Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-05T15:47:19.650Z Has data issue: false hasContentIssue false

Bibliography and Author Index

Published online by Cambridge University Press:  04 March 2010

C. Rogers
Affiliation:
University of New South Wales, Sydney
W. K. Schief
Affiliation:
University of New South Wales, Sydney
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Bäcklund and Darboux Transformations
Geometry and Modern Applications in Soliton Theory
, pp. 383 - 402
Publisher: Cambridge University Press
Print publication year: 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ablowitz, M. J., Kaup, D. J., Newell, A. C. and Segur, H., Nonlinear evolution equations of physical significance, Phys. Rev. Lett. 31, 125–127 (1973). (64, 204)CrossRefGoogle Scholar
Ablowitz, M. J., Kaup, D. J., Newell, A. C. and Segur, H., The inverse scattering transform-Fourier analysis for nonlinear problems, Stud. Appl. Math. 53, 249–134 (1974). (210)CrossRefGoogle Scholar
M. J. Ablowitz and H. Segur, Solitons and the Inverse Scattering Transform, SIAM, Philadelphia (1981). (211)
Adkins, J. E., A reciprocal property of the finite plane strain equations, J. Mech. Phys. Solids 6, 267–275 (1958). (97)CrossRefGoogle Scholar
Agonov, S. I. and Ferapontov, E. V., Theory of congruences and systems of conservation laws, J. Math. Sci. 94, 1748–1794 (1999). (230)CrossRefGoogle Scholar
M. A. Akivis and V. V. Goldberg, Projective Differential Geometry of Submanifolds, Math. Library 49, North-Holland (1993). (329)
Alber, M. S., Camassa, R., Holm, D. D. and Marsden, J. E., The geometry of peaked solutions of a class of integrable pdes, Lett. Math. Phys. 32, 137–151 (1994). (239)CrossRefGoogle Scholar
Alber, M. S., Camassa, R., Holm, D. D. and Marsden, J. E., On the link between umbilic geodesics and soliton solutions of nonlinear ODEs, Proc. R. Soc. Lond. A 450, 677–692 (1995). (239)CrossRefGoogle Scholar
Albrecht, G. and Degen, W. L. F., Construction of Bézier rectangles and triangles on the symmetric Dupin horn cyclide by means of inversion, Computer Aided Geometric Design 14, 349–357 (1997). (198)CrossRefGoogle Scholar
Allen, S. and Dutta, D., Cyclides in pure blending I, Computer Aided Geometric Design 14, 51–75 (1997). (198)CrossRefGoogle Scholar
Allen, S. and Dutta, D., Cyclides in pure blending II, Computer Aided Geometric Design 14, 77–102 (1997). (198)CrossRefGoogle Scholar
Allen, S. and Dutta, D., Supercyclides and blending, Computer Aided Geometric Design 14, 637–651 (1997). (198)CrossRefGoogle Scholar
Antanovskii, L. K., Rogers, C. and Schief, W. K., A note on a capillarity model and the nonlinear Schrödinger equation, J. Phys. A: Math. Gen. 30, L555–L557 (1997). (119)CrossRefGoogle Scholar
Antonowicz, M., On the Bianchi-Bäcklund construction for affine minimal surfaces, J. Phys. A: Math. Gen. 20, 1989–1996 (1987). (88)CrossRefGoogle Scholar
Antonowicz, M. and Fordy, A. P., Factorisation of energy dependent Schrödinger operators: Miura maps and modified systems, Commun. Math. Phys. 124, 465–486 (1989). (217)CrossRefGoogle Scholar
M. Antonowicz and A. P. Fordy, Hamiltonian structure of nonlinear evolution equations, in A. P. Fordy, ed, Soliton Theory: A Survey of Results, pp. 273–312, Manchester University Press (1990). (217)
Antonowicz, M. and Sym, A., New integrable nonlinearities from affine geometry, Phys. Lett. A 112, 1–2 (1985). (88)CrossRefGoogle Scholar
Asano, N., Taniuti, T. and Yajima, N., Perturbation method for nonlinear wave modulation: II, J. Math. Phys. 10, 2020–2024 (1969). (119)CrossRefGoogle Scholar
Athorne, C., On the characterization of Moutard transformations, Inverse Problems 9, 217–232 (1993). (111, 113)CrossRefGoogle Scholar
Athorne, C. and Nimmo, J. J. C., On the Moutard transformation for integrable partial differential equations, Inverse Problems, 7, 809–826 (1991). (362, 368)CrossRefGoogle Scholar
Bäcklund, A. V., Om ytor med konstant negativ krökning, Lunds Universitets Årsskrift 19, 1–48 (1883). (17)Google Scholar
Baker, J. A. and Rogers, C., Invariance properties under a reciprocal Bäcklund transformation in gasdynamics, J. Mécanique Théor. Appl. 1, 563–578 (1982). (229)Google Scholar
Barnard, T. W., 2Nπ Ultrashort light pulses, Phys. Rev. A 7, 373–376 (1973). (22, 30)CrossRefGoogle Scholar
Baspalov, V. I. and Talanov, V. I., Filamentary structure of light beams in nonlinear liquids, JETP Engl. Transl. 3, 307–310 (1966). (119)Google Scholar
Bateman, H., The lift and drag functions for an elastic fluid in two-dimensional irrotational flow, Proc. Natl. Acad. Sci. U.S.A. 24, 246–251 (1938). (229)CrossRefGoogle ScholarPubMed
Beals, R., Rabelo, M. and Tenenblat, K., Bäcklund transformations and inverse scattering solutions for some pseudospherical surface equations, Stud. Appl. Math. 81, 125–151 (1989). (22)CrossRefGoogle Scholar
Belinsky, V. A. and Zakharov, V. E., Integration of Einstein's equations by means of the inverse scattering technique and construction of exact solutions, Sov. Phys. JETP 48, 985–994 (1978). (297, 305)Google Scholar
Beltrami, E., Saggio di interpretazione della geometria non-euclidea, Giornale di Matematiche 6, 284–312 (1868). (17)Google Scholar
Benney, D. J. and Roskes, G. J., Wave instabilities, Stud. Appl. Math. 48, 377–385 (1969). (163)CrossRefGoogle Scholar
Betchov, R., On the curvature and torsion of an isolated vortex filament, J. Fluid. Mech. 22, 471–479 (1965). (60)CrossRefGoogle Scholar
Bianchi, L., Ricerche sulle superficie a curvatura constante e sulle elicoidi. Tesi di Abilitazione, Ann. Scuola Norm. Sup. Pisa (1) 2, 285–304 (1879). (17)Google Scholar
Bianchi, L., Sopra i sistemi tripli ortogonali di Weingarten, Ann. Matem. 13, 177–234 (1885). (17, 60, 72)CrossRefGoogle Scholar
Bianchi, L., Sopra alcone nuove classi di superficie e di sistemi tripli ortogonali, Ann. Matem. 18, 301–358 (1890). (45, 50, 297)CrossRefGoogle Scholar
Bianchi, L., Sulle deformazioni infinitesime delle superficie flessibili ed inestendibili, Rend. Lincei 1, 41–48 (1892). (299)Google Scholar
Bianchi, L., Sulla trasformazione di Bäcklund per le superficie pseudosferiche, Rend. Lincei 5, 3–12 (1892). (28)Google Scholar
Bianchi, L., Ricerche sulle superficie isoterme e sulla deformazione delle quadriche, Ann. Matem. 11, 93–157 (1905). (152, 171, 184)CrossRefGoogle Scholar
L. Bianchi, Lezioni di geometria differenziale1-4, Zanichelli, Bologna (1923–1927). (18, 21, 28, 152, 154, 182)
O. Bjørgum, On Beltrami vector fields and flows, Part I., Universitet I. Bergen, Årbok Naturvitenskapelig rekke n-1 (1951). (139)
W. Blaschke, Differentialgeometrie, Chelsea Publishing Company, New York, Reprinted (1967). (88, 91, 100, 127, 335)
A. I. Bobenko, Surfaces in terms of 2 by 2 matrices. Old and new integrable cases, in A. Fordy and J. Woods, eds, Harmonic Maps and Integrable Systems, Vieweg, pp. 83–128 (1994). (40)
Bobenko, A. and Eitner, U., Bonnet surfaces and Painlevé equations, J. Reine Angew. Math. 499, 47–79 (1998). (118)Google Scholar
A. I. Bobenko and U. Eitner, Painlevé equations in differential geometry of surfaces, Lecture Notes in Mathematics1753 Springer Verlag, Berlin, Heidelberg (2000). (118)
Bobenko, A., Eitner, U. and Kitaev, A., Surfaces with harmonic inverse mean curvature and Painlevé equations, Geom. Dedicata 68, 187–227 (1997). (118)CrossRefGoogle Scholar
Bobenko, A. I. and Kitaev, A. V., On asymptotic cones of surfaces with constant curvature and the third Painlevé equation, Manuscripta. Math. 97, 489–516 (1998). (118)CrossRefGoogle Scholar
A. I. Bobenko and R. Seiler, eds, Discrete Integrable Geometry and Physics, Clarendon Press, Oxford (1999). (237)
Boem, W., On cyclides in geometric modelling, Computer Aided Geometric Design 7, 243–255 (1990). (198)CrossRefGoogle Scholar
Bogdanov, L. V., Veselov-Novikov equation as a natural two-dimensional generalization of the Korteweg-de Vries equation, Teoret. Mat. Fiz. 70, 309–314 (1987). (330)Google Scholar
Boiti, M., Laddomada, C. and Pempinelli, F., Multiple-kink-soliton solutions of the nonlinear Schrödinger equation, Il Nuovo Cimento B 65, 248–258 (1981). (149)CrossRefGoogle Scholar
Boiti, M., Leon, J., Martina, L. and Pempinelli, F., Scattering of localized solitons in the plane, Phys. Lett. A 132, 432–439 (1988). (196, 362)CrossRefGoogle Scholar
Boiti, M., Pempinelli, F. and Sabatier, P. C., First and second order nonlinear evolution equations, Inverse Problems 9, 1–37 (1993). (163)CrossRefGoogle Scholar
G. Bol, Projektive Differentialgeometrie, Göttingen (1954). (329, 330, 332, 336, 341, 370)
Boldin, A. Yu., Safin, S. S. and Shapirov, R. A., On an old article of Tzitzeica and the inverse scattering method, J. Math. Phys. 34, 5801–5809 (1993). (91)CrossRefGoogle Scholar
Bonnet, O., Mémoire sur la théorie des surfaces applicables sur une surface donnée, J. l' École Polytech. 41, 201–230 (1865); J. l'École Polytech. 42, 1–151 (1867). (18)Google Scholar
Bour, E., Théorie de la déformation des surfaces, J. l'École Imperiale Polytech. 19, Cahier 39, 1–48 (1862). (17, 152)Google Scholar
Brezinski, C., A general extrapolation algorithm, Numer. Math. 35, 175–187 (1980). (237)CrossRefGoogle Scholar
Broadbridge, P., Knight, J. H. and Rogers, C., Constant rate rainfall infiltration in a bounded profile: solutions of a nonlinear model, Soil. Soc. Am. J. 52, 1526–1533 (1988). (229)CrossRefGoogle Scholar
Broadbridge, P. and Rogers, C., Exact solutions for vertical drainage and redistribution in soils, J. Eng. Math. 24, 225–43 (1990). (229)CrossRefGoogle Scholar
Broadbridge, P. and Tritscher, P., An integrable fourth order nonlinear evolution equation applied to the thermal grooving of metal surfaces, IMA J. Appl. Math. 53, 249–265 (1994). (232)CrossRefGoogle Scholar
F. Burstall, Isothermic surfaces in arbitrary co-dimension, Atti del Congresso Internazionale in onore di Pasquale Calapso, Rendiconti del Sem. Mat. di. Messina, 57–68 (2001). (163, 171)
F. Burstall, Isothermic surfaces: conformal geometry, Clifford algebras and integrable systems, Math. DG/0003096 (2000). (163, 171)
Burstall, F., Hertrich-Jeromin, U., Pedit, F. and Pinkall, U., Curved flats and isothermic surfaces, Math. Z. 225, 199–209 (1997). (171, 189)CrossRefGoogle Scholar
Calapso, P., Sulla superficie a linee di curvatura isoterme, Rend. Circ. Mat. Palermo 17, 275–286 (1903). (152, 154, 165)CrossRefGoogle Scholar
Calogero, F. and Degasperis, A., Coupled nonlinear evolution equations solvable via the inverse spectral transform, and solitons that come back: the boomeron, Lett. Nuovo Cimento 16, 425–433 (1976). (155, 161, 164)CrossRefGoogle Scholar
Calogero, F. and Degasperis, A., Bäcklund transformations, nonlinear superposition principle, multisoliton solutions and conserved quantities for the “boomeron” nonlinear evolution equation, Lett. Nuovo Cimento 16, 434–438 (1976). (155, 161, 164, 191)CrossRefGoogle Scholar
F. Calogero and A. Degasparis, Spectral Transform and Solitons, North Holland Publishing Company, Amsterdam (1982). (233, 266)
Calogero, F. and Degasperis, A., A modified modified Korteweg-de Vries equation, Inverse Problems 1, 57–66 (1985). (243)CrossRefGoogle Scholar
Camassa, R. and Holm, D. D., An integrable shallow water equation with peaked solitons, Phys. Rev. Lett. 71, 1661–1664 (1993). (239)CrossRefGoogle ScholarPubMed
E. Cartan, Les systèmes différentielles extérieurs et leurs applications à métriques, Hermann, Paris (1945). (261)
P. J. Caudrey, J. C. Eilbeck, J. D. Gibbon and R. K. Bullough, Exact multisoliton solution of the inhomogeneously broadened self-induced transparency equations, J. Phys. A: Math. Gen.6, L53–L56 (1973). (130)
Caudrey, P. J., Gibbon, J. D., Eilbeck, J. C. and Bullough, R. K., Exact multi-soliton solutions of the self-induced transparency and sine-Gordon equations, Phys. Rev. Lett. 30, 237–239 (1973). (130)CrossRefGoogle Scholar
Cayley, A., On the cyclide, Q. J. Pure Appl. Math. 12, 148–165 (1873). (198)Google Scholar
Cekirge, H. M. and Rogers, C., On elastic-plastic wave propagation: transmission of elastic-plastic boundaries, Arch. Mech. 29, 125–141 (1977). (98)Google Scholar
Cekirge, H. M. and Varley, E., Large amplitude waves in bounded media I: reflexion and transmission of large amplitude shockless pulses at an interface, Philos. Trans. R. Soc. Lond. A 273, 261–313 (1973). (98)CrossRefGoogle Scholar
Cenkl, B., Geometric deformations of the evolution equations and Bäcklund transformations, Physica D 18, 217–219 (1986). (21)CrossRefGoogle Scholar
Ceyhan, Ö., Fokas, A. S. and Gürses, M., Deformations of surfaces associated with integrable Gauß-Mainardi-Codazzi equations, J. Math. Phys. 41, 2251–2270 (2000). (42)CrossRefGoogle Scholar
Chen, H. H. and Liu, C. S., Nonlinear wave and soliton propagation in media with arbitrary inhomogeneities, Phys. Fluids 21, 377–380 (1978). (119)CrossRefGoogle Scholar
S. S. Chern, Surface theory with Darboux and Bianchi, Miscellanea Mathematica, pp. 59–69, Springer, Berlin (1991). (17)
Chern, S. S. and Tenenblat, K., Foliations on a surface of constant curvature and the modified Korteweg-de Vries equations, J. Diff. Geom. 16, 347–349 (1981). (22)CrossRefGoogle Scholar
Chern, S. S. and Tenenblat, K., Pseudospherical surfaces and evolution equations, Stud. Appl. Math. 74, 55–83 (1986). (22)CrossRefGoogle Scholar
Chern, S. S. and Terng, C. L., An analogue of Bäcklund's theorem in affine geometry, Rocky Mountain J. Math. 10, 105–124 (1980). (88)CrossRefGoogle Scholar
F. J. Chinea, Vector Bäcklund transformations and associated superposition principle, in C. Hoenselaers and W. Dietz, eds, Solutions of Einstein's Equations: Techniques and Results, Lecture Notes in Physics, pp. 55–67, Springer-Verlag, Berlin (1984). (298, 326)
Cieśliński, J., An algebraic method to construct the Darboux matrix, J. Math. Phys. 36, 5670–5706 (1995). (266, 270)CrossRefGoogle Scholar
Cieśliński, J., The Darboux-Bianchi transformation for isothermic surfaces. Classical results versus the soliton approach, Diff. Geom. Appl. 7, 1–28 (1997). (171)CrossRefGoogle Scholar
Cieśliński, J., A generalized formula for integrable classes of surfaces in Lie algebras, J. Math. Phys. 38, 4255–4272 (1997). (208)CrossRefGoogle Scholar
Cieśliński, J., Gragert, P. K. H. and Sym, A., Exact solutions to localised induction-approximation equation modelling smoke-ring motion, Phys. Rev. Lett. 57, 1507–1510 (1986). (150)CrossRefGoogle Scholar
Cieśliński, J., Goldstein, P. and Sym, A., Isothermic surfaces inE3 as soliton surfaces, Phys. Lett. A 205, 37–43 (1995). (154, 192)Google Scholar
J. F. Cornwell, Group Theory in Physics, Vols. I, II, Academic Press, London (1984). (371)
Cosgrove, C. M., Relationships between the group-theoretic and soliton-theoretic techniques for generating stationary axisymmetric gravitational solutions, J. Math. Phys. 21, 2417–2447 (1980). (297, 305)CrossRefGoogle Scholar
E. Cosserat, Sur les systèmes conjugués et sur la déformation des surfaces, C. R. Acad. Sci. Paris113, 460–463 (1891); sur les systèmes cycliques et sur la déformation des surfaces, C. R. Acad. Sci. Paris113, 498–500. (299)
J. Crank, The Mathematics of Diffusion, 2nd ed, Oxford University Press, (1975). (232)
Crum, M. M., Associated Sturm-Liouville systems, Q. J. Math. Oxford 6, 121–127 (1955). (266)CrossRefGoogle Scholar
Darboux, G., Sur une proposition relative aux equations linéaires, C. R. Acad. Sci. Paris 94, 1456–1459 (1882). (17, 152, 266)Google Scholar
G. Darboux, Leçons sur la théorie générale des surfaces, Gauthier-Villars, Paris (1887). (109)
G. Darboux, Sur les surfaces dont la courbure totale est constante, C. R. Acad. Sci. Paris97, 848–850 (1883); sur les surfaces à courbure constante, C. R. Acad. Sci. Paris97, 892–894; sur l'équation aux dérivées partielles des surfaces à courbure constante, C. R. Acad. Sci. Paris97, 946–949. (17)
