Ablowitz, M. J., Kaup, D. J., Newell, A. C. and Segur, H., Nonlinear evolution equations of physical significance, Phys. Rev. Lett. 31, 125–127 (1973). (64, 204)
Ablowitz, M. J., Kaup, D. J., Newell, A. C. and Segur, H., The inverse scattering transform-Fourier analysis for nonlinear problems, Stud. Appl. Math. 53, 249–134 (1974). (210)
M. J. Ablowitz and H. Segur, Solitons and the Inverse Scattering Transform, SIAM, Philadelphia (1981). (211)
Adkins, J. E., A reciprocal property of the finite plane strain equations, J. Mech. Phys. Solids 6, 267–275 (1958). (97)
Agonov, S. I. and Ferapontov, E. V., Theory of congruences and systems of conservation laws, J. Math. Sci. 94, 1748–1794 (1999). (230)
M. A. Akivis and V. V. Goldberg, Projective Differential Geometry of Submanifolds, Math. Library 49, North-Holland (1993). (329)
Alber, M. S., Camassa, R., Holm, D. D. and Marsden, J. E., The geometry of peaked solutions of a class of integrable pdes, Lett. Math. Phys. 32, 137–151 (1994). (239)
Alber, M. S., Camassa, R., Holm, D. D. and Marsden, J. E., On the link between umbilic geodesics and soliton solutions of nonlinear ODEs, Proc. R. Soc. Lond. A 450, 677–692 (1995). (239)
Albrecht, G. and Degen, W. L. F., Construction of Bézier rectangles and triangles on the symmetric Dupin horn cyclide by means of inversion, Computer Aided Geometric Design 14, 349–357 (1997). (198)
Allen, S. and Dutta, D., Cyclides in pure blending I, Computer Aided Geometric Design 14, 51–75 (1997). (198)
Allen, S. and Dutta, D., Cyclides in pure blending II, Computer Aided Geometric Design 14, 77–102 (1997). (198)
Allen, S. and Dutta, D., Supercyclides and blending, Computer Aided Geometric Design 14, 637–651 (1997). (198)
Antanovskii, L. K., Rogers, C. and Schief, W. K., A note on a capillarity model and the nonlinear Schrödinger equation, J. Phys. A: Math. Gen. 30, L555–L557 (1997). (119)
Antonowicz, M., On the Bianchi-Bäcklund construction for affine minimal surfaces, J. Phys. A: Math. Gen. 20, 1989–1996 (1987). (88)
Antonowicz, M. and Fordy, A. P., Factorisation of energy dependent Schrödinger operators: Miura maps and modified systems, Commun. Math. Phys. 124, 465–486 (1989). (217)
M. Antonowicz and A. P. Fordy, Hamiltonian structure of nonlinear evolution equations, in A. P. Fordy, ed, Soliton Theory: A Survey of Results, pp. 273–312, Manchester University Press (1990). (217)
Antonowicz, M. and Sym, A., New integrable nonlinearities from affine geometry, Phys. Lett. A 112, 1–2 (1985). (88)
Asano, N., Taniuti, T. and Yajima, N., Perturbation method for nonlinear wave modulation: II, J. Math. Phys. 10, 2020–2024 (1969). (119)
Athorne, C., On the characterization of Moutard transformations, Inverse Problems 9, 217–232 (1993). (111, 113)
Athorne, C. and Nimmo, J. J. C., On the Moutard transformation for integrable partial differential equations, Inverse Problems, 7, 809–826 (1991). (362, 368)
Bäcklund, A. V., Om ytor med konstant negativ krökning, Lunds Universitets Årsskrift 19, 1–48 (1883). (17)
Baker, J. A. and Rogers, C., Invariance properties under a reciprocal Bäcklund transformation in gasdynamics, J. Mécanique Théor. Appl. 1, 563–578 (1982). (229)
Barnard, T. W., 2Nπ Ultrashort light pulses, Phys. Rev. A 7, 373–376 (1973). (22, 30)
Baspalov, V. I. and Talanov, V. I., Filamentary structure of light beams in nonlinear liquids, JETP Engl. Transl. 3, 307–310 (1966). (119)
Bateman, H., The lift and drag functions for an elastic fluid in two-dimensional irrotational flow, Proc. Natl. Acad. Sci. U.S.A. 24, 246–251 (1938). (229)
