundances as a function of meteorite class and petrologic type. Geochimica et Cosmochimica Acta, 59, 115160.Google Scholar
Huss, G. R., and Smith, J. A. (2007) Titanium isotopes in isotopically characterized silicon carbide grains from the Orgueil CI chondrite. Meteoritics & Planetary Science, 42, 10551075.CrossRefGoogle Scholar
Huss, G. R., Meshik, A. P., Smith, J. B., and Hohenberg, C. M. (2003) Presolar diamond, silicon carbide, and graphite in carbonaceous chondrites: Implications for thermal processing in the solar nebula. Geochimica et Cosmochimica Acta, 67, 48234848.Google Scholar
Huss, G. R., Rubin, A. E., and Grossman, J. N. (2006) Thermal metamorphism in chondrites. In Meteorites and the Early Solar System II, Lauretta, D. S., and McSween, H. Y., editors, pp. 567586, University of Arizona Press, Tucson.CrossRefGoogle Scholar
Iben, I. Jr., and Renzini, A. (1983) Asymptotic giant branch evolution and beyond. Annual Reviews of Astronomy & Astrophysics, 21, 271342.Google Scholar
Iliadis, C., Downen, L. N., José, J., et al. (2018) On presolar stardust grains from CO classical novae. Astrophysical Journal, 855, 76.Google Scholar
Lewis, R. S., Srinivasan, B., and Anders, E. (1975) Host phase of a strange xenon component in Allende. Science, 190, 12511262.CrossRefGoogle Scholar
Lewis, R. S., Amari, S., and Anders, E. (1994) Interstellar grains in meteorites. II. SiC and its noble gases. Geochimica et Cosmochimica Acta, 58, 471494.CrossRefGoogle Scholar
Liu, N., Steele, A., Nittler, L. R., et al. (2017) Coordinated EDX and micro-Raman analysis of presolar silicon carbide: A novel, nondestructive method to identify rare subgroup SiC. Meteoritics & Planetary Science, 52, 25502569.Google Scholar
Manuel, O. K., Hennecke, E. W,. and Sabu, D. D. (1972) Xenon in carbonaceous chondrites. Nature, 240, 99101.Google Scholar
Messenger, S., Keller, L. P., Stadermann, F. J., et al. (2003) Samples of stars beyond the solar system: Silicate grains in interplanetary dust. Science, 300, 105108.Google Scholar
Nagashima, K., Krot, A. N., and Yurimoto, H. (2004) Stardust silicates from primitive meteorites. Nature, 428, 921924.CrossRefGoogle ScholarPubMed
Nguyen, A. N., and Zinner, E. (2004) Discovery of ancient silicate stardust in a meteorite. Science, 303, 14961499.Google Scholar
Nittler, L. R., and Cowsik, R. (1997) Galactic age estimates from O-rich stardust in meteorites. Physical Review Letters, 78, 175178.CrossRefGoogle Scholar
Nittler, L. R., Amari, S., Zinner, E., et al. (1996) Extinct 44Ti in presolar graphite and SiC: Proof of a supernova origin. Astrophysical Journal Letters, 462, L31L34.CrossRefGoogle Scholar
Nittler, L. R., Alexander, C. M. O’D., Gao, X., et al. (1997) Stellar sapphires: The properties and origins of presolar Al2O3 in meteorites. Astrophysical Journal, 483, 475495.Google Scholar
Nittler, L. R., Alexander, C. M. O’D., Liu, N., and Wang, J. (2018) Extremely 54Cr- and 50Ti-rich presolar oxide grains in a primitive meteorite: Formation in rare types of supernovae and implications for the astrophysical context of solar system birth. Astrophysical Journal Letters, 856, L24.Google Scholar
Qin, L, Nittler, L. R., Alexander, C. M. O’D., et al. (2011) Extreme 54Cr-rich nano-oxides in the CI chondrite Orgueil: Implications for a late supernova injection into the solar system. Geochimica et Cosmochimica Acta, 75, 629644.Google Scholar
Reynolds, J. H., and Turner, G. (1964) Rare gases in the chondrite Renazzo. Journal of Geophysical Research, 49, 32633281.CrossRefGoogle Scholar
Smith, V. V., and Lambert, D. L. (1990) The chemical composition of red giants. III. Further CNO isotopic and s-process abundances in thermally pulsing asymptotic giant branch stars. Astrophysical Journal Supplement, 72, 387416.CrossRefGoogle Scholar
Srinivasan, B., and Anders, E. (1978) Noble gases in the Murchison meteorite: Possible relics of s-process nucleosynthesis. Science, 201, 5156.Google Scholar
Stephan, T., Trappitsch, R., Davis, A. M., et al. (2016) CHILI – the Chicago Instrument for Laser Ionization – a new tool for isotope measurement in cosmochemistry. International Journal of Mass Spectrometry, 407, 115.Google Scholar
Stroud, R. M., Nittler, L. R., and Alexander, C. M. O’D. (2004) Polymorphism in presolar Al2O3 grains from asymptotic giant branch stars. Science, 305, 14551457.Google Scholar
Stroud, R. M., Nittler, L. R., Alexander, C. M. O’D., and Zinner, E. (2007) Transmission electron microscopy and secondary ion mass spectrometry of an unusual Mg-rich presolar Al2O3 grain. Lunar and Planetary Science 38, abstract #2203.Google Scholar
Takigawa, A., Tachibana, S., Huss, G. R., et al. (2014) Morphology and crystal structures of solar and presolar Al2O3 in unequilibrated ordinary chondrites. Geochimica et Cosmochimica Acta, 124, 309327.Google Scholar
Tang, M., and Anders, E. (1988) Isotopic anomalies of Ne, Xe, and C in meteorites. II. Interstellar diamond and SiC: Carriers of exotic noble gases. Geochimica et Cosmochimica Acta, 52, 12351244.Google Scholar
Voss, F., Wisshak, K., Guber, K., and Kappler, F. (1994) Stellar neutron capture cross sections of the Ba isotopes. Physical Review C, 50, 25822601.Google Scholar
Zinner, E. (2014) Presolar grains. In Treatise on Geochemistry, 2nd Edition, Vol. 1: Meteorites and Cosmochemical Processes, Davis, A. M., editor, pp. 181213, Elsevier, Oxford.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Presolar Grains
  • Harry McSween, Jr, University of Tennessee, Knoxville, Gary Huss, University of Hawaii, Manoa
  • Book: Cosmochemistry
  • Online publication: 10 February 2022
  • Chapter DOI: https://doi.org/10.1017/9781108885263.006
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Presolar Grains
  • Harry McSween, Jr, University of Tennessee, Knoxville, Gary Huss, University of Hawaii, Manoa
  • Book: Cosmochemistry
  • Online publication: 10 February 2022
  • Chapter DOI: https://doi.org/10.1017/9781108885263.006
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Presolar Grains
  • Harry McSween, Jr, University of Tennessee, Knoxville, Gary Huss, University of Hawaii, Manoa
  • Book: Cosmochemistry
  • Online publication: 10 February 2022
  • Chapter DOI: https://doi.org/10.1017/9781108885263.006
Available formats
×