Darboux, G., Sur les surfaces isothermiques, C. R. Acad. Sci. Paris 128, 1299–1305 (1899). (152, 154, 171, 175)Google Scholar
Davey, A., The propagation of a weak nonlinear wave, J. Fluid. Mech. 53, 769–781 (1972). (119)CrossRefGoogle Scholar
Da, L. S. Rios, Sul moto d'un liquido indefinito con un filetto vorticoso, Rend. Circ. Mat. Palermo 22, 117–135 (1906). (60, 119, 121)Google Scholar
Davey, A. and Stewartson, K., On three-dimensional packets of surface waves, Proc. R. Soc. Lond. A 338, 101–110 (1974). (163)CrossRefGoogle Scholar
P. G. deGennes, Superconductivity of Metals and Alloys, Benjamin, New York (1966). (119)
A. Degasperis, C. Rogers and W. K. Schief, Isothermic surfaces generated via Bäcklund and Moutard transformations. Boomeron and zoomeron connections, to appear in Stud. Appl. Math. (2002). (164, 198)
Demoulin, A., Sur les systèmes et les congruencesK, C. R. Acad. Sci. Paris 150, 156–159 (1910). (186)Google Scholar
Demoulin, A., Sur deux transformations des surfaces dont les quadriques de Lie n'ont que deux ou trois points charactéristiques, Bull. l'Acad. Belgique 19, 479–502, 579–592, 1352–1363 (1933). (329, 335)Google Scholar
J. de Pont, Essays on the cyclide patch, PhD Thesis, Cambridge University (1984). (198)
Dietz, W. and Hoenselaers, C., Two mass solutions of Einstein's vacuum equations: the double Kerr solution, Ann. Phys. 165, 319–383 (1985). (311)CrossRefGoogle Scholar
Dmitrieva, L. A., Finite-gap solutions of the Harry Dym equation, Phys. Lett. A 182, 65–70 (1993). (234)CrossRefGoogle Scholar
Dmitrieva, L. A., N -loop solitons and their link with the complex Harry Dym equation, J. Phys. A: Math. Gen. 27, 8197–8205 (1994). (226, 234)CrossRefGoogle Scholar
Dmitrieva, L. and Khlabystova, M., Multisoliton solutions of the (2+1)-dimensional Harry Dym equation, Phys. Lett. A 237, 369–380 (1998). (239)CrossRefGoogle Scholar
M. P. do Carmo, Differential Geometry of Curves and Surfaces, Prentice-Hall, Inc., Englewood Cliffs, New Jersey (1976). (18)
R. K. Dodd, General relativity, in A. P. Fordy, ed, Soliton Theory: A Survey of Results, pp. 174–207, Manchester University Press (1990). (319)
Dodd, R. K., Soliton immersions, Commun. Math. Phys. 197, 641–665 (1998). (208)CrossRefGoogle Scholar
Dodd, R. K. and Bullough, R. K., Polynomial conserved densities for the sine-Gordon equations, Proc. R. Soc. Lond. A 352, 481–503 (1977). (88)CrossRefGoogle Scholar
Doliwa, A. and Santini, P., An elementary geometric characterisation of the integrable motions of a curve, Phys. Lett. A 185, 373–384 (1994). (60)CrossRefGoogle Scholar
Doliwa, A., Santini, P. M. and Ma~nas, M., Transformations of quadrilateral lattices, J. Math. Phys. 41, 944–990 (2000). (167)CrossRefGoogle Scholar
C. Dupin, Applications de Géometrie et de Mécanique, Bachelier, Paris (1822). (198, 200)
J. Ehlers, Les théories relativistes de la gravitation, CRNS, Paris (1959). (310)
L. P. Eisenhart, Riemannian Geometry, Princeton University Press, Princeton, New Jersey (1950). (157, 158, 161)
L. P. Eisenhart, Non-Riemannian Geometry, American Mathematical Society, New York (1958). (309)
L. P. Eisenhart, A Treatise on the Differential Geometry of Curves and Surfaces, Dover, New York (1960). (47, 60, 68, 127)
L. P. Eisenhart, Transformations of Surfaces, Chelsea, New York (1962). (72, 89, 109, 117, 155, 157, 167, 175, 180)
Emde, F., Der Einfluß der Feldlinien auf Divergenz und Rotor, Arch. Elektrotechn. 39, 2–8 (1948). (139)CrossRefGoogle Scholar
Ernst, F., New formulation of the axially symmetric gravitational field problem. I/II, Phys. Rev. 167, 1175–1178; Phys. Rev. 168, 1415–1417 (1968). (49, 297, 304, 309)Google Scholar
Estabrook, F. B., Moving frames and prolongation algebras, J. Math. Phys. 23, 2071–2076 (1982). (374)CrossRefGoogle Scholar
Estabrook, F. B. and Wahlquist, H. D., Prolongation structures of nonlinear evolution equations. II, J. Math. Phys. 17, 1293–1297 (1976). (261, 312, 374)CrossRefGoogle Scholar
Ferapontov, E. V., Reciprocal transformations and their invariants, Diff. Uravnen 25, 1256–1265 (1989). (230)Google Scholar
Ferapontov, E. V., Reciprocal transformations and hydrodynamic symmetries, Diff. Uravnen 27, 1250–1263 (1993). (230)Google Scholar
Ferapontov, E. V., Nonlocal Hamiltonian operators of hydrodynamic type: differential geometry and applications, Trans. Am. Math. Soc. 170, 33–58 (1995). (230)Google Scholar
Ferapontov, E. V., Dupin hypersurfaces and integrable Hamiltonian systems of hydrodynamic type which do not possess Riemann invariants, Diff. Geom. Appl. 5, 121–152 (1995). (198, 230)CrossRefGoogle Scholar
E. V. Ferapontov, Surfaces in Lie sphere geometry and the stationary Davey-Stewartson hierarchy, Sfb 288 Preprint287, Technische Universität, Berlin (1997). (163)
Ferapontov, E. V., Stationary Veselov-Novikov equation and isothermally asymptotic surfaces in projective-differential geometry, Diff. Geom. Appl. 11, 117–128 (1999). (330, 357, 358, 363, 370)CrossRefGoogle Scholar
Ferapontov, E. V., Lie sphere geometry and integrable systems, Tohoku Math. J. 52, 199–233 (2000). (230)CrossRefGoogle Scholar
Ferapontov, E. V., Integrable systems in projective differential geometry, Kyushu J. Math. 54, 183–215 (2000). (329, 330)CrossRefGoogle Scholar
Ferapontov, E. V., Rogers, C. and Schief, W. K., Reciprocal transformations of two-component hyperbolic systems and their invariants, J. Math. Anal. Appl. 228, 365–376 (1998). (230)CrossRefGoogle Scholar
Ferapontov, E. V. and Schief, W. K., Surfaces of Demoulin: differential geometry, Bäcklund transformation and integrability, J. Geom. Phys. 30, 343–363 (1999). (329, 354)CrossRefGoogle Scholar
R. P. Feynman, R. B. Leighton and M. Sands, The Feynman Lectures on Physics, Vol. II, Addison-Wesley (1964). (105)
S. P. Finikov, Projective-differential Geometry, Moscow-Leningrad (1937). (135, 329, 330, 370)
S. P. Finikov, Theory of Congruences, Moscow-Leningrad (1950). (117, 330, 370)
Fokas, A., A symmetry approach to exactly solvable evolution equations, J. Math. Phys. 21, 1318–1325 (1980). (240, 243)CrossRefGoogle Scholar
Fokas, A. S. and Gelfand, I. M., Surfaces on Lie groups, on Lie algebras and their integrability, Comm. Math. Phys. 177, 203–220 (1996). (208)CrossRefGoogle Scholar
A. S. Fokas, I. M. Gelfand, F. Finkel and Q. M. Liu, A formula for constructing infinitely many surfaces on Lie algebras and Lie groups, to appear in Selecta Math. (208)
Fordy, A. P. and Gibbons, J., Integrable nonlinear Klein Gordon equations, Commun. Math. Phys. 77, 21–30 (1980). (91, 113)CrossRefGoogle Scholar
Foursov, M. V., Olver, P. J., and Reyes, E. G., On formal integrability of evolution equations and local geometry of surfaces, Diff. Geom. Appl. 15, 183–199 (2001). (22)CrossRefGoogle Scholar
Fried, B. D. and Ichikawa, Y. H., On the nonlinear Schrödinger equation for Langmuir waves, J. Phys. Soc. Japan 33, 789–792 (1972). (119)Google Scholar
G. Fubini and E. ^ Cech, Geometria Proiettiva Differenziale, Zanichelli, Bologna (1926). (329, 330, 370)
Gaffet, B., SU(3) symmetry of the equations of uni-dimensional gas flow, with arbitrary entropy distribution, J. Math. Phys. 25, 245–255 (1984). (88, 95)CrossRefGoogle Scholar
Gaffet, B., An infinite Lie group of symmetry of one-dimensional gas flow for a class of entropy distributions, Physica D 11, 287–308 (1984). (88, 95)CrossRefGoogle Scholar
B. Gaffet, An S L(3)-Symmetrical F-Gordon Equation:, zαβ = ⅓(ez − e−2z, Lecture Notes in Physics246, pp. 301–319, Springer Verlag, Berlin (1986). (88, 95)
Gaffet, B., The non-isentropic generalisation of the classical theory of Riemann invariants, J. Phys. A: Math. Gen. 20, 2721–2731 (1987). (88, 95)CrossRefGoogle Scholar
Gaffet, B., A class of 1-d gas flows soluble by the inverse scattering transform, Physica D 26, 123–139 (1987). (88, 95)CrossRefGoogle Scholar
Geroch, R., A method for generating solutions of Einstein's equations. I/II, J. Math. Phys. 12, 918–924 (1971); J. Math. Phys. 13, 394–404 (1972). (310)Google Scholar
Gibbs, H. M. and Slusher, R. E., Peak amplification and pulse breakup of a coherent optical pulse in a simple atomic absorber, Phys. Rev. Lett. 24, 638–641 (1970). (22, 31)CrossRefGoogle Scholar
Gilbarg, D., On the flow patterns common to certain classes of plane fluid motions, J. Math. and Phys. 26, 137–142 (1947). (120)CrossRefGoogle Scholar
L. Godeaux, La théorie des surfaces et l'espace réglé (Géometrie projective differentielle), Actualités scientifiques et industrielles, N138, Hermann, Paris (1934). (329, 334)
Grammaticos, B., Papageorgiu, V. and Ramani, A., KdV equations and integrability detectors, Acta Appl. Math. 39, 335–348 (1995). (236)CrossRefGoogle Scholar
Grimshaw, R., Slowly varying solitary waves: II, Nonlinear Schrödinger equation, Proc. R. Soc. Lond. A 368, 377–388 (1979). (119)CrossRefGoogle Scholar
C. Gu, H. Hu and Z. Zhou, Darboux Transformation in Soliton Theory and its Geometric Applications, Shanghal Scientific & Technical Publishers (1999). (266)
Haar, A., Über adjungierte Variationsprobleme und adjungierte Extremalflächen, Math. Ann. 100, 481–502 (1928). (229)CrossRefGoogle Scholar
Harrison, B. K., Bäcklund transformation for the Ernst equation of general relativity, Phys. Rev. Lett. 41, 1197–1200 (1978). (297, 305, 311, 317)CrossRefGoogle Scholar
Harrison, B. K., Unification of Ernst equation Bäcklund transformations using a modified Wahlquist-Estabrook technique, J. Math. Phys. 24, 2178–2187 (1983). (374)CrossRefGoogle Scholar
Hauser, I. and Ernst, F. J., A homogeneous Hilbert problem for the Kinnersley-Chitre transformations, J. Math. Phys. 21, 1126–1140 (1980). (305)CrossRefGoogle Scholar
Hauser, I. and Ernst, F., Proof of a Geroch conjecture, J. Math. Phys. 22, 1051–1063 (1981). (311)CrossRefGoogle Scholar
Hasegawa, A. and Tappert, F., Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers: I. Anomolous dispersion, Appl. Phys. Lett. 23, 142–144 (1973). (119)CrossRefGoogle Scholar
Hasimoto, H., A soliton on a vortex filament, J. Fluid. Mech. 51, 477–485 (1972). (60, 120)CrossRefGoogle Scholar
Hasimoto, H. and H. Ono, Nonlinear modulation of gravity waves, J. Math. Soc. Japan 33, 805–811 (1972). (119)Google Scholar
R. Hermann, The Geometry of Nonlinear Differential Equations, Bäcklund Transformations and Solitons, Part A, Math. Sci. Press, Brookline, Mass. (1976). (111)
Hertrich-Jeromin, U. and Pedit, F., Remarks on the Darboux transform of isothermic surfaces, Doc. Math. 2, 313–333 (1997). (171)Google Scholar
Hirota, R., Exact solution of the Korteweg-de Vries equation for multiple collisions of solitons, Phys. Rev. Lett. 27, 1192–1194 (1971). (198)CrossRefGoogle Scholar
Hirota, R. and Satsuma, J., A simple structure of superposition formula of the Bäcklund transformation, J. Phys. Soc. Japan 45, 1741–1750 (1978). (79)CrossRefGoogle Scholar
C. Hoenselaers, HKX transformations. An introduction, in C. Hoenselaers and W. Dietz, eds, Solutions of Einstein's Equations: Techniques and Results, Lecture Notes in Physics, pp. 68–84, Springer-Verlag, Berlin (1984). (311)CrossRef
Hoenselaers, C., The sine-Gordon prolongation algebra, Progr. Theor. Phys. 74, 645–654 (1985). (249, 374)CrossRefGoogle Scholar
Hoenselaers, C., More prolongation structures, Progr. Theor. Phys. 75, 1014–1029 (1986). (249, 374)CrossRefGoogle Scholar
Hoenselaers, C., Equations admitting o(2, 1) × R(t, t-1) as a prolongation algebra, J. Phys. A: Math. Gen. 21, 17–31 (1988). (249, 374)CrossRefGoogle Scholar
C. Hoenselaers and W. Dietz, eds, Solutions of Einstein's Equations: Techniques and Results, Lecture Notes in Physics, Springer Verlag, Berlin (1984). (297)CrossRef
Hoenselaers, C. and Schief, W. K., Prolongation structures for Harry Dym type equations and Bäcklund transformations of cc-ideals, J. Phys. A: Math. Gen. 25, 601–622 (1992). (249, 374)CrossRefGoogle Scholar
A. N. W. Hone, The associated Camassa-Holm equation and the KdV equation, J. Phys. A: Math. Gen.32, L307–L314 (1999). (230)
L. N. Howard, Constant Speed Flows, PhD Thesis, Princeton University (1953). (120)
R. W. H. T. Hudson, Kummer's Quartic Surface, Cambridge University Press (1990). (330)
Ibragimov, N., Sur l'équivalence des équations d'évolution qui admettent une algèbre de Lie-Bäcklund infinie, C. R. Acad. Sci. Paris 293, 657–660 (1981). (234)Google Scholar
Ichikawa, Y. H., Imamura, T. and Tanuiti, T., Nonlinear wave modulation in collisionless plasma, J. Phys. Soc. Japan 33, 189–197 (1972). (119)CrossRefGoogle Scholar
N. Jacobson, Lie algebras, Dover Publications, Inc., New York (1962). (113)
A. Jeffrey, Equations of evolution and waves, in C. Rogers and T. B. Moodie, eds, Wave Phenomena: Modern Theory and Applications, North Holland, Amsterdam (1986). (226)
M. E. Johnston, Geometry and the Sine Gordon Equation, M.Sc. Thesis, University of New South Wales (1994). (40, 83)
Johnston, M. E., Rogers, C., Schief, W. K. and Seiler, M. L., On moving pseudospherical surfaces: a generalised Weingarten system, Lie Groups and Their Applications 1, 124–136 (1994). (72)Google Scholar
Jonas, H., Über die Transformation der konjugierten Systeme und über den gemeinsamen Ursprung der Bianchischen Permutabilitätstheoreme, Sitzungsberichte Berl. Math. Ges. 14, 96–118 (1915). (89, 167, 180)Google Scholar
Jonas, H., Sopra una classe di transformazioni asintotiche, applicabili in particolare alle superficie la cui curvatura è proporzionale alla quarta potenza della distanza del piano tangente da un punto fisso, Ann. Mat. Pura Appl. Bologna Ser. III 30, 223–255 (1921). (88)CrossRefGoogle Scholar
Jonas, H., Die Differentialgleichung der Affinsphären in einer neuen Gestalt, Math. Nachr. 10, 331–361 (1953). (88, 92, 93, 94, 100)CrossRefGoogle Scholar
V. G. Kac, Infinite Dimensional Lie Algebras, Cambridge University Press (1985). (113, 250)
Kadanoff, L. P., Exact solutions for the Saffman-Taylor problem with surface tension, Phys. Rev. Lett. 65, 2986–2988 (1986). (239)CrossRefGoogle Scholar
Kakutani, T. and Ono, H., Weak nonlinear hydromagnetic waves in cold collisionless plasma, J. Phys. Soc. Japan 26, 1305–1318 (1969). (71)CrossRefGoogle Scholar
Kambe, T. and Takao, T., Motion of distorted vortex rings, J. Phys. Soc. Japan 31, 591–599 (1971). (60)CrossRefGoogle Scholar
Kamran, N. and Tenenblat, K., On differential equations describing pseudo-spherical surfaces, J. Diff. Eq. 115, 75–98 (1995). (22)CrossRefGoogle Scholar
Karpman, V. I. and Kruskal, E. M., Modulated waves in nonlinear dispersive media, Sov. Phys. JETP 28, 277–281 (1969). (119)Google Scholar
Kaup, D. J., The method of solution for stimulated Raman scatttering and two-photon propagation, Physica D 6, 143–154 (1983). (130)CrossRefGoogle Scholar
Keener, J. P. and Tyson, J. J., The dynamics of scroll waves in excitable media, SIAM Rev. 38, 1–39 (1992). (120)CrossRefGoogle Scholar
Kelley, P. L., Self focussing of optic beams, Phys. Rev. Lett. 15, 1005–1008 (1965). (119)CrossRefGoogle Scholar
Kingston, J. G. and Rogers, C., Reciprocal Bäcklund transformations of conservation laws, Phys. Lett. A 92, 261–264 (1982). (230, 378)CrossRefGoogle Scholar
J. G. Kingston, C. Rogers and D. Woodall, Reciprocal auto-Bäcklund transformations, J. Phys. A: Math. Gen.17, L35–L38 (1984). (230, 243)
Kinnersley, W., Symmetries of the stationary Einstein-Maxwell field equations I, J. Math. Phys. 18, 1529–1537 (1977). (311)CrossRefGoogle Scholar
Kinnersley, W. and Chitre, D. M., Symmetries of the stationary Einstein-Maxwell field equations II, J. Math. Phys. 18, 1538–1542 (1978). (311)CrossRefGoogle Scholar
Kinnersley, W. and Chitre, D. M., Symmetries of the Einstein-Maxwell field equations III, J. Math. Phys. 19, 1926–1931 (1978). (305)CrossRefGoogle Scholar
P. Klimczewski, M. Nieszporski and A. Sym, Luigi Bianchi, Pasquale Calapso and solitons, Preprint Instytut Fizyki Teoretycznej, Uniwersytet Warszawski (2000). (152)
Kochendörfer, A. and Seeger, A., Theorie der Versetzungen in eindimensionalen Atomreihen I. Periodisch angeordnete Versetzungen, Z. Phys. 127, 533–550 (1950). (21)CrossRefGoogle Scholar