Beals, R., Rabelo, M. and Tenenblat, K., Bäcklund transformations and inverse scattering solutions for some pseudospherical surface equations, Stud. Appl. Math. 81, 125–151 (1989). (22)
Belinsky, V. A. and Zakharov, V. E., Integration of Einstein's equations by means of the inverse scattering technique and construction of exact solutions, Sov. Phys. JETP 48, 985–994 (1978). (297, 305)
Beltrami, E., Saggio di interpretazione della geometria non-euclidea, Giornale di Matematiche 6, 284–312 (1868). (17)
Benney, D. J. and Roskes, G. J., Wave instabilities, Stud. Appl. Math. 48, 377–385 (1969). (163)
Betchov, R., On the curvature and torsion of an isolated vortex filament, J. Fluid. Mech. 22, 471–479 (1965). (60)
Bianchi, L., Ricerche sulle superficie a curvatura constante e sulle elicoidi. Tesi di Abilitazione, Ann. Scuola Norm. Sup. Pisa (1) 2, 285–304 (1879). (17)
Bianchi, L., Sopra i sistemi tripli ortogonali di Weingarten, Ann. Matem. 13, 177–234 (1885). (17, 60, 72)
Bianchi, L., Sopra alcone nuove classi di superficie e di sistemi tripli ortogonali, Ann. Matem. 18, 301–358 (1890). (45, 50, 297)
Bianchi, L., Sulle deformazioni infinitesime delle superficie flessibili ed inestendibili, Rend. Lincei 1, 41–48 (1892). (299)
Bianchi, L., Sulla trasformazione di Bäcklund per le superficie pseudosferiche, Rend. Lincei 5, 3–12 (1892). (28)
Bianchi, L., Ricerche sulle superficie isoterme e sulla deformazione delle quadriche, Ann. Matem. 11, 93–157 (1905). (152, 171, 184)
L. Bianchi, Lezioni di geometria differenziale1-4, Zanichelli, Bologna (1923–1927). (18, 21, 28, 152, 154, 182)
O. Bjørgum, On Beltrami vector fields and flows, Part I., Universitet I. Bergen, Årbok Naturvitenskapelig rekke n-1 (1951). (139)
W. Blaschke, Differentialgeometrie, Chelsea Publishing Company, New York, Reprinted (1967). (88, 91, 100, 127, 335)
A. I. Bobenko, Surfaces in terms of 2 by 2 matrices. Old and new integrable cases, in A. Fordy and J. Woods, eds, Harmonic Maps and Integrable Systems, Vieweg, pp. 83–128 (1994). (40)
Bobenko, A. and Eitner, U., Bonnet surfaces and Painlevé equations, J. Reine Angew. Math. 499, 47–79 (1998). (118)
A. I. Bobenko and U. Eitner, Painlevé equations in differential geometry of surfaces, Lecture Notes in Mathematics1753 Springer Verlag, Berlin, Heidelberg (2000). (118)
Bobenko, A., Eitner, U. and Kitaev, A., Surfaces with harmonic inverse mean curvature and Painlevé equations, Geom. Dedicata 68, 187–227 (1997). (118)
Bobenko, A. I. and Kitaev, A. V., On asymptotic cones of surfaces with constant curvature and the third Painlevé equation, Manuscripta. Math. 97, 489–516 (1998). (118)
A. I. Bobenko and R. Seiler, eds, Discrete Integrable Geometry and Physics, Clarendon Press, Oxford (1999). (237)
Boem, W., On cyclides in geometric modelling, Computer Aided Geometric Design 7, 243–255 (1990). (198)
Bogdanov, L. V., Veselov-Novikov equation as a natural two-dimensional generalization of the Korteweg-de Vries equation, Teoret. Mat. Fiz. 70, 309–314 (1987). (330)
Boiti, M., Laddomada, C. and Pempinelli, F., Multiple-kink-soliton solutions of the nonlinear Schrödinger equation, Il Nuovo Cimento B 65, 248–258 (1981). (149)
Boiti, M., Leon, J., Martina, L. and Pempinelli, F., Scattering of localized solitons in the plane, Phys. Lett. A 132, 432–439 (1988). (196, 362)
Boiti, M., Pempinelli, F. and Sabatier, P. C., First and second order nonlinear evolution equations, Inverse Problems 9, 1–37 (1993). (163)