Konno, K. and Jeffrey, A., Some remarkable properties of two loop soliton solutions, J. Phys. Soc. Japan 52, 1–3 (1983). (226)CrossRefGoogle Scholar
Konno, K., Kameyama, W. and Sanuki, H., Effect of weak dislocation potential on nonlinear wave equation in an anharmonic crystal, J. Phys. Soc. Japan 37, 171–176 (1974). (71)CrossRefGoogle Scholar
Konno, K. and Sanuki, H., Bäcklund transformation for equation of motion for nonlinear lattice under weak dislocation potential, J. Phys. Soc. Japan 39, 22–24 (1975). (78)CrossRefGoogle Scholar
Konopelchenko, B. G., Elementary Bäcklund transformations, nonlinear superposition principles and solutions of the integrable equations, Phys. Lett. A 87, 445–448 (1982). (237)CrossRefGoogle Scholar
Konopelchenko, B. G., Soliton eigenfunction equations: the IST integrability and some properties, Rev. Math. Phys. 2, 399–440 (1990). (204, 217)CrossRefGoogle Scholar
Konopelchenko, B. G., The non-abelian (1+1)-dimensional Toda lattice as the periodic fixed point of the Laplace transform for (2+1)-dimensional integrable systems, Phys. Lett. A 156, 221–222 (1991). (118)CrossRefGoogle Scholar
Konopelchenko, B. G., Induced surfaces and their integrable dynamics, Stud. Appl. Math. 96, 9–51 (1996). (208)CrossRefGoogle Scholar
Konopelchenko, B. G. and Pinkall, U., Integrable deformations of affine surfaces via the Nizhnik-Veselov-Novikov equation, Phys. Lett. A 245, 239–245 (1998). (88)CrossRefGoogle Scholar
Konopelchenko, B. G. and Rogers, C., On a 2+1-dimensional nonlinear system of Loewner-type, Phys. Lett. A 152, 391–397 (1991). (64, 99)CrossRefGoogle Scholar
Konopelchenko, B. G. and Rogers, C., On generalised Loewner systems: novel integrable equations in 2+1 dimensions, J. Math. Phys. 34, 214–242 (1993). (64, 99)CrossRefGoogle Scholar
B. G. Konopelchenko and W. K. Schief, Lamé and Zakharov-Manakov systems: Combescure, Darboux and Bäcklund transformations, Preprint AM 93/9 Department of Applied Mathematics, The University of New South Wales (1993). (167)
Konopelchenko, B. G. and Schief, W. K., Three-dimensional integrable lattices in Euclidean spaces: conjugacy and orthogonality, Proc. R. Soc. Lond. A 454, 3075–3104 (1998). (167)CrossRefGoogle Scholar
Konopelchenko, B. G., Schief, W. and Rogers, C., A 2+1-dimensional sine-Gordon system: its auto-Bäcklund transformation, Phys. Lett. A 172, 39–48 (1992). (110)CrossRefGoogle Scholar
D. Kramer, GR 9 Abstracts1, 42 (1980). (319)
Kramer, D., Equivalence of various pseudopotential approaches for Einstein-Maxwell fields, J. Phys. A: Math. Gen. 15, 2201–2207 (1982). (305)CrossRefGoogle Scholar
Kramer, D. and Neugebauer, G., Zu axialsymmetrischen stationären Lösungen der Einsteinschen Feldgleichungen für das Vakuum, Comm. Math. Phys. 10, 132–139 (1968). (297, 308)CrossRefGoogle Scholar
Kramer, D. and Neugebauer, G., The superposition of two Kerr solutions, Phys. Lett. A 75, 259–261 (1980). (319)CrossRefGoogle Scholar
D. Kramer and G. Neugebauer, Bäcklund transformations in general relativity, in C. Hoenselaers and W. Dietz, eds, Solutions of Einstein's Equations: Techniques and Results, Lecture Notes in Physics, pp. 1–25, Springer-Verlag, Berlin (1984). (319)
Kramer, D., Neugebauer, G. and Matos, T., Bäcklund transforms of chiral fields, J. Math. Phys. 32, 2727–2730 (1991). (305)CrossRefGoogle Scholar
D. Kramer, H. Stephani, H. Herlt and M. MacCallum, Exact Solutions of Einstein's Equations, Cambridge University Press (1980). (297, 309)
Lakshmanan, M., Ruijgrok, Th. W. and Thompson, C. J., On the dynamics of a continuum spin system, Physica A 84, 577–590 (1976). (60, 128)CrossRefGoogle Scholar
Lamb, G. L. Jr., Analytical descriptions of ultrashort optical pulse propagation in a resonant medium, Rev. Mod. Phys. 43, 99–124 (1971). (22, 30)CrossRefGoogle Scholar
Lamb, G. L. Jr., Solitons on moving space curves, J. Math. Phys. 18, 1654–1661 (1977). (60, 61)CrossRefGoogle Scholar
G. L. Lamb, Elements of Soliton Theory, John Wiley, New York (1980). (148)
G. Lamé, Leçons sur les coordonnées curvilignes et leurs diverses applications, Mallet-Bechelier, Paris (1859). (60)
E. P. Lane, Projective Differential Geometry of Curves and Surfaces, University of Chicago Press, Chicago (1932). (109, 329, 330, 370)
Lax, P. D., Integrals of nonlinear equations of evolution and solitary waves, Comm. Pure Appl. Math. 21, 467–490 (1968). (217)CrossRefGoogle Scholar
Levi, D., Nonlinear differential difference equations as Bäcklund transformations, J. Phys. A: Math. Gen. 14, 1082–1098 (1981). (237)CrossRefGoogle Scholar
Levi, D. and Benguria, R., Bäcklund transformations and nonlinear differential difference equations, Proc. Natl. Acad. Sci. U.S.A. 77, 5025–5027 (1980). (237)CrossRefGoogle ScholarPubMed
Levi, D. and Ragnisco, O., Bäcklund transformations for chiral field equations, Phys. Lett. A 87, 381–384 (1982). (270)CrossRefGoogle Scholar
Levi, D., Ragnisco, O. and Sym, A., Bäcklund transformation vs. the dressing method, Lett. Nuovo Cimento 33, 401–406 (1982). (266, 270)CrossRefGoogle Scholar
Levi, D., Ragnisco, O. and Sym, A., Dressing method vs. classical Darboux transformation, Il Nuovo Cimento B 83, 34–42 (1984). (266, 270)CrossRefGoogle Scholar
Levi, D. and Sym, A., Integrable systems describing surfaces of non-constant curvature, Phys. Lett. A 149, 381–387 (1990). (21, 54, 299)CrossRefGoogle Scholar
T. Levi-Civita, Attrazione Newtoniana dei Tubi Sottili e Vortici Filiformi, Ann. R. Scuola Norm. Sup. Pisa, Zanichelli, Bologna (1932). (60)
Lewis, T., Some special solutions of the equations of axially symmetric gravitational fields, Proc. R. Soc. Lond. A 136, 176–192 (1932). (309)CrossRefGoogle Scholar
Loewner, C., A transformation theory of partial differential equations of gasdynamics, NACA Technical Note 2065, 1–56 (1950). (98, 229)Google Scholar
Loewner, C., Generation of solutions of systems of partial differential equations by composition of infinitesimal Bäcklund transformations, J. Anal. Math. 2, 219–242 (1952). (64)CrossRefGoogle Scholar
L. G. Loitsyanskii, Mechanics of Liquids and Gases, International Series of Monographs in Aeronautics and Astronautics, Pergamon Press, New York (1966) (Translation Editor K. Stewartson). (105)
Lund, F. and Regge, T., Unified approach to strings and vortices with soliton solutions, Phys. Rev. D 14, 1524–1535 (1976). (120, 129, 204)CrossRefGoogle Scholar
Maison, D., Are the stationary, axially symmetric Einstein equations completely integrable? Phys. Rev. Lett. 41, 521–522 (1978). (297, 305, 311)CrossRefGoogle Scholar
Martin, M. H., A new approach to problems in two-dimensional flow, Q. Appl. Math. 8, 137–350 (1951). (96, 229)CrossRefGoogle Scholar
Martin, M. H., The propagation of a plane shock into a quiet atmosphere, Can. J. Math. 5, 37–39 (1953). (96)CrossRefGoogle Scholar
R. R. Martin, Principal patches for computational geometry, PhD Thesis, Cambridge University (1982). (198)
R. R. Martin, J. de Pont and T. J. Sharrock, Cyclide surfaces in computer aided design, in J. A. Gregory, ed, The Mathematics of Surfaces, Oxford University Press (1986). (198)
Marris, A. W., On motions with constant speed and streamline parameters, Arch. Rat. Mech. Anal. 90, 1–14 (1985). (120)CrossRefGoogle Scholar
Marris, A. W. and Passman, S. L., Vector fields and flows on developable surfaces, Arch. Rat. Mech. Anal. 32, 29–86 (1969). (120, 137, 138, 142, 144)CrossRefGoogle Scholar
Marris, A. W. and Wang, C. C., Solenoidal screw fields of constant magnitude, Arch. Rat. Mech. Anal. 39, 227–244 (1970). (140)CrossRefGoogle Scholar
Masotti, A., Decomposizione intrinseca del vortice a sue applicazioni, Instituto Lombardo di Scienze a Lettere Rendiconti (2) 60, 869–874 (1927). (139)Google Scholar
Y. Matsuno, Bilinear Transformation Method, Academic Press (1984). (198)
V. B. Matveev and M. A. Salle, Darboux Transformations and Solitons, Springer-Verlag, Berlin (1991). (266, 270)
Matzner, R. A. and Misner, C. W., Gravitational field equations for sources with axial symmetry and angular momentum, Phys. Rev. 154, 1229–1232 (1967). (310)CrossRefGoogle Scholar
Maxwell, J. C., On the cyclide, Q. J. Pure Appl. Math. 9, 111–126 (1868). (198)Google Scholar
O. Mayer, Contribution à l'étude des surfaces minima projectives, Bull. Sci. Math. Ser. 256, 146–168, 188–200 (1932). (329)
McCall, S. L. and Hahn, E. L., Self-induced transparency by pulsed coherent light, Phys. Rev. Lett. 18, 908–911 (1967). (130)CrossRefGoogle Scholar
McLean, D., A method of generating surfaces as a composite of cyclide patches, Comput. J. 4, 433–438 (1985). (198)CrossRefGoogle Scholar
McLachlan, R. I. and Segur, H., A note on the motion of surfaces, Phys. Lett. A 194, 165–172 (1994). (68)CrossRefGoogle Scholar
A. M. Meirmanov, V. V. Pukhnachov and S. I. Shmarev, Evolution Equations and Lagrangian Coordinates, de Gruyter, Berlin (1997). (230)
Michailov, A. V., The reduction problem and the inverse scattering method, Physica D 3, 73–117 (1981). (88, 91, 105, 329)CrossRefGoogle Scholar
L. M. Milne-Thomson, Theoretical Hydrodynamics, Macmillan & Company Ltd, London (1962). (151)
Minding, F., Wie sich entscheiden lässt, ob zwei gegebene krumme Flächen aufeinander abwickelbar sind order nicht; nebst Bemerkungen über die Flächen von unverändlichem Krümmungsmasse, J. für die reine und angewandte Mathematik 18, 297–302 (1838). (17)CrossRefGoogle Scholar
Miura, R. M., Korteweg-de Vries equation and generalizations: I. A remarkable explicit nonlinear transformation, J. Math. Phys. 9, 1202–1204 (1968). (217)CrossRefGoogle Scholar
Motz, H., Pavlenko, V. P. and Weiland, J., Acceleration and slowing down of nonlinear packets in a weakly nonuniform plasma, Phys. Lett. A 76, 131–133 (1980). (119)CrossRefGoogle Scholar
Th. Moutard, Sur la construction des équations de la forme qui admettent une intégrale générale explicite, J. l'Ecole Polytechn., Cahier 45, 1–11 (1878). (103, 266)
Mullins, W. W., Theory of thermal grooving, J. Appl. Phys. 28, 333–339 (1957). (232)CrossRefGoogle Scholar
Natale, M. F. and Tarzia, D. A., Explicit solutions to the two-phase Stefan problem for Storm-type materials, J. Phys. A: Math. Gen. 33, 395–404 (2000). (229)CrossRefGoogle Scholar
G. Neugebauer, Bäcklund transformations of axially symmetric stationary gravitational fields, J. Phys. A: Math. Gen.12, L67–L70 (1979). (297, 305)
G. Neugebauer, A general integral of the axially symmetric stationary Einstein equations, J. Phys. A: Math. Gen.13, L19–L21 (1980). (319, 325)
Neugebauer, G. and Kramer, D., Einstein-Maxwell solitons, J. Phys. A: Math. Gen. 16, 1927–1936 (1983). (270, 277)CrossRefGoogle Scholar
Neugebauer, G. and Meinel, R., General N-soliton solution of the AKNS class on arbitrary background, Phys. Lett. A 100, 467–470 (1984). (266, 270, 277, 279)CrossRefGoogle Scholar
A. C. Newell, Solitons in Mathematics and Physics, SIAM, Philadelphia (1985). (214)
Nijhoff, F. W., Capel, H. W., Wiersma, G. L. and Quispel, G. R. W., Bäcklund transformations and three-dimensional lattice equations, Phys. Lett. A 105, 267–272 (1984). (237)CrossRefGoogle Scholar
Nimmo, J. J. C. and Schief, W. K., Superposition principles associated with the Moutard transformation: an integrable discretization of a 2+1-dimensional sine-Gordon system, Proc. R. Soc. Lond. A 453, 255–279 (1997). (105, 237)CrossRefGoogle Scholar
Nimmo, J. J. C. and Schief, W. K., An integrable discretization of a 2+1-dimensional sine-Gordon equation, Stud. Appl. Math. 100, 295–309 (1998). (105, 237)CrossRefGoogle Scholar
Nimmo, J. J. C., Schief, W. K. and Rogers, C., Termination of Bergman series. Connection to the Bn Toda system, J. Eng. Math. 36, 137–148 (1999). (98)CrossRefGoogle Scholar
Nizhnik, L. P., Integration of multidimensional nonlinear equations by the inverse problem method, Dokl. Akad. Nauk SSSR 254, 332–335 (1980). (362)Google Scholar
K. Nomizu and T. Sasaki, Affine Differential Geometry, Cambridge University Press (1994). (88)
A. W. Nutbourne and R. R. Martin, Differential Geometry Applied to the Design of Curves and Surfaces, Ellis Horwood, Chichester (1988). (198, 245)
Nycander, J., Dritschel, D. G. and Sutyrin, G. G., The dynamics of long frontal waves in the shallow-water equations, Phys. Fluids A 5, 1089–1091 (1993). (231)CrossRefGoogle Scholar
Oevel, W. and Rogers, C., Gauge transformations and reciprocal links in 2 + 1-dimensions, Rev. Math. Phys. 5, 299–330 (1993). (217, 239)CrossRefGoogle Scholar
W. Oevel and W. Schief, Darboux theorems and the KP hierarchy, in P. A. Clarkson, ed, Applications of Analytic and Geometric Methods to Nonlinear Differential Equations, pp. 192–206, Kluwer Academic Publishers, Dordrecht (1993). (366)
F. Pempinelli, Localized soliton solutions for the Davey-Stewartson I and Davey-Stewartson III equations, in P. A. Clarkson, ed, Applications of Analytic and Geometric Methods to Nonlinear Differential Equations, pp. 207–215, Kluwer, Dordrecht (1993). (196)
Perline, R., Localized induction equation and pseudospherical surfaces, J. Phys. A: Math. Gen. 27, 5335–5344 (1994). (87)CrossRefGoogle Scholar
Perline, R., Localized induction hierarchy and Weingarten systems, Phys. Lett. A 220, 70–74 (1996). (87)CrossRefGoogle Scholar
Pohlmeyer, K., Integrable Hamiltonian systems and iteractions through quadratic constraints, Comm. Math. Phys. 46, 207–221 (1976). (120, 129, 204)CrossRefGoogle Scholar
Power, G. and Smith, P., Reciprocal properties of plane gas flows, J. Math. Mech. 10, 349–361 (1961). (229)Google Scholar
Pratt, M. J., Cyclides in computer aided geometric design, Computer Aided Geometric Design 7, 221–242 (1990). (198)CrossRefGoogle Scholar
Prim, R., On the uniqueness of flows with given streamlines, J. Math. and Phys. 28, 50–53 (1949). (120)CrossRefGoogle Scholar
Prim, R. C., Steady rotational flow of ideal gases, Arch. Rat. Mech. Anal. 1, 425–497 (1952). (95)Google Scholar
R. Prus, Geometry of Bianchi surfaces in E3, Master Thesis, Warsaw University (1995). (57)
Quispel, G. R. W., Nijhoff, F. W., Capel, H. W. and Linden, J., Linear integral equations and nonlinear difference-difference equations, Physica A 125, 344–380 (1984). (237)CrossRefGoogle Scholar
Rabelo, M. L., On equations which describe pseudospherical surfaces, Stud. Appl. Math. 81, 221–248 (1989). (22)CrossRefGoogle Scholar
A. Razzaboni, Delle superficie nelle quali un sistema di geodetiche sono del Bertrand, Bologna Mem (5) 10, 539–548 (1903). (245)
Reyes, E. G., Conservation laws and Calapso-Guichard deformations of equations describing pseudo-spherical surfaces, J. Math. Phys. 41, 2968–2989 (2000). (22)CrossRefGoogle Scholar
Rogers, C., Reciprocal relations in non-steady one-dimensional gasdynamics, Z. Angew. Math. Phys. 19, 58–63 (1968). (223, 229)CrossRefGoogle Scholar
Rogers, C., Invariant transformations in non-steady gasdynamics and magneto-Gasdynamics, Z. Angew. Math. Phys. 20, 370–382 (1969). (229)CrossRefGoogle Scholar
Rogers, C., The construction of invariant transformations in plane rotational gasdynamics, Arch. Rat. Mech. Anal. 47, 36–46 (1972). (229)CrossRefGoogle Scholar
C. Rogers, Application of a reciprocal transformation to a two-phase Stefan problem, J. Phys. A: Math. Gen.18, L105–L109 (1985). (229)
Rogers, C., On a class of moving boundary problems in nonlinear heat conduction: application of a Bäcklund transformation, Int. J. Nonlinear Mech. 21, 249–256 (1986). (229)CrossRefGoogle Scholar
C. Rogers, On the Heisenberg spin equation in hydrodynamics, Research Report, Inst. Pure Appl. Math., Rio de Janeiro, Brazil (2000). (120, 151)
Rogers, C. and Broadbridge, P., On a nonlinear moving boundary problem with heterogeneity: application of a Bäcklund transformation, Z. Angew. Math. Phys. 39, 122–128 (1988). (229)CrossRefGoogle Scholar
Rogers, C. and Broadbridge, P., On sedimentation in a bounded column, Int. J. Nonlinear Mech. 27, 661–667 (1992). (229)CrossRefGoogle Scholar
Rogers, C. and Carillo, S., On reciprocal properties of the Caudrey-Dodd-Gibbon and Kaup-Kuperschmidt hierarchies, Physica Scripta 36, 865–869 (1987). (239)CrossRefGoogle Scholar
Rogers, C., Castell, S. P. and Kingston, J. G., On invariance properties of conservation laws in non-dissipative planar magneto-Gasdynamics, J. de Mécanique 13, 243–354 (1974). (229)Google Scholar
Rogers, C. and Kingston, J. G., Non-dissipative magneto-hydrodynamic flows with magnetic and velocity field lines orthogonal geodesics, Soc. Ind. Appl. Math. J. Appl. Math. 26, 183–195 (1974). (137, 142)CrossRefGoogle Scholar
Rogers, C. and Kingston, J. G., Reciprocal properties in quasi one-dimensional non-steady oblique field magneto-Gasdynamics, J. de Mécanique 15, 185–192 (1976). (229)Google Scholar
Rogers, C., Kingston, J. G. and Shadwick, W. F., On reciprocal-type invariant transformations in magneto-Gasdynamics, J. Math. Phys. 21, 395–397 (1980). (229)CrossRefGoogle Scholar
Rogers, C. and Nucci, M. C., On reciprocal Bäcklund transformations and the Korteweg-de Vries hierarchy, Physica Scripta 33, 289–292 (1986). (233)CrossRefGoogle Scholar
Rogers, C., Nucci, M. C. and Kingston, J. G., On reciprocal auto-Bäcklund transformations: application to a new nonlinear hierarchy, Il Nuovo Cimento 96, 55–63 (1986). (238)CrossRefGoogle Scholar
Rogers, C. and Ruggeri, T., A reciprocal Bäcklund transformation: application to a nonlinear hyperbolic model in heat conduction, Lett. Nuovo Cimento 44, 289–296 (1985). (229)CrossRefGoogle Scholar
C. Rogers and W. F. Shadwick, Bäcklund Transformations and Their Applications, Academic Press, New York (1982). (21, 31, 99, 198, 205)
Rogers, C. and Schief, W. K., Intrinsic geometry of the NLS equation and its auto-Bäcklund transformation, Stud. Appl. Math. 26, 267–287 (1998). (137, 142, 146)CrossRefGoogle Scholar
Rogers, C. and Schief, W. K., On geodesic hydrodynamic motions, Heisenberg spin connections. J. Math. Anal. Appl. 251, 855–870 (2000). (120, 151)CrossRefGoogle Scholar
C. Rogers, W. K. Schief and M. E. Johnston, Bäcklund and his works: applications in soliton theory, in Geometric Approaches to Differential Equations, P. J. Vassiliou and I. G. Lisle, eds, Australian Mathematical Society Lecture Series15, pp. 16–55, Cambridge University Press (2000). (124)
Rogers, C., Stallybrass, M. P. and Clements, D. L., On two-phase filtration under gravity and with boundary infiltration: application of a Bäcklund transformation, J. Nonlinear Analysis, Theory, Methods and Applications 7, 785–799 (1983). (229)CrossRefGoogle Scholar
Rogers, C. and Wong, P., On reciprocal Bäcklund transformations of inverse scattering schemes, Physica Scripta 30, 10–14 (1984). (224, 233)CrossRefGoogle Scholar
Rogers, C. and Yu, B. Guo, A note on the onset of melting in a class of simple metals. Condition on the applied boundary flux, Acta Math. Sci. 8, 425–430 (1988). (229)Google Scholar
Rozet, O., Sur certaines congruences W attachée aux surfaces dont les quadriques de Lie n'ont que deux points characteristiques, Bull. Sci. Math. II 58, 141–151 (1934). (329, 334)Google Scholar
Salle, M. A., Darboux transformations for non-abelian and nonlocal equations of the Toda chain type, Teoret. Mat. Fiz. 53, 227–237 (1982). (270)Google Scholar
Santini, P. M. and Fokas, A. S., Recursion operators and bi-Hamiltonian structures in multidimensions. I, Comm. Math. Phys. 115, 375–419 (1988). (163)CrossRefGoogle Scholar
Sasaki, R., Soliton equations and pseudospherical surfaces, Nucl. Phys. B 154, 343–357 (1979). (22)CrossRefGoogle Scholar
Sasaki, T., On a projectively minimal hypersurface in the unimodular affine space, Geom. Dedicata 23, 237–251 (1987). (329)CrossRefGoogle Scholar
Schief, W. K., Bäcklund transformations for the (un)pumped Maxwell-Bloch system and the fifth Painlevé equation, J. Phys. A: Math. Gen. 27, 547–557 (1994). (249, 374)CrossRefGoogle Scholar
Schief, W. K., On a 2+1-dimensional integrable Ernst-type equation, Proc. R. Soc. Lond. A 446, 381–398 (1994). (49)CrossRefGoogle Scholar
Schief, W. K., Self-dual Einstein spaces via a permutability theorem for the Tzitzeica equation, Phys. Lett. A 223, 55–62 (1996). (91, 105, 237)CrossRefGoogle Scholar
Schief, W. K., On the geometry of an integrable (2+1)-dimensional sine-Gordon system, Proc. R. Soc. Lond. A 453, 1671–1688 (1997). (86)CrossRefGoogle Scholar
W. K. Schief, Self-dual Einstein spaces and a discrete Tzitzeica equation. A permutability theorem link, in P. A. Clarkson and F. W. Nijhoff, eds, Symmetries and Integrability of Difference Equations, London Mathematical Society, Lecture Note Series 255, pp. 137–148, Cambridge University Press (1999). (91, 105, 237)
W. K. Schief, Integrable discretization of geodesics of constant torsion and pseudospherical surfaces, in preparation (2002). (263)
Schief, W. K., The Painlevé III, V and VI transcendents as solutions of the Einstein-Weyl equations, Phys. Lett. A 267, 265–275 (2000). (45)CrossRefGoogle Scholar
Schief, W. K., Hyperbolic surfaces in centro-affine geometry. Integrability and discretization, Chaos, Solitons and Fractals 11, 97–106 (2000). (88, 105)CrossRefGoogle Scholar
Schief, W. K., Isothermic surfaces in spaces of arbitrary dimension: integrability, discretization and Bäcklund transformations. A discrete Calapso equation, Stud. Appl. Math. 106, 85–137 (2001). (163, 171, 172, 176, 183, 184, 188, 190, 237)CrossRefGoogle Scholar
Schief, W. K., On Laplace-Darboux-type sequences of generalized Weingarten surfaces, J. Math. Phys. 41, 6566–6599 (2000). (45, 118)CrossRefGoogle Scholar
W. K. Schief, On the geometry of the Painlevé V equation and a Bäcklund transformation, to appear in The ANZIAM J. (J. Austral. Math. Soc.) (2002). (45, 118)
W. K. Schief, On the integrability of geodesic Bertrand curves, in preparation (2002). (245)
W. K. Schief, Nested toroidal surfaces in magnetohydrostatics. Generation via soliton theory, in preparation (2002). (120)
Schief, W. K. and Rogers, C., The affinsphären equation. Moutard and Bäcklund transformations, Inverse Problems 10, 711–731 (1994). (88, 91, 95, 98, 249, 374)CrossRefGoogle Scholar
Schief, W. K. and Rogers, C., On a Laplace sequence of nonlinear integrable Ernst-type equations, Prog. Nonlinear Diff. Eq. 26, 315–321 (1996). (118)Google Scholar
Schief, W. K. and Rogers, C., Loewner transformations: adjoint and binary Darboux connections, Stud. Appl. Math. 100, 391–422 (1998).(98)CrossRefGoogle Scholar
Schief, W. K. and Rogers, C., Binormal motion of curves of constant curvature and torsion. Generation of soliton surfaces, Proc. R. Soc. Lond. A 455, 3163–3188 (1999). (240, 242, 249, 253, 260, 261, 374)CrossRefGoogle Scholar
Schief, W. K., Rogers, C. and Tsarev, S. P., On a 2+1-dimensional Darboux system: integrable and geometric connections, Chaos, Solitons and Fractals 5, 2357–2366 (1995). (110)CrossRefGoogle Scholar
B. G. Schmidt, The Geroch group is a Banach Lie group, in C. Hoenselaers and W. Dietz, eds, Solutions of Einstein's Equations: Techniques and Results, Lecture Notes in Physics, pp. 113–127, Springer-Verlag, Berlin (1984). (311)
Schulman, E. I., On the integrability of equations of Davey-Stewartson type, Math. Theor. Phys. 56, 720–724 (1984). (163)CrossRefGoogle Scholar
B. F. Schutz, Geometric Methods of Mathematical Physics, Cambridge University Press, Cambridge (1980). (65)
Scott, A. C., Propagation of magnetic flux on a long Josephson junction, Il Nuovo Cimento B 69, 241–261 (1970). (22)CrossRefGoogle Scholar
Seeger, A., Donth, H. and Kochendörfer, A., Theorie der Versetzungen in eindimensionalen Atomreihen III. Versetzungen, Eigenbewegungen und ihre Wechselwirkung, Z. Phys. 134, 173–193 (1953). (21, 22, 30)CrossRefGoogle Scholar
Seeger, A. and Kochendörfer, A., Theorie der Versetzungen in eindimensionalen Atomreihen II. Beliebig angeordnete und beschleunigte Versetzungen, Z. Phys. 130, 321–336 (1951). (21)CrossRefGoogle Scholar
T. J. Sharrock, Surface design with cyclide patches, PhD Thesis, Cambridge University (1985). (198)
Shimuzu, K. and Ichikawa, Y. H., Automodulation of ion oscillation modes in plasma, J. Phys. Soc. Japan 33, 789–792 (1972). (119)CrossRefGoogle Scholar
Steudel, H., Space-Time symmetry of self-induced transparency and of stimulated Raman scattering, Phys. Lett. A 156, 491–492 (1991). (120, 130, 134)CrossRefGoogle Scholar
Steudel, H., Solitons in stimulated Raman scattering and resonant two-photon propagation, Physica D 6, 155–178 (1983). (120, 130)CrossRefGoogle Scholar
Steuerwald, R., Über die Enneper'sche Flächen und Bäcklund'sche Transformation, Abh. Bayer. Akad. Wiss. 40, 1–105 (1936). (40)Google Scholar
D. J. Struick, Lectures on Classical Differential Geometry, 2nd ed, Addison-Wesley Publishing Company, Inc., Reading, Mass. (1961). (18, 32, 63)
Sym, A., Soliton surfaces, Lett. Nuovo Cimento 33, 394–400 (1982). (204, 210)CrossRefGoogle Scholar
Sym, A., Soliton surfaces II. Geometric unification of solvable nonlinearities, Lett. Nuovo Cimento 36, 307–312 (1983). (286, 292)CrossRefGoogle Scholar
Sym, A., Soliton surfaces V. Geometric theory of loop solitons, Lett. Nuovo Cimento 41, 33–40 (1984). (222, 227)CrossRefGoogle Scholar
A. Sym, Soliton surfaces and their applications, in R. Martini, ed, Geometric Aspects of the Einstein Equations and Integrable Systems, Springer, Berlin (1985). (124, 204, 208, 210, 304)
M. Tabor, Painlevé property for partial differential equations, in A. P. Fordy, ed, Soliton Theory: A Survey of Results, pp. 427–446, Manchester University Press (1990). (234)
Tafel, J., Surfaces in ℝ3 with prescribed curvature, J. Geom. Phys. 294, 1–10 (1995). (210, 304)Google Scholar
Takhtajan, L. A., Integration of the continuous Heisenberg spin chain through the inverse scattering method, Phys. Lett. A 64, 235–237 (1977). (128)CrossRefGoogle Scholar
Talanov, V. I., Self focussing of wave beams in nonlinear media, JETP Lett. Engl. Transl. 2, 138–141 (1965). (119)Google Scholar
Taniuki, T. and Washimi, H., Self trapping and instability of hydromagnetic waves along the magnetic field in a cold plasma, Phys. Rev. Lett. 21, 209–212 (1968). (119)CrossRefGoogle Scholar
Temple, B., Systems of conservation laws with invariant submanifolds, Trans. Am. Math. Soc. 280, 781–795 (1983). (230)CrossRefGoogle Scholar
K. Tenenblat, Transformations of Manifolds and Applications to Differential Equations, Pitman Monographs and Surveys in Pure and Applied Mathematics 93, Longman, Harlow (1998). (22)
Thomsen, G., Über eine liniengeometrische Behandlungsweise der projektiven Flächentheorie und die projektive Geometrie der Systeme von Flächen zweiter Ordnung, Abhandl. Math. Sem. Hamburg 4, 232–266 (1926). (329)CrossRefGoogle Scholar
Thomsen, G., Sulle superficie minime proiettive, Ann. Math. 5, 169–184 (1928). (329)Google Scholar
Tritscher, P. and Broadbridge, P., Grain boundary grooving by surface diffusion: an analytic nonlinear model for a symmetric groove, Proc. R. Soc. Lond. A 450, 569–587 (1995). (232)CrossRefGoogle Scholar
Tsien, H. S., Two dimensional subsonic flow of compressible fluids, J. Aeronaut. Sci. 6, 399–407 (1939). (229)CrossRefGoogle Scholar
Tsuzuki, T., Nonlinear waves in the Pitaevsky-Gross equation, J. Low Temp. Phys. 4, 441–457 (1971). (119)CrossRefGoogle Scholar
Tzitzeica, G., Sur une nouvelle classe de surfaces, C. R. Acad. Sci. Paris 144, 1257–1259 (1907); sur une classe de surfaces, C. R. Acad. Sci. Paris 146, 165–166 (1908). (88)Google Scholar
G. Tzitzeica, Sur une nouvelle classe de surfaces, C. R. Acad. Sci. Paris150, 955–956, 1227–1229 (1910). (88)
Veselov, A. P. and Novikov, S. P., Finite-gap two-dimensional potential Schrödinger operators. Explicit formulas and evolution equations, Dokl. Akad. Nauk SSSR 279, 20–24 (1984). (362)Google Scholar
A. Voss, Encyclopädie der mathematischen Wissenschaften, Bd. III, DGa, Leipzig (1902). (152)
Vranceanu, M. G., Les éspaces non-holonomes et leurs applications mécaniques, Mém. Sci. Mathém. 76, 1–70 (1936). (140)Google Scholar
Wadati, M., Wave propagation in nonlinear lattice: I, J. Phys. Soc. Japan 38, 673–680 (1975). (79)CrossRefGoogle Scholar
Wadati, M., Sanuki, H. and Konno, K., Relationships among inverse method, Bäcklund transformation and an infinite number of conservation laws, Progr. Theor. Phys. 53, 419–436 (1975). (266)CrossRefGoogle Scholar
M. Wadati, K. Konno and Y. H. Ichikawa, New integrable nonlinear evolution equations, J. Phys. Soc. Japan, 47, 1698–1700 (1979). (205, 224, 225)
Wahlquist, H. D. and Estabrook, F. B., Bäcklund transformations for solutions of the Korteweg-de Vries equation, Phys. Rev. Lett. 31, 1386–1390 (1973). (236)CrossRefGoogle Scholar
Wahlquist, H. D. and Estabrook, F. B., Prolongation structures of nonlinear evolution equations, J. Math. Phys. 16, 1–7 (1975). (261, 312, 374)CrossRefGoogle Scholar
Wasserman, R. H., On a class of three-dimensional compressible fluid flows, J. Math. Anal. Appl. 5, 119–135 (1962). (120)CrossRefGoogle Scholar
C. E. Weatherburn, Differential Geometry of Three Dimensions, Vol. I, Cambridge University Press (1927). (127, 142, 143, 199, 245)
C. E. Weatherburn, Differential Geometry of Three Dimensions, Vol. II, Cambridge University Press (1930). (128, 141, 142)
Weiss, J., On classes of integrable systems and the Painlevé property, J. Math. Phys. 25, 13–24 (1984). (239)CrossRefGoogle Scholar
Weyl, H., Zur Gravitationstheorie, Ann. Phys. 54, 117–145 (1917). (319)CrossRefGoogle Scholar
E. I. Wilczynski, Projective-differential geometry of curved surfaces, Trans. Am. Math. Soc.8, 233–260 (1907); Trans. Am. Math. Soc.9, 79–120, 293–315 (1908); Trans. Am. Math. Soc.10, 176–200, 279–296 (1909). (329, 331)
D. Wójcik and J. Cieśliński, eds, Nonlinearity & Geometry, Polish Scientific Publishers PWN, Warsaw (1998). (17)
Yin, W. L. and Pipkin, A. C., Kinematics of viscometric flow, Arch. Rat. Mech. Anal. 37, 111–135 (1970). (141)CrossRefGoogle Scholar
H. C. Yuen and B. M. Lake, Nonlinear wave concepts applied to deep water waves, in K. Lonngren and A. Scott, eds, Solitons in Action, Academic Press, New York (1978). (119)
N. J. Zabusky, A synergetic approach to problems of nonlinear dispersive wave propagation, in W. F. Ames, ed, Nonlinear Partial Differential Equations, Academic Press, New York (1967). (71)
Zabusky, N. J. and Kruskal, M. D., Interaction of ‘solitons’ in a collisionless plasma and recurrence of initial states, Phys. Rev. Lett. 15, 240–243 (1965). (22)CrossRefGoogle Scholar
Zakharov, V. E., Stability of periodic waves of finite amplitude on the surface of a deep fluid, J. Appl. Mech. Tech. Phys. 9, 86–94 (1968). (119)Google Scholar
Zakharov, V. E., Description of the n-orthogonal curvilinear coordinate systems and Hamiltonian integrable systems of hydrodynamic type. I. Integration of the Lamé equations, Duke Math. J. 94, 103–139 (1998). (61)CrossRefGoogle Scholar
Zakharov, V. E. and Manakov, S. V., Construction of multidimensional nonlinear integrable systems and their solutions, Funct. Anal. Pril. 19, 11–25 (1985). (110)Google Scholar
V. E. Zakharov, S. V. Manakov, S. P. Novikov and L. P. Pitaevskii, The Theory of Solitons: The Inverse Problem Method [in Russian], Nauka, Moscow (1980). (266, 270)
Zakharov, V. E. and Mikhailov, A. V., Relativistically invariant two-dimensional models of field theory which are integrable by means of the inverse scattering method, Sov. Phys. JETP 47, 1017–1027 (1978). (48)Google Scholar
Zakharov, V. E. and Shabat, A. B., A scheme for integrating the nonlinear equations of mathematical physics by the method of the inverse scattering transform, Funct. Anal. Appl. 8, 226–235 (1974). (266, 270)CrossRefGoogle Scholar
Ablowitz, M. J., Kaup, D. J., Newell, A. C. and Segur, H., Nonlinear evolution equations of physical significance, Phys. Rev. Lett. 31, 125–127 (1973). (64, 204)CrossRefGoogle Scholar