G. Bol, Projektive Differentialgeometrie, Göttingen (1954). (329, 330, 332, 336, 341, 370)
Boldin, A. Yu., Safin, S. S. and Shapirov, R. A., On an old article of Tzitzeica and the inverse scattering method, J. Math. Phys. 34, 5801–5809 (1993). (91)
Bonnet, O., Mémoire sur la théorie des surfaces applicables sur une surface donnée, J. l' École Polytech. 41, 201–230 (1865); J. l'École Polytech. 42, 1–151 (1867). (18)
Bour, E., Théorie de la déformation des surfaces, J. l'École Imperiale Polytech. 19, Cahier 39, 1–48 (1862). (17, 152)
Brezinski, C., A general extrapolation algorithm, Numer. Math. 35, 175–187 (1980). (237)
Broadbridge, P., Knight, J. H. and Rogers, C., Constant rate rainfall infiltration in a bounded profile: solutions of a nonlinear model, Soil. Soc. Am. J. 52, 1526–1533 (1988). (229)
Broadbridge, P. and Rogers, C., Exact solutions for vertical drainage and redistribution in soils, J. Eng. Math. 24, 225–43 (1990). (229)
Broadbridge, P. and Tritscher, P., An integrable fourth order nonlinear evolution equation applied to the thermal grooving of metal surfaces, IMA J. Appl. Math. 53, 249–265 (1994). (232)
F. Burstall, Isothermic surfaces in arbitrary co-dimension, Atti del Congresso Internazionale in onore di Pasquale Calapso, Rendiconti del Sem. Mat. di. Messina, 57–68 (2001). (163, 171)
F. Burstall, Isothermic surfaces: conformal geometry, Clifford algebras and integrable systems, Math. DG/0003096 (2000). (163, 171)
Burstall, F., Hertrich-Jeromin, U., Pedit, F. and Pinkall, U., Curved flats and isothermic surfaces, Math. Z. 225, 199–209 (1997). (171, 189)
Calapso, P., Sulla superficie a linee di curvatura isoterme, Rend. Circ. Mat. Palermo 17, 275–286 (1903). (152, 154, 165)
Calogero, F. and Degasperis, A., Coupled nonlinear evolution equations solvable via the inverse spectral transform, and solitons that come back: the boomeron, Lett. Nuovo Cimento 16, 425–433 (1976). (155, 161, 164)
Calogero, F. and Degasperis, A., Bäcklund transformations, nonlinear superposition principle, multisoliton solutions and conserved quantities for the “boomeron” nonlinear evolution equation, Lett. Nuovo Cimento 16, 434–438 (1976). (155, 161, 164, 191)
F. Calogero and A. Degasparis, Spectral Transform and Solitons, North Holland Publishing Company, Amsterdam (1982). (233, 266)
Calogero, F. and Degasperis, A., A modified modified Korteweg-de Vries equation, Inverse Problems 1, 57–66 (1985). (243)
Camassa, R. and Holm, D. D., An integrable shallow water equation with peaked solitons, Phys. Rev. Lett. 71, 1661–1664 (1993). (239)
E. Cartan, Les systèmes différentielles extérieurs et leurs applications à métriques, Hermann, Paris (1945). (261)
P. J. Caudrey, J. C. Eilbeck, J. D. Gibbon and R. K. Bullough, Exact multisoliton solution of the inhomogeneously broadened self-induced transparency equations, J. Phys. A: Math. Gen.6, L53–L56 (1973). (130)
Caudrey, P. J., Gibbon, J. D., Eilbeck, J. C. and Bullough, R. K., Exact multi-soliton solutions of the self-induced transparency and sine-Gordon equations, Phys. Rev. Lett. 30, 237–239 (1973). (130)
Cayley, A., On the cyclide, Q. J. Pure Appl. Math. 12, 148–165 (1873). (198)
Cekirge, H. M. and Rogers, C., On elastic-plastic wave propagation: transmission of elastic-plastic boundaries, Arch. Mech. 29, 125–141 (1977). (98)
Cekirge, H. M. and Varley, E., Large amplitude waves in bounded media I: reflexion and transmission of large amplitude shockless pulses at an interface, Philos. Trans. R. Soc. Lond. A 273, 261–313 (1973). (98)