Ablowitz, M. J., Kaup, D. J., Newell, A. C. and Segur, H., The inverse scattering transform-Fourier analysis for nonlinear problems, Stud. Appl. Math. 53, 249–134 (1974). (210)CrossRefGoogle Scholar
M. J. Ablowitz and H. Segur, Solitons and the Inverse Scattering Transform, SIAM, Philadelphia (1981). (211)
Adkins, J. E., A reciprocal property of the finite plane strain equations, J. Mech. Phys. Solids 6, 267–275 (1958). (97)CrossRefGoogle Scholar
Agonov, S. I. and Ferapontov, E. V., Theory of congruences and systems of conservation laws, J. Math. Sci. 94, 1748–1794 (1999). (230)CrossRefGoogle Scholar
M. A. Akivis and V. V. Goldberg, Projective Differential Geometry of Submanifolds, Math. Library 49, North-Holland (1993). (329)
Alber, M. S., Camassa, R., Holm, D. D. and Marsden, J. E., The geometry of peaked solutions of a class of integrable pdes, Lett. Math. Phys. 32, 137–151 (1994). (239)CrossRefGoogle Scholar
Alber, M. S., Camassa, R., Holm, D. D. and Marsden, J. E., On the link between umbilic geodesics and soliton solutions of nonlinear ODEs, Proc. R. Soc. Lond. A 450, 677–692 (1995). (239)CrossRefGoogle Scholar
Albrecht, G. and Degen, W. L. F., Construction of Bézier rectangles and triangles on the symmetric Dupin horn cyclide by means of inversion, Computer Aided Geometric Design 14, 349–357 (1997). (198)CrossRefGoogle Scholar
Allen, S. and Dutta, D., Cyclides in pure blending I, Computer Aided Geometric Design 14, 51–75 (1997). (198)CrossRefGoogle Scholar
Allen, S. and Dutta, D., Cyclides in pure blending II, Computer Aided Geometric Design 14, 77–102 (1997). (198)CrossRefGoogle Scholar
Allen, S. and Dutta, D., Supercyclides and blending, Computer Aided Geometric Design 14, 637–651 (1997). (198)CrossRefGoogle Scholar
Antanovskii, L. K., Rogers, C. and Schief, W. K., A note on a capillarity model and the nonlinear Schrödinger equation, J. Phys. A: Math. Gen. 30, L555–L557 (1997). (119)CrossRefGoogle Scholar
Antonowicz, M., On the Bianchi-Bäcklund construction for affine minimal surfaces, J. Phys. A: Math. Gen. 20, 1989–1996 (1987). (88)CrossRefGoogle Scholar
Antonowicz, M. and Fordy, A. P., Factorisation of energy dependent Schrödinger operators: Miura maps and modified systems, Commun. Math. Phys. 124, 465–486 (1989). (217)CrossRefGoogle Scholar
M. Antonowicz and A. P. Fordy, Hamiltonian structure of nonlinear evolution equations, in A. P. Fordy, ed, Soliton Theory: A Survey of Results, pp. 273–312, Manchester University Press (1990). (217)
Antonowicz, M. and Sym, A., New integrable nonlinearities from affine geometry, Phys. Lett. A 112, 1–2 (1985). (88)CrossRefGoogle Scholar
Asano, N., Taniuti, T. and Yajima, N., Perturbation method for nonlinear wave modulation: II, J. Math. Phys. 10, 2020–2024 (1969). (119)CrossRefGoogle Scholar
Athorne, C., On the characterization of Moutard transformations, Inverse Problems 9, 217–232 (1993). (111, 113)CrossRefGoogle Scholar
Athorne, C. and Nimmo, J. J. C., On the Moutard transformation for integrable partial differential equations, Inverse Problems, 7, 809–826 (1991). (362, 368)CrossRefGoogle Scholar
Bäcklund, A. V., Om ytor med konstant negativ krökning, Lunds Universitets Årsskrift 19, 1–48 (1883). (17)Google Scholar
Baker, J. A. and Rogers, C., Invariance properties under a reciprocal Bäcklund transformation in gasdynamics, J. Mécanique Théor. Appl. 1, 563–578 (1982). (229)Google Scholar
Barnard, T. W., 2Nπ Ultrashort light pulses, Phys. Rev. A 7, 373–376 (1973). (22, 30)CrossRefGoogle Scholar
Baspalov, V. I. and Talanov, V. I., Filamentary structure of light beams in nonlinear liquids, JETP Engl. Transl. 3, 307–310 (1966). (119)Google Scholar
Bateman, H., The lift and drag functions for an elastic fluid in two-dimensional irrotational flow, Proc. Natl. Acad. Sci. U.S.A. 24, 246–251 (1938). (229)CrossRefGoogle ScholarPubMed
Beals, R., Rabelo, M. and Tenenblat, K., Bäcklund transformations and inverse scattering solutions for some pseudospherical surface equations, Stud. Appl. Math. 81, 125–151 (1989). (22)CrossRefGoogle Scholar
Belinsky, V. A. and Zakharov, V. E., Integration of Einstein's equations by means of the inverse scattering technique and construction of exact solutions, Sov. Phys. JETP 48, 985–994 (1978). (297, 305)Google Scholar
Beltrami, E., Saggio di interpretazione della geometria non-euclidea, Giornale di Matematiche 6, 284–312 (1868). (17)Google Scholar
Benney, D. J. and Roskes, G. J., Wave instabilities, Stud. Appl. Math. 48, 377–385 (1969). (163)CrossRefGoogle Scholar
Betchov, R., On the curvature and torsion of an isolated vortex filament, J. Fluid. Mech. 22, 471–479 (1965). (60)CrossRefGoogle Scholar
Bianchi, L., Ricerche sulle superficie a curvatura constante e sulle elicoidi. Tesi di Abilitazione, Ann. Scuola Norm. Sup. Pisa (1) 2, 285–304 (1879). (17)Google Scholar
Bianchi, L., Sopra i sistemi tripli ortogonali di Weingarten, Ann. Matem. 13, 177–234 (1885). (17, 60, 72)CrossRefGoogle Scholar
Bianchi, L., Sopra alcone nuove classi di superficie e di sistemi tripli ortogonali, Ann. Matem. 18, 301–358 (1890). (45, 50, 297)CrossRefGoogle Scholar
Bianchi, L., Sulle deformazioni infinitesime delle superficie flessibili ed inestendibili, Rend. Lincei 1, 41–48 (1892). (299)Google Scholar
Bianchi, L., Sulla trasformazione di Bäcklund per le superficie pseudosferiche, Rend. Lincei 5, 3–12 (1892). (28)Google Scholar
Bianchi, L., Ricerche sulle superficie isoterme e sulla deformazione delle quadriche, Ann. Matem. 11, 93–157 (1905). (152, 171, 184)CrossRefGoogle Scholar
L. Bianchi, Lezioni di geometria differenziale1-4, Zanichelli, Bologna (1923–1927). (18, 21, 28, 152, 154, 182)
O. Bjørgum, On Beltrami vector fields and flows, Part I., Universitet I. Bergen, Årbok Naturvitenskapelig rekke n-1 (1951). (139)
W. Blaschke, Differentialgeometrie, Chelsea Publishing Company, New York, Reprinted (1967). (88, 91, 100, 127, 335)
A. I. Bobenko, Surfaces in terms of 2 by 2 matrices. Old and new integrable cases, in A. Fordy and J. Woods, eds, Harmonic Maps and Integrable Systems, Vieweg, pp. 83–128 (1994). (40)
Bobenko, A. and Eitner, U., Bonnet surfaces and Painlevé equations, J. Reine Angew. Math. 499, 47–79 (1998). (118)Google Scholar
A. I. Bobenko and U. Eitner, Painlevé equations in differential geometry of surfaces, Lecture Notes in Mathematics1753 Springer Verlag, Berlin, Heidelberg (2000). (118)
Bobenko, A., Eitner, U. and Kitaev, A., Surfaces with harmonic inverse mean curvature and Painlevé equations, Geom. Dedicata 68, 187–227 (1997). (118)CrossRefGoogle Scholar
Bobenko, A. I. and Kitaev, A. V., On asymptotic cones of surfaces with constant curvature and the third Painlevé equation, Manuscripta. Math. 97, 489–516 (1998). (118)CrossRefGoogle Scholar
A. I. Bobenko and R. Seiler, eds, Discrete Integrable Geometry and Physics, Clarendon Press, Oxford (1999). (237)
Boem, W., On cyclides in geometric modelling, Computer Aided Geometric Design 7, 243–255 (1990). (198)CrossRefGoogle Scholar
Bogdanov, L. V., Veselov-Novikov equation as a natural two-dimensional generalization of the Korteweg-de Vries equation, Teoret. Mat. Fiz. 70, 309–314 (1987). (330)Google Scholar
Boiti, M., Laddomada, C. and Pempinelli, F., Multiple-kink-soliton solutions of the nonlinear Schrödinger equation, Il Nuovo Cimento B 65, 248–258 (1981). (149)CrossRefGoogle Scholar
Boiti, M., Leon, J., Martina, L. and Pempinelli, F., Scattering of localized solitons in the plane, Phys. Lett. A 132, 432–439 (1988). (196, 362)CrossRefGoogle Scholar
Boiti, M., Pempinelli, F. and Sabatier, P. C., First and second order nonlinear evolution equations, Inverse Problems 9, 1–37 (1993). (163)CrossRefGoogle Scholar
G. Bol, Projektive Differentialgeometrie, Göttingen (1954). (329, 330, 332, 336, 341, 370)
Boldin, A. Yu., Safin, S. S. and Shapirov, R. A., On an old article of Tzitzeica and the inverse scattering method, J. Math. Phys. 34, 5801–5809 (1993). (91)CrossRefGoogle Scholar
Bonnet, O., Mémoire sur la théorie des surfaces applicables sur une surface donnée, J. l' École Polytech. 41, 201–230 (1865); J. l'École Polytech. 42, 1–151 (1867). (18)Google Scholar
Bour, E., Théorie de la déformation des surfaces, J. l'École Imperiale Polytech. 19, Cahier 39, 1–48 (1862). (17, 152)Google Scholar
Brezinski, C., A general extrapolation algorithm, Numer. Math. 35, 175–187 (1980). (237)CrossRefGoogle Scholar
Broadbridge, P., Knight, J. H. and Rogers, C., Constant rate rainfall infiltration in a bounded profile: solutions of a nonlinear model, Soil. Soc. Am. J. 52, 1526–1533 (1988). (229)CrossRefGoogle Scholar
Broadbridge, P. and Rogers, C., Exact solutions for vertical drainage and redistribution in soils, J. Eng. Math. 24, 225–43 (1990). (229)CrossRefGoogle Scholar
Broadbridge, P. and Tritscher, P., An integrable fourth order nonlinear evolution equation applied to the thermal grooving of metal surfaces, IMA J. Appl. Math. 53, 249–265 (1994). (232)CrossRefGoogle Scholar
F. Burstall, Isothermic surfaces in arbitrary co-dimension, Atti del Congresso Internazionale in onore di Pasquale Calapso, Rendiconti del Sem. Mat. di. Messina, 57–68 (2001). (163, 171)
F. Burstall, Isothermic surfaces: conformal geometry, Clifford algebras and integrable systems, Math. DG/0003096 (2000). (163, 171)
Burstall, F., Hertrich-Jeromin, U., Pedit, F. and Pinkall, U., Curved flats and isothermic surfaces, Math. Z. 225, 199–209 (1997). (171, 189)CrossRefGoogle Scholar
Calapso, P., Sulla superficie a linee di curvatura isoterme, Rend. Circ. Mat. Palermo 17, 275–286 (1903). (152, 154, 165)CrossRefGoogle Scholar
Calogero, F. and Degasperis, A., Coupled nonlinear evolution equations solvable via the inverse spectral transform, and solitons that come back: the boomeron, Lett. Nuovo Cimento 16, 425–433 (1976). (155, 161, 164)CrossRefGoogle Scholar
Calogero, F. and Degasperis, A., Bäcklund transformations, nonlinear superposition principle, multisoliton solutions and conserved quantities for the “boomeron” nonlinear evolution equation, Lett. Nuovo Cimento 16, 434–438 (1976). (155, 161, 164, 191)CrossRefGoogle Scholar
F. Calogero and A. Degasparis, Spectral Transform and Solitons, North Holland Publishing Company, Amsterdam (1982). (233, 266)
Calogero, F. and Degasperis, A., A modified modified Korteweg-de Vries equation, Inverse Problems 1, 57–66 (1985). (243)CrossRefGoogle Scholar
Camassa, R. and Holm, D. D., An integrable shallow water equation with peaked solitons, Phys. Rev. Lett. 71, 1661–1664 (1993). (239)CrossRefGoogle ScholarPubMed
E. Cartan, Les systèmes différentielles extérieurs et leurs applications à métriques, Hermann, Paris (1945). (261)
P. J. Caudrey, J. C. Eilbeck, J. D. Gibbon and R. K. Bullough, Exact multisoliton solution of the inhomogeneously broadened self-induced transparency equations, J. Phys. A: Math. Gen.6, L53–L56 (1973). (130)
Caudrey, P. J., Gibbon, J. D., Eilbeck, J. C. and Bullough, R. K., Exact multi-soliton solutions of the self-induced transparency and sine-Gordon equations, Phys. Rev. Lett. 30, 237–239 (1973). (130)CrossRefGoogle Scholar
Cayley, A., On the cyclide, Q. J. Pure Appl. Math. 12, 148–165 (1873). (198)Google Scholar
Cekirge, H. M. and Rogers, C., On elastic-plastic wave propagation: transmission of elastic-plastic boundaries, Arch. Mech. 29, 125–141 (1977). (98)Google Scholar
Cekirge, H. M. and Varley, E., Large amplitude waves in bounded media I: reflexion and transmission of large amplitude shockless pulses at an interface, Philos. Trans. R. Soc. Lond. A 273, 261–313 (1973). (98)CrossRefGoogle Scholar
Cenkl, B., Geometric deformations of the evolution equations and Bäcklund transformations, Physica D 18, 217–219 (1986). (21)CrossRefGoogle Scholar
Ceyhan, Ö., Fokas, A. S. and Gürses, M., Deformations of surfaces associated with integrable Gauß-Mainardi-Codazzi equations, J. Math. Phys. 41, 2251–2270 (2000). (42)CrossRefGoogle Scholar
Chen, H. H. and Liu, C. S., Nonlinear wave and soliton propagation in media with arbitrary inhomogeneities, Phys. Fluids 21, 377–380 (1978). (119)CrossRefGoogle Scholar
S. S. Chern, Surface theory with Darboux and Bianchi, Miscellanea Mathematica, pp. 59–69, Springer, Berlin (1991). (17)
Chern, S. S. and Tenenblat, K., Foliations on a surface of constant curvature and the modified Korteweg-de Vries equations, J. Diff. Geom. 16, 347–349 (1981). (22)CrossRefGoogle Scholar
Chern, S. S. and Tenenblat, K., Pseudospherical surfaces and evolution equations, Stud. Appl. Math. 74, 55–83 (1986). (22)CrossRefGoogle Scholar
Chern, S. S. and Terng, C. L., An analogue of Bäcklund's theorem in affine geometry, Rocky Mountain J. Math. 10, 105–124 (1980). (88)CrossRefGoogle Scholar
F. J. Chinea, Vector Bäcklund transformations and associated superposition principle, in C. Hoenselaers and W. Dietz, eds, Solutions of Einstein's Equations: Techniques and Results, Lecture Notes in Physics, pp. 55–67, Springer-Verlag, Berlin (1984). (298, 326)
Cieśliński, J., An algebraic method to construct the Darboux matrix, J. Math. Phys. 36, 5670–5706 (1995). (266, 270)CrossRefGoogle Scholar
Cieśliński, J., The Darboux-Bianchi transformation for isothermic surfaces. Classical results versus the soliton approach, Diff. Geom. Appl. 7, 1–28 (1997). (171)CrossRefGoogle Scholar
Cieśliński, J., A generalized formula for integrable classes of surfaces in Lie algebras, J. Math. Phys. 38, 4255–4272 (1997). (208)CrossRefGoogle Scholar
Cieśliński, J., Gragert, P. K. H. and Sym, A., Exact solutions to localised induction-approximation equation modelling smoke-ring motion, Phys. Rev. Lett. 57, 1507–1510 (1986). (150)CrossRefGoogle Scholar
Cieśliński, J., Goldstein, P. and Sym, A., Isothermic surfaces inE3 as soliton surfaces, Phys. Lett. A 205, 37–43 (1995). (154, 192)Google Scholar
J. F. Cornwell, Group Theory in Physics, Vols. I, II, Academic Press, London (1984). (371)
Cosgrove, C. M., Relationships between the group-theoretic and soliton-theoretic techniques for generating stationary axisymmetric gravitational solutions, J. Math. Phys. 21, 2417–2447 (1980). (297, 305)CrossRefGoogle Scholar
E. Cosserat, Sur les systèmes conjugués et sur la déformation des surfaces, C. R. Acad. Sci. Paris113, 460–463 (1891); sur les systèmes cycliques et sur la déformation des surfaces, C. R. Acad. Sci. Paris113, 498–500. (299)
J. Crank, The Mathematics of Diffusion, 2nd ed, Oxford University Press, (1975). (232)
Crum, M. M., Associated Sturm-Liouville systems, Q. J. Math. Oxford 6, 121–127 (1955). (266)CrossRefGoogle Scholar
Darboux, G., Sur une proposition relative aux equations linéaires, C. R. Acad. Sci. Paris 94, 1456–1459 (1882). (17, 152, 266)Google Scholar
G. Darboux, Leçons sur la théorie générale des surfaces, Gauthier-Villars, Paris (1887). (109)
G. Darboux, Sur les surfaces dont la courbure totale est constante, C. R. Acad. Sci. Paris97, 848–850 (1883); sur les surfaces à courbure constante, C. R. Acad. Sci. Paris97, 892–894; sur l'équation aux dérivées partielles des surfaces à courbure constante, C. R. Acad. Sci. Paris97, 946–949. (17)
Darboux, G., Sur les surfaces isothermiques, C. R. Acad. Sci. Paris 128, 1299–1305 (1899). (152, 154, 171, 175)Google Scholar
Davey, A., The propagation of a weak nonlinear wave, J. Fluid. Mech. 53, 769–781 (1972). (119)CrossRefGoogle Scholar
Da, L. S. Rios, Sul moto d'un liquido indefinito con un filetto vorticoso, Rend. Circ. Mat. Palermo 22, 117–135 (1906). (60, 119, 121)Google Scholar
Davey, A. and Stewartson, K., On three-dimensional packets of surface waves, Proc. R. Soc. Lond. A 338, 101–110 (1974). (163)CrossRefGoogle Scholar
P. G. deGennes, Superconductivity of Metals and Alloys, Benjamin, New York (1966). (119)
A. Degasperis, C. Rogers and W. K. Schief, Isothermic surfaces generated via Bäcklund and Moutard transformations. Boomeron and zoomeron connections, to appear in Stud. Appl. Math. (2002). (164, 198)
Demoulin, A., Sur les systèmes et les congruencesK, C. R. Acad. Sci. Paris 150, 156–159 (1910). (186)Google Scholar
Demoulin, A., Sur deux transformations des surfaces dont les quadriques de Lie n'ont que deux ou trois points charactéristiques, Bull. l'Acad. Belgique 19, 479–502, 579–592, 1352–1363 (1933). (329, 335)Google Scholar
J. de Pont, Essays on the cyclide patch, PhD Thesis, Cambridge University (1984). (198)
Dietz, W. and Hoenselaers, C., Two mass solutions of Einstein's vacuum equations: the double Kerr solution, Ann. Phys. 165, 319–383 (1985). (311)CrossRefGoogle Scholar
Dmitrieva, L. A., Finite-gap solutions of the Harry Dym equation, Phys. Lett. A 182, 65–70 (1993). (234)CrossRefGoogle Scholar
Dmitrieva, L. A., N -loop solitons and their link with the complex Harry Dym equation, J. Phys. A: Math. Gen. 27, 8197–8205 (1994). (226, 234)CrossRefGoogle Scholar
Dmitrieva, L. and Khlabystova, M., Multisoliton solutions of the (2+1)-dimensional Harry Dym equation, Phys. Lett. A 237, 369–380 (1998). (239)CrossRefGoogle Scholar
M. P. do Carmo, Differential Geometry of Curves and Surfaces, Prentice-Hall, Inc., Englewood Cliffs, New Jersey (1976). (18)
R. K. Dodd, General relativity, in A. P. Fordy, ed, Soliton Theory: A Survey of Results, pp. 174–207, Manchester University Press (1990). (319)
Dodd, R. K., Soliton immersions, Commun. Math. Phys. 197, 641–665 (1998). (208)CrossRefGoogle Scholar
Dodd, R. K. and Bullough, R. K., Polynomial conserved densities for the sine-Gordon equations, Proc. R. Soc. Lond. A 352, 481–503 (1977). (88)CrossRefGoogle Scholar
Doliwa, A. and Santini, P., An elementary geometric characterisation of the integrable motions of a curve, Phys. Lett. A 185, 373–384 (1994). (60)CrossRefGoogle Scholar
Doliwa, A., Santini, P. M. and Ma~nas, M., Transformations of quadrilateral lattices, J. Math. Phys. 41, 944–990 (2000). (167)CrossRefGoogle Scholar
C. Dupin, Applications de Géometrie et de Mécanique, Bachelier, Paris (1822). (198, 200)
J. Ehlers, Les théories relativistes de la gravitation, CRNS, Paris (1959). (310)
L. P. Eisenhart, Riemannian Geometry, Princeton University Press, Princeton, New Jersey (1950). (157, 158, 161)
L. P. Eisenhart, Non-Riemannian Geometry, American Mathematical Society, New York (1958). (309)
L. P. Eisenhart, A Treatise on the Differential Geometry of Curves and Surfaces, Dover, New York (1960). (47, 60, 68, 127)
L. P. Eisenhart, Transformations of Surfaces, Chelsea, New York (1962). (72, 89, 109, 117, 155, 157, 167, 175, 180)
Emde, F., Der Einfluß der Feldlinien auf Divergenz und Rotor, Arch. Elektrotechn. 39, 2–8 (1948). (139)CrossRefGoogle Scholar
Ernst, F., New formulation of the axially symmetric gravitational field problem. I/II, Phys. Rev. 167, 1175–1178; Phys. Rev. 168, 1415–1417 (1968). (49, 297, 304, 309)Google Scholar
Estabrook, F. B., Moving frames and prolongation algebras, J. Math. Phys. 23, 2071–2076 (1982). (374)CrossRefGoogle Scholar
Estabrook, F. B. and Wahlquist, H. D., Prolongation structures of nonlinear evolution equations. II, J. Math. Phys. 17, 1293–1297 (1976). (261, 312, 374)CrossRefGoogle Scholar
Ferapontov, E. V., Reciprocal transformations and their invariants, Diff. Uravnen 25, 1256–1265 (1989). (230)Google Scholar
Ferapontov, E. V., Reciprocal transformations and hydrodynamic symmetries, Diff. Uravnen 27, 1250–1263 (1993). (230)Google Scholar
Ferapontov, E. V., Nonlocal Hamiltonian operators of hydrodynamic type: differential geometry and applications, Trans. Am. Math. Soc. 170, 33–58 (1995). (230)Google Scholar
Ferapontov, E. V., Dupin hypersurfaces and integrable Hamiltonian systems of hydrodynamic type which do not possess Riemann invariants, Diff. Geom. Appl. 5, 121–152 (1995). (198, 230)CrossRefGoogle Scholar
E. V. Ferapontov, Surfaces in Lie sphere geometry and the stationary Davey-Stewartson hierarchy, Sfb 288 Preprint287, Technische Universität, Berlin (1997). (163)
Ferapontov, E. V., Stationary Veselov-Novikov equation and isothermally asymptotic surfaces in projective-differential geometry, Diff. Geom. Appl. 11, 117–128 (1999). (330, 357, 358, 363, 370)CrossRefGoogle Scholar
Ferapontov, E. V., Lie sphere geometry and integrable systems, Tohoku Math. J. 52, 199–233 (2000). (230)CrossRefGoogle Scholar
Ferapontov, E. V., Integrable systems in projective differential geometry, Kyushu J. Math. 54, 183–215 (2000). (329, 330)CrossRefGoogle Scholar
Ferapontov, E. V., Rogers, C. and Schief, W. K., Reciprocal transformations of two-component hyperbolic systems and their invariants, J. Math. Anal. Appl. 228, 365–376 (1998). (230)CrossRefGoogle Scholar
Ferapontov, E. V. and Schief, W. K., Surfaces of Demoulin: differential geometry, Bäcklund transformation and integrability, J. Geom. Phys. 30, 343–363 (1999). (329, 354)CrossRefGoogle Scholar
R. P. Feynman, R. B. Leighton and M. Sands, The Feynman Lectures on Physics, Vol. II, Addison-Wesley (1964). (105)
S. P. Finikov, Projective-differential Geometry, Moscow-Leningrad (1937). (135, 329, 330, 370)
S. P. Finikov, Theory of Congruences, Moscow-Leningrad (1950). (117, 330, 370)
Fokas, A., A symmetry approach to exactly solvable evolution equations, J. Math. Phys. 21, 1318–1325 (1980). (240, 243)CrossRefGoogle Scholar
Fokas, A. S. and Gelfand, I. M., Surfaces on Lie groups, on Lie algebras and their integrability, Comm. Math. Phys. 177, 203–220 (1996). (208)CrossRefGoogle Scholar
A. S. Fokas, I. M. Gelfand, F. Finkel and Q. M. Liu, A formula for constructing infinitely many surfaces on Lie algebras and Lie groups, to appear in Selecta Math. (208)
Fordy, A. P. and Gibbons, J., Integrable nonlinear Klein Gordon equations, Commun. Math. Phys. 77, 21–30 (1980). (91, 113)CrossRefGoogle Scholar
Foursov, M. V., Olver, P. J., and Reyes, E. G., On formal integrability of evolution equations and local geometry of surfaces, Diff. Geom. Appl. 15, 183–199 (2001). (22)CrossRefGoogle Scholar
Fried, B. D. and Ichikawa, Y. H., On the nonlinear Schrödinger equation for Langmuir waves, J. Phys. Soc. Japan 33, 789–792 (1972). (119)Google Scholar
G. Fubini and E. ^ Cech, Geometria Proiettiva Differenziale, Zanichelli, Bologna (1926). (329, 330, 370)
Gaffet, B., SU(3) symmetry of the equations of uni-dimensional gas flow, with arbitrary entropy distribution, J. Math. Phys. 25, 245–255 (1984). (88, 95)CrossRefGoogle Scholar
Gaffet, B., An infinite Lie group of symmetry of one-dimensional gas flow for a class of entropy distributions, Physica D 11, 287–308 (1984). (88, 95)CrossRefGoogle Scholar
B. Gaffet, An S L(3)-Symmetrical F-Gordon Equation:, zαβ = ⅓(ez − e−2z, Lecture Notes in Physics246, pp. 301–319, Springer Verlag, Berlin (1986). (88, 95)
Gaffet, B., The non-isentropic generalisation of the classical theory of Riemann invariants, J. Phys. A: Math. Gen. 20, 2721–2731 (1987). (88, 95)CrossRefGoogle Scholar
Gaffet, B., A class of 1-d gas flows soluble by the inverse scattering transform, Physica D 26, 123–139 (1987). (88, 95)CrossRefGoogle Scholar
Geroch, R., A method for generating solutions of Einstein's equations. I/II, J. Math. Phys. 12, 918–924 (1971); J. Math. Phys. 13, 394–404 (1972). (310)Google Scholar
Gibbs, H. M. and Slusher, R. E., Peak amplification and pulse breakup of a coherent optical pulse in a simple atomic absorber, Phys. Rev. Lett. 24, 638–641 (1970). (22, 31)CrossRefGoogle Scholar
Gilbarg, D., On the flow patterns common to certain classes of plane fluid motions, J. Math. and Phys. 26, 137–142 (1947). (120)CrossRefGoogle Scholar
L. Godeaux, La théorie des surfaces et l'espace réglé (Géometrie projective differentielle), Actualités scientifiques et industrielles, N138, Hermann, Paris (1934). (329, 334)
Grammaticos, B., Papageorgiu, V. and Ramani, A., KdV equations and integrability detectors, Acta Appl. Math. 39, 335–348 (1995). (236)CrossRefGoogle Scholar
Grimshaw, R., Slowly varying solitary waves: II, Nonlinear Schrödinger equation, Proc. R. Soc. Lond. A 368, 377–388 (1979). (119)CrossRefGoogle Scholar
C. Gu, H. Hu and Z. Zhou, Darboux Transformation in Soliton Theory and its Geometric Applications, Shanghal Scientific & Technical Publishers (1999). (266)
Haar, A., Über adjungierte Variationsprobleme und adjungierte Extremalflächen, Math. Ann. 100, 481–502 (1928). (229)CrossRefGoogle Scholar
Harrison, B. K., Bäcklund transformation for the Ernst equation of general relativity, Phys. Rev. Lett. 41, 1197–1200 (1978). (297, 305, 311, 317)CrossRefGoogle Scholar
Harrison, B. K., Unification of Ernst equation Bäcklund transformations using a modified Wahlquist-Estabrook technique, J. Math. Phys. 24, 2178–2187 (1983). (374)CrossRefGoogle Scholar
Hauser, I. and Ernst, F. J., A homogeneous Hilbert problem for the Kinnersley-Chitre transformations, J. Math. Phys. 21, 1126–1140 (1980). (305)CrossRefGoogle Scholar
Hauser, I. and Ernst, F., Proof of a Geroch conjecture, J. Math. Phys. 22, 1051–1063 (1981). (311)CrossRefGoogle Scholar
Hasegawa, A. and Tappert, F., Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers: I. Anomolous dispersion, Appl. Phys. Lett. 23, 142–144 (1973). (119)CrossRefGoogle Scholar
Hasimoto, H., A soliton on a vortex filament, J. Fluid. Mech. 51, 477–485 (1972). (60, 120)CrossRefGoogle Scholar
Hasimoto, H. and H. Ono, Nonlinear modulation of gravity waves, J. Math. Soc. Japan 33, 805–811 (1972). (119)Google Scholar
R. Hermann, The Geometry of Nonlinear Differential Equations, Bäcklund Transformations and Solitons, Part A, Math. Sci. Press, Brookline, Mass. (1976). (111)
Hertrich-Jeromin, U. and Pedit, F., Remarks on the Darboux transform of isothermic surfaces, Doc. Math. 2, 313–333 (1997). (171)Google Scholar
Hirota, R., Exact solution of the Korteweg-de Vries equation for multiple collisions of solitons, Phys. Rev. Lett. 27, 1192–1194 (1971). (198)CrossRefGoogle Scholar
Hirota, R. and Satsuma, J., A simple structure of superposition formula of the Bäcklund transformation, J. Phys. Soc. Japan 45, 1741–1750 (1978). (79)CrossRefGoogle Scholar
C. Hoenselaers, HKX transformations. An introduction, in C. Hoenselaers and W. Dietz, eds, Solutions of Einstein's Equations: Techniques and Results, Lecture Notes in Physics, pp. 68–84, Springer-Verlag, Berlin (1984). (311)CrossRef
Hoenselaers, C., The sine-Gordon prolongation algebra, Progr. Theor. Phys. 74, 645–654 (1985). (249, 374)CrossRefGoogle Scholar
Hoenselaers, C., More prolongation structures, Progr. Theor. Phys. 75, 1014–1029 (1986). (249, 374)CrossRefGoogle Scholar
Hoenselaers, C., Equations admitting o(2, 1) × R(t, t-1) as a prolongation algebra, J. Phys. A: Math. Gen. 21, 17–31 (1988). (249, 374)CrossRefGoogle Scholar
C. Hoenselaers and W. Dietz, eds, Solutions of Einstein's Equations: Techniques and Results, Lecture Notes in Physics, Springer Verlag, Berlin (1984). (297)CrossRef
Hoenselaers, C. and Schief, W. K., Prolongation structures for Harry Dym type equations and Bäcklund transformations of cc-ideals, J. Phys. A: Math. Gen. 25, 601–622 (1992). (249, 374)CrossRefGoogle Scholar
A. N. W. Hone, The associated Camassa-Holm equation and the KdV equation, J. Phys. A: Math. Gen.32, L307–L314 (1999). (230)
L. N. Howard, Constant Speed Flows, PhD Thesis, Princeton University (1953). (120)
R. W. H. T. Hudson, Kummer's Quartic Surface, Cambridge University Press (1990). (330)
Ibragimov, N., Sur l'équivalence des équations d'évolution qui admettent une algèbre de Lie-Bäcklund infinie, C. R. Acad. Sci. Paris 293, 657–660 (1981). (234)Google Scholar
Ichikawa, Y. H., Imamura, T. and Tanuiti, T., Nonlinear wave modulation in collisionless plasma, J. Phys. Soc. Japan 33, 189–197 (1972). (119)CrossRefGoogle Scholar
N. Jacobson, Lie algebras, Dover Publications, Inc., New York (1962). (113)
A. Jeffrey, Equations of evolution and waves, in C. Rogers and T. B. Moodie, eds, Wave Phenomena: Modern Theory and Applications, North Holland, Amsterdam (1986). (226)
M. E. Johnston, Geometry and the Sine Gordon Equation, M.Sc. Thesis, University of New South Wales (1994). (40, 83)
Johnston, M. E., Rogers, C., Schief, W. K. and Seiler, M. L., On moving pseudospherical surfaces: a generalised Weingarten system, Lie Groups and Their Applications 1, 124–136 (1994). (72)Google Scholar
Jonas, H., Über die Transformation der konjugierten Systeme und über den gemeinsamen Ursprung der Bianchischen Permutabilitätstheoreme, Sitzungsberichte Berl. Math. Ges. 14, 96–118 (1915). (89, 167, 180)Google Scholar
Jonas, H., Sopra una classe di transformazioni asintotiche, applicabili in particolare alle superficie la cui curvatura è proporzionale alla quarta potenza della distanza del piano tangente da un punto fisso, Ann. Mat. Pura Appl. Bologna Ser. III 30, 223–255 (1921). (88)CrossRefGoogle Scholar
Jonas, H., Die Differentialgleichung der Affinsphären in einer neuen Gestalt, Math. Nachr. 10, 331–361 (1953). (88, 92, 93, 94, 100)CrossRefGoogle Scholar
V. G. Kac, Infinite Dimensional Lie Algebras, Cambridge University Press (1985). (113, 250)
Kadanoff, L. P., Exact solutions for the Saffman-Taylor problem with surface tension, Phys. Rev. Lett. 65, 2986–2988 (1986). (239)CrossRefGoogle Scholar
Kakutani, T. and Ono, H., Weak nonlinear hydromagnetic waves in cold collisionless plasma, J. Phys. Soc. Japan 26, 1305–1318 (1969). (71)CrossRefGoogle Scholar
Kambe, T. and Takao, T., Motion of distorted vortex rings, J. Phys. Soc. Japan 31, 591–599 (1971). (60)CrossRefGoogle Scholar
Kamran, N. and Tenenblat, K., On differential equations describing pseudo-spherical surfaces, J. Diff. Eq. 115, 75–98 (1995). (22)CrossRefGoogle Scholar
Karpman, V. I. and Kruskal, E. M., Modulated waves in nonlinear dispersive media, Sov. Phys. JETP 28, 277–281 (1969). (119)Google Scholar
Kaup, D. J., The method of solution for stimulated Raman scatttering and two-photon propagation, Physica D 6, 143–154 (1983). (130)CrossRefGoogle Scholar
Keener, J. P. and Tyson, J. J., The dynamics of scroll waves in excitable media, SIAM Rev. 38, 1–39 (1992). (120)CrossRefGoogle Scholar
Kelley, P. L., Self focussing of optic beams, Phys. Rev. Lett. 15, 1005–1008 (1965). (119)CrossRefGoogle Scholar
Kingston, J. G. and Rogers, C., Reciprocal Bäcklund transformations of conservation laws, Phys. Lett. A 92, 261–264 (1982). (230, 378)CrossRefGoogle Scholar
J. G. Kingston, C. Rogers and D. Woodall, Reciprocal auto-Bäcklund transformations, J. Phys. A: Math. Gen.17, L35–L38 (1984). (230, 243)
Kinnersley, W., Symmetries of the stationary Einstein-Maxwell field equations I, J. Math. Phys. 18, 1529–1537 (1977). (311)CrossRefGoogle Scholar
Kinnersley, W. and Chitre, D. M., Symmetries of the stationary Einstein-Maxwell field equations II, J. Math. Phys. 18, 1538–1542 (1978). (311)CrossRefGoogle Scholar
Kinnersley, W. and Chitre, D. M., Symmetries of the Einstein-Maxwell field equations III, J. Math. Phys. 19, 1926–1931 (1978). (305)CrossRefGoogle Scholar
P. Klimczewski, M. Nieszporski and A. Sym, Luigi Bianchi, Pasquale Calapso and solitons, Preprint Instytut Fizyki Teoretycznej, Uniwersytet Warszawski (2000). (152)
Kochendörfer, A. and Seeger, A., Theorie der Versetzungen in eindimensionalen Atomreihen I. Periodisch angeordnete Versetzungen, Z. Phys. 127, 533–550 (1950). (21)CrossRefGoogle Scholar
Konno, K. and Jeffrey, A., Some remarkable properties of two loop soliton solutions, J. Phys. Soc. Japan 52, 1–3 (1983). (226)CrossRefGoogle Scholar
Konno, K., Kameyama, W. and Sanuki, H., Effect of weak dislocation potential on nonlinear wave equation in an anharmonic crystal, J. Phys. Soc. Japan 37, 171–176 (1974). (71)CrossRefGoogle Scholar
Konno, K. and Sanuki, H., Bäcklund transformation for equation of motion for nonlinear lattice under weak dislocation potential, J. Phys. Soc. Japan 39, 22–24 (1975). (78)CrossRefGoogle Scholar
Konopelchenko, B. G., Elementary Bäcklund transformations, nonlinear superposition principles and solutions of the integrable equations, Phys. Lett. A 87, 445–448 (1982). (237)CrossRefGoogle Scholar
Konopelchenko, B. G., Soliton eigenfunction equations: the IST integrability and some properties, Rev. Math. Phys. 2, 399–440 (1990). (204, 217)CrossRefGoogle Scholar
Konopelchenko, B. G., The non-abelian (1+1)-dimensional Toda lattice as the periodic fixed point of the Laplace transform for (2+1)-dimensional integrable systems, Phys. Lett. A 156, 221–222 (1991). (118)CrossRefGoogle Scholar
Konopelchenko, B. G., Induced surfaces and their integrable dynamics, Stud. Appl. Math. 96, 9–51 (1996). (208)CrossRefGoogle Scholar
Konopelchenko, B. G. and Pinkall, U., Integrable deformations of affine surfaces via the Nizhnik-Veselov-Novikov equation, Phys. Lett. A 245, 239–245 (1998). (88)CrossRefGoogle Scholar
Konopelchenko, B. G. and Rogers, C., On a 2+1-dimensional nonlinear system of Loewner-type, Phys. Lett. A 152, 391–397 (1991). (64, 99)CrossRefGoogle Scholar
Konopelchenko, B. G. and Rogers, C., On generalised Loewner systems: novel integrable equations in 2+1 dimensions, J. Math. Phys. 34, 214–242 (1993). (64, 99)CrossRefGoogle Scholar
B. G. Konopelchenko and W. K. Schief, Lamé and Zakharov-Manakov systems: Combescure, Darboux and Bäcklund transformations, Preprint AM 93/9 Department of Applied Mathematics, The University of New South Wales (1993). (167)
Konopelchenko, B. G. and Schief, W. K., Three-dimensional integrable lattices in Euclidean spaces: conjugacy and orthogonality, Proc. R. Soc. Lond. A 454, 3075–3104 (1998). (167)CrossRefGoogle Scholar
Konopelchenko, B. G., Schief, W. and Rogers, C., A 2+1-dimensional sine-Gordon system: its auto-Bäcklund transformation, Phys. Lett. A 172, 39–48 (1992). (110)CrossRefGoogle Scholar
D. Kramer, GR 9 Abstracts1, 42 (1980). (319)
Kramer, D., Equivalence of various pseudopotential approaches for Einstein-Maxwell fields, J. Phys. A: Math. Gen. 15, 2201–2207 (1982). (305)CrossRefGoogle Scholar
Kramer, D. and Neugebauer, G., Zu axialsymmetrischen stationären Lösungen der Einsteinschen Feldgleichungen für das Vakuum, Comm. Math. Phys. 10, 132–139 (1968). (297, 308)CrossRefGoogle Scholar
Kramer, D. and Neugebauer, G., The superposition of two Kerr solutions, Phys. Lett. A 75, 259–261 (1980). (319)CrossRefGoogle Scholar
D. Kramer and G. Neugebauer, Bäcklund transformations in general relativity, in C. Hoenselaers and W. Dietz, eds, Solutions of Einstein's Equations: Techniques and Results, Lecture Notes in Physics, pp. 1–25, Springer-Verlag, Berlin (1984). (319)
Kramer, D., Neugebauer, G. and Matos, T., Bäcklund transforms of chiral fields, J. Math. Phys. 32, 2727–2730 (1991). (305)CrossRefGoogle Scholar
D. Kramer, H. Stephani, H. Herlt and M. MacCallum, Exact Solutions of Einstein's Equations, Cambridge University Press (1980). (297, 309)
Lakshmanan, M., Ruijgrok, Th. W. and Thompson, C. J., On the dynamics of a continuum spin system, Physica A 84, 577–590 (1976). (60, 128)CrossRefGoogle Scholar
Lamb, G. L. Jr., Analytical descriptions of ultrashort optical pulse propagation in a resonant medium, Rev. Mod. Phys. 43, 99–124 (1971). (22, 30)CrossRefGoogle Scholar
Lamb, G. L. Jr., Solitons on moving space curves, J. Math. Phys. 18, 1654–1661 (1977). (60, 61)CrossRefGoogle Scholar
G. L. Lamb, Elements of Soliton Theory, John Wiley, New York (1980). (148)
G. Lamé, Leçons sur les coordonnées curvilignes et leurs diverses applications, Mallet-Bechelier, Paris (1859). (60)
E. P. Lane, Projective Differential Geometry of Curves and Surfaces, University of Chicago Press, Chicago (1932). (109, 329, 330, 370)
Lax, P. D., Integrals of nonlinear equations of evolution and solitary waves, Comm. Pure Appl. Math. 21, 467–490 (1968). (217)CrossRefGoogle Scholar
Levi, D., Nonlinear differential difference equations as Bäcklund transformations, J. Phys. A: Math. Gen. 14, 1082–1098 (1981). (237)CrossRefGoogle Scholar
Levi, D. and Benguria, R., Bäcklund transformations and nonlinear differential difference equations, Proc. Natl. Acad. Sci. U.S.A. 77, 5025–5027 (1980). (237)CrossRefGoogle ScholarPubMed
Levi, D. and Ragnisco, O., Bäcklund transformations for chiral field equations, Phys. Lett. A 87, 381–384 (1982). (270)CrossRefGoogle Scholar
Levi, D., Ragnisco, O. and Sym, A., Bäcklund transformation vs. the dressing method, Lett. Nuovo Cimento 33, 401–406 (1982). (266, 270)CrossRefGoogle Scholar
Levi, D., Ragnisco, O. and Sym, A., Dressing method vs. classical Darboux transformation, Il Nuovo Cimento B 83, 34–42 (1984). (266, 270)CrossRefGoogle Scholar
Levi, D. and Sym, A., Integrable systems describing surfaces of non-constant curvature, Phys. Lett. A 149, 381–387 (1990). (21, 54, 299)CrossRefGoogle Scholar
T. Levi-Civita, Attrazione Newtoniana dei Tubi Sottili e Vortici Filiformi, Ann. R. Scuola Norm. Sup. Pisa, Zanichelli, Bologna (1932). (60)
Lewis, T., Some special solutions of the equations of axially symmetric gravitational fields, Proc. R. Soc. Lond. A 136, 176–192 (1932). (309)CrossRefGoogle Scholar
Loewner, C., A transformation theory of partial differential equations of gasdynamics, NACA Technical Note 2065, 1–56 (1950). (98, 229)Google Scholar
Loewner, C., Generation of solutions of systems of partial differential equations by composition of infinitesimal Bäcklund transformations, J. Anal. Math. 2, 219–242 (1952). (64)CrossRefGoogle Scholar
L. G. Loitsyanskii, Mechanics of Liquids and Gases, International Series of Monographs in Aeronautics and Astronautics, Pergamon Press, New York (1966) (Translation Editor K. Stewartson). (105)
Lund, F. and Regge, T., Unified approach to strings and vortices with soliton solutions, Phys. Rev. D 14, 1524–1535 (1976). (120, 129, 204)CrossRefGoogle Scholar
Maison, D., Are the stationary, axially symmetric Einstein equations completely integrable? Phys. Rev. Lett. 41, 521–522 (1978). (297, 305, 311)CrossRefGoogle Scholar
Martin, M. H., A new approach to problems in two-dimensional flow, Q. Appl. Math. 8, 137–350 (1951). (96, 229)CrossRefGoogle Scholar
Martin, M. H., The propagation of a plane shock into a quiet atmosphere, Can. J. Math. 5, 37–39 (1953). (96)CrossRefGoogle Scholar
R. R. Martin, Principal patches for computational geometry, PhD Thesis, Cambridge University (1982). (198)
R. R. Martin, J. de Pont and T. J. Sharrock, Cyclide surfaces in computer aided design, in J. A. Gregory, ed, The Mathematics of Surfaces, Oxford University Press (1986). (198)
Marris, A. W., On motions with constant speed and streamline parameters, Arch. Rat. Mech. Anal. 90, 1–14 (1985). (120)CrossRefGoogle Scholar
Marris, A. W. and Passman, S. L., Vector fields and flows on developable surfaces, Arch. Rat. Mech. Anal. 32, 29–86 (1969). (120, 137, 138, 142, 144)CrossRefGoogle Scholar
Marris, A. W. and Wang, C. C., Solenoidal screw fields of constant magnitude, Arch. Rat. Mech. Anal. 39, 227–244 (1970). (140)CrossRefGoogle Scholar
Masotti, A., Decomposizione intrinseca del vortice a sue applicazioni, Instituto Lombardo di Scienze a Lettere Rendiconti (2) 60, 869–874 (1927). (139)Google Scholar
Y. Matsuno, Bilinear Transformation Method, Academic Press (1984). (198)
V. B. Matveev and M. A. Salle, Darboux Transformations and Solitons, Springer-Verlag, Berlin (1991). (266, 270)
Matzner, R. A. and Misner, C. W., Gravitational field equations for sources with axial symmetry and angular momentum, Phys. Rev. 154, 1229–1232 (1967). (310)CrossRefGoogle Scholar
Maxwell, J. C., On the cyclide, Q. J. Pure Appl. Math. 9, 111–126 (1868). (198)Google Scholar
O. Mayer, Contribution à l'étude des surfaces minima projectives, Bull. Sci. Math. Ser. 256, 146–168, 188–200 (1932). (329)
McCall, S. L. and Hahn, E. L., Self-induced transparency by pulsed coherent light, Phys. Rev. Lett. 18, 908–911 (1967). (130)CrossRefGoogle Scholar
McLean, D., A method of generating surfaces as a composite of cyclide patches, Comput. J. 4, 433–438 (1985). (198)CrossRefGoogle Scholar
McLachlan, R. I. and Segur, H., A note on the motion of surfaces, Phys. Lett. A 194, 165–172 (1994). (68)CrossRefGoogle Scholar
A. M. Meirmanov, V. V. Pukhnachov and S. I. Shmarev, Evolution Equations and Lagrangian Coordinates, de Gruyter, Berlin (1997). (230)
Michailov, A. V., The reduction problem and the inverse scattering method, Physica D 3, 73–117 (1981). (88, 91, 105, 329)CrossRefGoogle Scholar
L. M. Milne-Thomson, Theoretical Hydrodynamics, Macmillan & Company Ltd, London (1962). (151)
Minding, F., Wie sich entscheiden lässt, ob zwei gegebene krumme Flächen aufeinander abwickelbar sind order nicht; nebst Bemerkungen über die Flächen von unverändlichem Krümmungsmasse, J. für die reine und angewandte Mathematik 18, 297–302 (1838). (17)CrossRefGoogle Scholar
Miura, R. M., Korteweg-de Vries equation and generalizations: I. A remarkable explicit nonlinear transformation, J. Math. Phys. 9, 1202–1204 (1968). (217)CrossRefGoogle Scholar
Motz, H., Pavlenko, V. P. and Weiland, J., Acceleration and slowing down of nonlinear packets in a weakly nonuniform plasma, Phys. Lett. A 76, 131–133 (1980). (119)CrossRefGoogle Scholar
Th. Moutard, Sur la construction des équations de la forme qui admettent une intégrale générale explicite, J. l'Ecole Polytechn., Cahier 45, 1–11 (1878). (103, 266)
Mullins, W. W., Theory of thermal grooving, J. Appl. Phys. 28, 333–339 (1957). (232)CrossRefGoogle Scholar
Natale, M. F. and Tarzia, D. A., Explicit solutions to the two-phase Stefan problem for Storm-type materials, J. Phys. A: Math. Gen. 33, 395–404 (2000). (229)CrossRefGoogle Scholar
G. Neugebauer, Bäcklund transformations of axially symmetric stationary gravitational fields, J. Phys. A: Math. Gen.12, L67–L70 (1979). (297, 305)
G. Neugebauer, A general integral of the axially symmetric stationary Einstein equations, J. Phys. A: Math. Gen.13, L19–L21 (1980). (319, 325)
Neugebauer, G. and Kramer, D., Einstein-Maxwell solitons, J. Phys. A: Math. Gen. 16, 1927–1936 (1983). (270, 277)CrossRefGoogle Scholar
Neugebauer, G. and Meinel, R., General N-soliton solution of the AKNS class on arbitrary background, Phys. Lett. A 100, 467–470 (1984). (266, 270, 277, 279)CrossRefGoogle Scholar
A. C. Newell, Solitons in Mathematics and Physics, SIAM, Philadelphia (1985). (214)
Nijhoff, F. W., Capel, H. W., Wiersma, G. L. and Quispel, G. R. W., Bäcklund transformations and three-dimensional lattice equations, Phys. Lett. A 105, 267–272 (1984). (237)CrossRefGoogle Scholar
Nimmo, J. J. C. and Schief, W. K., Superposition principles associated with the Moutard transformation: an integrable discretization of a 2+1-dimensional sine-Gordon system, Proc. R. Soc. Lond. A 453, 255–279 (1997). (105, 237)CrossRefGoogle Scholar
Nimmo, J. J. C. and Schief, W. K., An integrable discretization of a 2+1-dimensional sine-Gordon equation, Stud. Appl. Math. 100, 295–309 (1998). (105, 237)CrossRefGoogle Scholar
Nimmo, J. J. C., Schief, W. K. and Rogers, C., Termination of Bergman series. Connection to the Bn Toda system, J. Eng. Math. 36, 137–148 (1999). (98)CrossRefGoogle Scholar
Nizhnik, L. P., Integration of multidimensional nonlinear equations by the inverse problem method, Dokl. Akad. Nauk SSSR 254, 332–335 (1980). (362)Google Scholar
K. Nomizu and T. Sasaki, Affine Differential Geometry, Cambridge University Press (1994). (88)
A. W. Nutbourne and R. R. Martin, Differential Geometry Applied to the Design of Curves and Surfaces, Ellis Horwood, Chichester (1988). (198, 245)
Nycander, J., Dritschel, D. G. and Sutyrin, G. G., The dynamics of long frontal waves in the shallow-water equations, Phys. Fluids A 5, 1089–1091 (1993). (231)CrossRefGoogle Scholar
Oevel, W. and Rogers, C., Gauge transformations and reciprocal links in 2 + 1-dimensions, Rev. Math. Phys. 5, 299–330 (1993). (217, 239)CrossRefGoogle Scholar
W. Oevel and W. Schief, Darboux theorems and the KP hierarchy, in P. A. Clarkson, ed, Applications of Analytic and Geometric Methods to Nonlinear Differential Equations, pp. 192–206, Kluwer Academic Publishers, Dordrecht (1993). (366)
F. Pempinelli, Localized soliton solutions for the Davey-Stewartson I and Davey-Stewartson III equations, in P. A. Clarkson, ed, Applications of Analytic and Geometric Methods to Nonlinear Differential Equations, pp. 207–215, Kluwer, Dordrecht (1993). (196)
Perline, R., Localized induction equation and pseudospherical surfaces, J. Phys. A: Math. Gen. 27, 5335–5344 (1994). (87)CrossRefGoogle Scholar
Perline, R., Localized induction hierarchy and Weingarten systems, Phys. Lett. A 220, 70–74 (1996). (87)CrossRefGoogle Scholar
Pohlmeyer, K., Integrable Hamiltonian systems and iteractions through quadratic constraints, Comm. Math. Phys. 46, 207–221 (1976). (120, 129, 204)CrossRefGoogle Scholar
Power, G. and Smith, P., Reciprocal properties of plane gas flows, J. Math. Mech. 10, 349–361 (1961). (229)Google Scholar
Pratt, M. J., Cyclides in computer aided geometric design, Computer Aided Geometric Design 7, 221–242 (1990). (198)CrossRefGoogle Scholar
Prim, R., On the uniqueness of flows with given streamlines, J. Math. and Phys. 28, 50–53 (1949). (120)CrossRefGoogle Scholar
Prim, R. C., Steady rotational flow of ideal gases, Arch. Rat. Mech. Anal. 1, 425–497 (1952). (95)Google Scholar
R. Prus, Geometry of Bianchi surfaces in E3, Master Thesis, Warsaw University (1995). (57)
Quispel, G. R. W., Nijhoff, F. W., Capel, H. W. and Linden, J., Linear integral equations and nonlinear difference-difference equations, Physica A 125, 344–380 (1984). (237)CrossRefGoogle Scholar
Rabelo, M. L., On equations which describe pseudospherical surfaces, Stud. Appl. Math. 81, 221–248 (1989). (22)CrossRefGoogle Scholar
A. Razzaboni, Delle superficie nelle quali un sistema di geodetiche sono del Bertrand, Bologna Mem (5) 10, 539–548 (1903). (245)
Reyes, E. G., Conservation laws and Calapso-Guichard deformations of equations describing pseudo-spherical surfaces, J. Math. Phys. 41, 2968–2989 (2000). (22)CrossRefGoogle Scholar
Rogers, C., Reciprocal relations in non-steady one-dimensional gasdynamics, Z. Angew. Math. Phys. 19, 58–63 (1968). (223, 229)CrossRefGoogle Scholar
Rogers, C., Invariant transformations in non-steady gasdynamics and magneto-Gasdynamics, Z. Angew. Math. Phys. 20, 370–382 (1969). (229)CrossRefGoogle Scholar
Rogers, C., The construction of invariant transformations in plane rotational gasdynamics, Arch. Rat. Mech. Anal. 47, 36–46 (1972). (229)CrossRefGoogle Scholar
C. Rogers, Application of a reciprocal transformation to a two-phase Stefan problem, J. Phys. A: Math. Gen.18, L105–L109 (1985). (229)
Rogers, C., On a class of moving boundary problems in nonlinear heat conduction: application of a Bäcklund transformation, Int. J. Nonlinear Mech. 21, 249–256 (1986). (229)CrossRefGoogle Scholar
C. Rogers, On the Heisenberg spin equation in hydrodynamics, Research Report, Inst. Pure Appl. Math., Rio de Janeiro, Brazil (2000). (120, 151)
Rogers, C. and Broadbridge, P., On a nonlinear moving boundary problem with heterogeneity: application of a Bäcklund transformation, Z. Angew. Math. Phys. 39, 122–128 (1988). (229)CrossRefGoogle Scholar
Rogers, C. and Broadbridge, P., On sedimentation in a bounded column, Int. J. Nonlinear Mech. 27, 661–667 (1992). (229)CrossRefGoogle Scholar
Rogers, C. and Carillo, S., On reciprocal properties of the Caudrey-Dodd-Gibbon and Kaup-Kuperschmidt hierarchies, Physica Scripta 36, 865–869 (1987). (239)CrossRefGoogle Scholar
Rogers, C., Castell, S. P. and Kingston, J. G., On invariance properties of conservation laws in non-dissipative planar magneto-Gasdynamics, J. de Mécanique 13, 243–354 (1974). (229)Google Scholar
Rogers, C. and Kingston, J. G., Non-dissipative magneto-hydrodynamic flows with magnetic and velocity field lines orthogonal geodesics, Soc. Ind. Appl. Math. J. Appl. Math. 26, 183–195 (1974). (137, 142)CrossRefGoogle Scholar
Rogers, C. and Kingston, J. G., Reciprocal properties in quasi one-dimensional non-steady oblique field magneto-Gasdynamics, J. de Mécanique 15, 185–192 (1976). (229)Google Scholar
Rogers, C., Kingston, J. G. and Shadwick, W. F., On reciprocal-type invariant transformations in magneto-Gasdynamics, J. Math. Phys. 21, 395–397 (1980). (229)CrossRefGoogle Scholar
Rogers, C. and Nucci, M. C., On reciprocal Bäcklund transformations and the Korteweg-de Vries hierarchy, Physica Scripta 33, 289–292 (1986). (233)CrossRefGoogle Scholar
Rogers, C., Nucci, M. C. and Kingston, J. G., On reciprocal auto-Bäcklund transformations: application to a new nonlinear hierarchy, Il Nuovo Cimento 96, 55–63 (1986). (238)CrossRefGoogle Scholar
Rogers, C. and Ruggeri, T., A reciprocal Bäcklund transformation: application to a nonlinear hyperbolic model in heat conduction, Lett. Nuovo Cimento 44, 289–296 (1985). (229)CrossRefGoogle Scholar
C. Rogers and W. F. Shadwick, Bäcklund Transformations and Their Applications, Academic Press, New York (1982). (21, 31, 99, 198, 205)
Rogers, C. and Schief, W. K., Intrinsic geometry of the NLS equation and its auto-Bäcklund transformation, Stud. Appl. Math. 26, 267–287 (1998). (137, 142, 146)CrossRefGoogle Scholar
Rogers, C. and Schief, W. K., On geodesic hydrodynamic motions, Heisenberg spin connections. J. Math. Anal. Appl. 251, 855–870 (2000). (120, 151)CrossRefGoogle Scholar
C. Rogers, W. K. Schief and M. E. Johnston, Bäcklund and his works: applications in soliton theory, in Geometric Approaches to Differential Equations, P. J. Vassiliou and I. G. Lisle, eds, Australian Mathematical Society Lecture Series15, pp. 16–55, Cambridge University Press (2000). (124)
Rogers, C., Stallybrass, M. P. and Clements, D. L., On two-phase filtration under gravity and with boundary infiltration: application of a Bäcklund transformation, J. Nonlinear Analysis, Theory, Methods and Applications 7, 785–799 (1983). (229)CrossRefGoogle Scholar
Rogers, C. and Wong, P., On reciprocal Bäcklund transformations of inverse scattering schemes, Physica Scripta 30, 10–14 (1984). (224, 233)CrossRefGoogle Scholar
Rogers, C. and Yu, B. Guo, A note on the onset of melting in a class of simple metals. Condition on the applied boundary flux, Acta Math. Sci. 8, 425–430 (1988). (229)Google Scholar
Rozet, O., Sur certaines congruences W attachée aux surfaces dont les quadriques de Lie n'ont que deux points characteristiques, Bull. Sci. Math. II 58, 141–151 (1934). (329, 334)Google Scholar
Salle, M. A., Darboux transformations for non-abelian and nonlocal equations of the Toda chain type, Teoret. Mat. Fiz. 53, 227–237 (1982). (270)Google Scholar
Santini, P. M. and Fokas, A. S., Recursion operators and bi-Hamiltonian structures in multidimensions. I, Comm. Math. Phys. 115, 375–419 (1988). (163)CrossRefGoogle Scholar
Sasaki, R., Soliton equations and pseudospherical surfaces, Nucl. Phys. B 154, 343–357 (1979). (22)CrossRefGoogle Scholar
Sasaki, T., On a projectively minimal hypersurface in the unimodular affine space, Geom. Dedicata 23, 237–251 (1987). (329)CrossRefGoogle Scholar
Schief, W. K., Bäcklund transformations for the (un)pumped Maxwell-Bloch system and the fifth Painlevé equation, J. Phys. A: Math. Gen. 27, 547–557 (1994). (249, 374)CrossRefGoogle Scholar
Schief, W. K., On a 2+1-dimensional integrable Ernst-type equation, Proc. R. Soc. Lond. A 446, 381–398 (1994). (49)CrossRefGoogle Scholar
Schief, W. K., Self-dual Einstein spaces via a permutability theorem for the Tzitzeica equation, Phys. Lett. A 223, 55–62 (1996). (91, 105, 237)CrossRefGoogle Scholar
Schief, W. K., On the geometry of an integrable (2+1)-dimensional sine-Gordon system, Proc. R. Soc. Lond. A 453, 1671–1688 (1997). (86)CrossRefGoogle Scholar
W. K. Schief, Self-dual Einstein spaces and a discrete Tzitzeica equation. A permutability theorem link, in P. A. Clarkson and F. W. Nijhoff, eds, Symmetries and Integrability of Difference Equations, London Mathematical Society, Lecture Note Series 255, pp. 137–148, Cambridge University Press (1999). (91, 105, 237)
W. K. Schief, Integrable discretization of geodesics of constant torsion and pseudospherical surfaces, in preparation (2002). (263)
Schief, W. K., The Painlevé III, V and VI transcendents as solutions of the Einstein-Weyl equations, Phys. Lett. A 267, 265–275 (2000). (45)CrossRefGoogle Scholar
Schief, W. K., Hyperbolic surfaces in centro-affine geometry. Integrability and discretization, Chaos, Solitons and Fractals 11, 97–106 (2000). (88, 105)CrossRefGoogle Scholar
Schief, W. K., Isothermic surfaces in spaces of arbitrary dimension: integrability, discretization and Bäcklund transformations. A discrete Calapso equation, Stud. Appl. Math. 106, 85–137 (2001). (163, 171, 172, 176, 183, 184, 188, 190, 237)CrossRefGoogle Scholar
Schief, W. K., On Laplace-Darboux-type sequences of generalized Weingarten surfaces, J. Math. Phys. 41, 6566–6599 (2000). (45, 118)CrossRefGoogle Scholar
W. K. Schief, On the geometry of the Painlevé V equation and a Bäcklund transformation, to appear in The ANZIAM J. (J. Austral. Math. Soc.) (2002). (45, 118)
W. K. Schief, On the integrability of geodesic Bertrand curves, in preparation (2002). (245)
W. K. Schief, Nested toroidal surfaces in magnetohydrostatics. Generation via soliton theory, in preparation (2002). (120)
Schief, W. K. and Rogers, C., The affinsphären equation. Moutard and Bäcklund transformations, Inverse Problems 10, 711–731 (1994). (88, 91, 95, 98, 249, 374)CrossRefGoogle Scholar
Schief, W. K. and Rogers, C., On a Laplace sequence of nonlinear integrable Ernst-type equations, Prog. Nonlinear Diff. Eq. 26, 315–321 (1996). (118)Google Scholar
Schief, W. K. and Rogers, C., Loewner transformations: adjoint and binary Darboux connections, Stud. Appl. Math. 100, 391–422 (1998).(98)CrossRefGoogle Scholar
Schief, W. K. and Rogers, C., Binormal motion of curves of constant curvature and torsion. Generation of soliton surfaces, Proc. R. Soc. Lond. A 455, 3163–3188 (1999). (240, 242, 249, 253, 260, 261, 374)CrossRefGoogle Scholar
Schief, W. K., Rogers, C. and Tsarev, S. P., On a 2+1-dimensional Darboux system: integrable and geometric connections, Chaos, Solitons and Fractals 5, 2357–2366 (1995). (110)CrossRefGoogle Scholar
B. G. Schmidt, The Geroch group is a Banach Lie group, in C. Hoenselaers and W. Dietz, eds, Solutions of Einstein's Equations: Techniques and Results, Lecture Notes in Physics, pp. 113–127, Springer-Verlag, Berlin (1984). (311)
Schulman, E. I., On the integrability of equations of Davey-Stewartson type, Math. Theor. Phys. 56, 720–724 (1984). (163)CrossRefGoogle Scholar
B. F. Schutz, Geometric Methods of Mathematical Physics, Cambridge University Press, Cambridge (1980). (65)
Scott, A. C., Propagation of magnetic flux on a long Josephson junction, Il Nuovo Cimento B 69, 241–261 (1970). (22)CrossRefGoogle Scholar
Seeger, A., Donth, H. and Kochendörfer, A., Theorie der Versetzungen in eindimensionalen Atomreihen III. Versetzungen, Eigenbewegungen und ihre Wechselwirkung, Z. Phys. 134, 173–193 (1953). (21, 22, 30)CrossRefGoogle Scholar
Seeger, A. and Kochendörfer, A., Theorie der Versetzungen in eindimensionalen Atomreihen II. Beliebig angeordnete und beschleunigte Versetzungen, Z. Phys. 130, 321–336 (1951). (21)CrossRefGoogle Scholar
T. J. Sharrock, Surface design with cyclide patches, PhD Thesis, Cambridge University (1985). (198)
Shimuzu, K. and Ichikawa, Y. H., Automodulation of ion oscillation modes in plasma, J. Phys. Soc. Japan 33, 789–792 (1972). (119)CrossRefGoogle Scholar
Steudel, H., Space-Time symmetry of self-induced transparency and of stimulated Raman scattering, Phys. Lett. A 156, 491–492 (1991). (120, 130, 134)CrossRefGoogle Scholar
Steudel, H., Solitons in stimulated Raman scattering and resonant two-photon propagation, Physica D 6, 155–178 (1983). (120, 130)CrossRefGoogle Scholar
Steuerwald, R., Über die Enneper'sche Flächen und Bäcklund'sche Transformation, Abh. Bayer. Akad. Wiss. 40, 1–105 (1936). (40)Google Scholar
D. J. Struick, Lectures on Classical Differential Geometry, 2nd ed, Addison-Wesley Publishing Company, Inc., Reading, Mass. (1961). (18, 32, 63)
Sym, A., Soliton surfaces, Lett. Nuovo Cimento 33, 394–400 (1982). (204, 210)CrossRefGoogle Scholar
Sym, A., Soliton surfaces II. Geometric unification of solvable nonlinearities, Lett. Nuovo Cimento 36, 307–312 (1983). (286, 292)CrossRefGoogle Scholar
Sym, A., Soliton surfaces V. Geometric theory of loop solitons, Lett. Nuovo Cimento 41, 33–40 (1984). (222, 227)CrossRefGoogle Scholar
A. Sym, Soliton surfaces and their applications, in R. Martini, ed, Geometric Aspects of the Einstein Equations and Integrable Systems, Springer, Berlin (1985). (124, 204, 208, 210, 304)
M. Tabor, Painlevé property for partial differential equations, in A. P. Fordy, ed, Soliton Theory: A Survey of Results, pp. 427–446, Manchester University Press (1990). (234)
Tafel, J., Surfaces in ℝ3 with prescribed curvature, J. Geom. Phys. 294, 1–10 (1995). (210, 304)Google Scholar
Takhtajan, L. A., Integration of the continuous Heisenberg spin chain through the inverse scattering method, Phys. Lett. A 64, 235–237 (1977). (128)CrossRefGoogle Scholar
Talanov, V. I., Self focussing of wave beams in nonlinear media, JETP Lett. Engl. Transl. 2, 138–141 (1965). (119)Google Scholar
Taniuki, T. and Washimi, H., Self trapping and instability of hydromagnetic waves along the magnetic field in a cold plasma, Phys. Rev. Lett. 21, 209–212 (1968). (119)CrossRefGoogle Scholar
Temple, B., Systems of conservation laws with invariant submanifolds, Trans. Am. Math. Soc. 280, 781–795 (1983). (230)CrossRefGoogle Scholar
K. Tenenblat, Transformations of Manifolds and Applications to Differential Equations, Pitman Monographs and Surveys in Pure and Applied Mathematics 93, Longman, Harlow (1998). (22)
Thomsen, G., Über eine liniengeometrische Behandlungsweise der projektiven Flächentheorie und die projektive Geometrie der Systeme von Flächen zweiter Ordnung, Abhandl. Math. Sem. Hamburg 4, 232–266 (1926). (329)CrossRefGoogle Scholar
Thomsen, G., Sulle superficie minime proiettive, Ann. Math. 5, 169–184 (1928). (329)Google Scholar
Tritscher, P. and Broadbridge, P., Grain boundary grooving by surface diffusion: an analytic nonlinear model for a symmetric groove, Proc. R. Soc. Lond. A 450, 569–587 (1995). (232)CrossRefGoogle Scholar
Tsien, H. S., Two dimensional subsonic flow of compressible fluids, J. Aeronaut. Sci. 6, 399–407 (1939). (229)CrossRefGoogle Scholar
Tsuzuki, T., Nonlinear waves in the Pitaevsky-Gross equation, J. Low Temp. Phys. 4, 441–457 (1971). (119)CrossRefGoogle Scholar
Tzitzeica, G., Sur une nouvelle classe de surfaces, C. R. Acad. Sci. Paris 144, 1257–1259 (1907); sur une classe de surfaces, C. R. Acad. Sci. Paris 146, 165–166 (1908). (88)Google Scholar
G. Tzitzeica, Sur une nouvelle classe de surfaces, C. R. Acad. Sci. Paris150, 955–956, 1227–1229 (1910). (88)
Veselov, A. P. and Novikov, S. P., Finite-gap two-dimensional potential Schrödinger operators. Explicit formulas and evolution equations, Dokl. Akad. Nauk SSSR 279, 20–24 (1984). (362)Google Scholar
A. Voss, Encyclopädie der mathematischen Wissenschaften, Bd. III, DGa, Leipzig (1902). (152)
Vranceanu, M. G., Les éspaces non-holonomes et leurs applications mécaniques, Mém. Sci. Mathém. 76, 1–70 (1936). (140)Google Scholar
Wadati, M., Wave propagation in nonlinear lattice: I, J. Phys. Soc. Japan 38, 673–680 (1975). (79)CrossRefGoogle Scholar
Wadati, M., Sanuki, H. and Konno, K., Relationships among inverse method, Bäcklund transformation and an infinite number of conservation laws, Progr. Theor. Phys. 53, 419–436 (1975). (266)CrossRefGoogle Scholar
M. Wadati, K. Konno and Y. H. Ichikawa, New integrable nonlinear evolution equations, J. Phys. Soc. Japan, 47, 1698–1700 (1979). (205, 224, 225)
Wahlquist, H. D. and Estabrook, F. B., Bäcklund transformations for solutions of the Korteweg-de Vries equation, Phys. Rev. Lett. 31, 1386–1390 (1973). (236)CrossRefGoogle Scholar
Wahlquist, H. D. and Estabrook, F. B., Prolongation structures of nonlinear evolution equations, J. Math. Phys. 16, 1–7 (1975). (261, 312, 374)CrossRefGoogle Scholar
Wasserman, R. H., On a class of three-dimensional compressible fluid flows, J. Math. Anal. Appl. 5, 119–135 (1962). (120)CrossRefGoogle Scholar
C. E. Weatherburn, Differential Geometry of Three Dimensions, Vol. I, Cambridge University Press (1927). (127, 142, 143, 199, 245)
C. E. Weatherburn, Differential Geometry of Three Dimensions, Vol. II, Cambridge University Press (1930). (128, 141, 142)
Weiss, J., On classes of integrable systems and the Painlevé property, J. Math. Phys. 25, 13–24 (1984). (239)CrossRefGoogle Scholar
Weyl, H., Zur Gravitationstheorie, Ann. Phys. 54, 117–145 (1917). (319)CrossRefGoogle Scholar
E. I. Wilczynski, Projective-differential geometry of curved surfaces, Trans. Am. Math. Soc.8, 233–260 (1907); Trans. Am. Math. Soc.9, 79–120, 293–315 (1908); Trans. Am. Math. Soc.10, 176–200, 279–296 (1909). (329, 331)
D. Wójcik and J. Cieśliński, eds, Nonlinearity & Geometry, Polish Scientific Publishers PWN, Warsaw (1998). (17)
Yin, W. L. and Pipkin, A. C., Kinematics of viscometric flow, Arch. Rat. Mech. Anal. 37, 111–135 (1970). (141)CrossRefGoogle Scholar
H. C. Yuen and B. M. Lake, Nonlinear wave concepts applied to deep water waves, in K. Lonngren and A. Scott, eds, Solitons in Action, Academic Press, New York (1978). (119)
N. J. Zabusky, A synergetic approach to problems of nonlinear dispersive wave propagation, in W. F. Ames, ed, Nonlinear Partial Differential Equations, Academic Press, New York (1967). (71)
Zabusky, N. J. and Kruskal, M. D., Interaction of ‘solitons’ in a collisionless plasma and recurrence of initial states, Phys. Rev. Lett. 15, 240–243 (1965). (22)CrossRefGoogle Scholar
Zakharov, V. E., Stability of periodic waves of finite amplitude on the surface of a deep fluid, J. Appl. Mech. Tech. Phys. 9, 86–94 (1968). (119)Google Scholar
Zakharov, V. E., Description of the n-orthogonal curvilinear coordinate systems and Hamiltonian integrable systems of hydrodynamic type. I. Integration of the Lamé equations, Duke Math. J. 94, 103–139 (1998). (61)CrossRefGoogle Scholar
Zakharov, V. E. and Manakov, S. V., Construction of multidimensional nonlinear integrable systems and their solutions, Funct. Anal. Pril. 19, 11–25 (1985). (110)Google Scholar
V. E. Zakharov, S. V. Manakov, S. P. Novikov and L. P. Pitaevskii, The Theory of Solitons: The Inverse Problem Method [in Russian], Nauka, Moscow (1980). (266, 270)
Zakharov, V. E. and Mikhailov, A. V., Relativistically invariant two-dimensional models of field theory which are integrable by means of the inverse scattering method, Sov. Phys. JETP 47, 1017–1027 (1978). (48)Google Scholar
Zakharov, V. E. and Shabat, A. B., A scheme for integrating the nonlinear equations of mathematical physics by the method of the inverse scattering transform, Funct. Anal. Appl. 8, 226–235 (1974). (266, 270)CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Bibliography and Author Index
  • C. Rogers, University of New South Wales, Sydney, W. K. Schief, University of New South Wales, Sydney
  • Book: Bäcklund and Darboux Transformations
  • Online publication: 04 March 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511606359.015
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Bibliography and Author Index
  • C. Rogers, University of New South Wales, Sydney, W. K. Schief, University of New South Wales, Sydney
  • Book: Bäcklund and Darboux Transformations
  • Online publication: 04 March 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511606359.015
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Bibliography and Author Index
  • C. Rogers, University of New South Wales, Sydney, W. K. Schief, University of New South Wales, Sydney
  • Book: Bäcklund and Darboux Transformations
  • Online publication: 04 March 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511606359.015
Available formats
×