Cenkl, B., Geometric deformations of the evolution equations and Bäcklund transformations, Physica D 18, 217–219 (1986). (21)
Ceyhan, Ö., Fokas, A. S. and Gürses, M., Deformations of surfaces associated with integrable Gauß-Mainardi-Codazzi equations, J. Math. Phys. 41, 2251–2270 (2000). (42)
Chen, H. H. and Liu, C. S., Nonlinear wave and soliton propagation in media with arbitrary inhomogeneities, Phys. Fluids 21, 377–380 (1978). (119)
S. S. Chern, Surface theory with Darboux and Bianchi, Miscellanea Mathematica, pp. 59–69, Springer, Berlin (1991). (17)
Chern, S. S. and Tenenblat, K., Foliations on a surface of constant curvature and the modified Korteweg-de Vries equations, J. Diff. Geom. 16, 347–349 (1981). (22)
Chern, S. S. and Tenenblat, K., Pseudospherical surfaces and evolution equations, Stud. Appl. Math. 74, 55–83 (1986). (22)
Chern, S. S. and Terng, C. L., An analogue of Bäcklund's theorem in affine geometry, Rocky Mountain J. Math. 10, 105–124 (1980). (88)
F. J. Chinea, Vector Bäcklund transformations and associated superposition principle, in C. Hoenselaers and W. Dietz, eds, Solutions of Einstein's Equations: Techniques and Results, Lecture Notes in Physics, pp. 55–67, Springer-Verlag, Berlin (1984). (298, 326)
Cieśliński, J., An algebraic method to construct the Darboux matrix, J. Math. Phys. 36, 5670–5706 (1995). (266, 270)
Cieśliński, J., The Darboux-Bianchi transformation for isothermic surfaces. Classical results versus the soliton approach, Diff. Geom. Appl. 7, 1–28 (1997). (171)
Cieśliński, J., A generalized formula for integrable classes of surfaces in Lie algebras, J. Math. Phys. 38, 4255–4272 (1997). (208)
Cieśliński, J., Gragert, P. K. H. and Sym, A., Exact solutions to localised induction-approximation equation modelling smoke-ring motion, Phys. Rev. Lett. 57, 1507–1510 (1986). (150)
Cieśliński, J., Goldstein, P. and Sym, A., Isothermic surfaces inE3 as soliton surfaces, Phys. Lett. A 205, 37–43 (1995). (154, 192)
J. F. Cornwell, Group Theory in Physics, Vols. I, II, Academic Press, London (1984). (371)
Cosgrove, C. M., Relationships between the group-theoretic and soliton-theoretic techniques for generating stationary axisymmetric gravitational solutions, J. Math. Phys. 21, 2417–2447 (1980). (297, 305)
E. Cosserat, Sur les systèmes conjugués et sur la déformation des surfaces, C. R. Acad. Sci. Paris113, 460–463 (1891); sur les systèmes cycliques et sur la déformation des surfaces, C. R. Acad. Sci. Paris113, 498–500. (299)
J. Crank, The Mathematics of Diffusion, 2nd ed, Oxford University Press, (1975). (232)
Crum, M. M., Associated Sturm-Liouville systems, Q. J. Math. Oxford 6, 121–127 (1955). (266)
Darboux, G., Sur une proposition relative aux equations linéaires, C. R. Acad. Sci. Paris 94, 1456–1459 (1882). (17, 152, 266)
G. Darboux, Leçons sur la théorie générale des surfaces, Gauthier-Villars, Paris (1887). (109)
G. Darboux, Sur les surfaces dont la courbure totale est constante, C. R. Acad. Sci. Paris97, 848–850 (1883); sur les surfaces à courbure constante, C. R. Acad. Sci. Paris97, 892–894; sur l'équation aux dérivées partielles des surfaces à courbure constante, C. R. Acad. Sci. Paris97, 946–949. (17)
Darboux, G., Sur les surfaces isothermiques, C. R. Acad. Sci. Paris 128, 1299–1305 (1899). (152, 154, 171, 175)
Davey, A., The propagation of a weak nonlinear wave, J. Fluid. Mech. 53, 769–781 (1972). (119)
Da, L. S. Rios, Sul moto d'un liquido indefinito con un filetto vorticoso, Rend. Circ. Mat. Palermo 22, 117–135 (1906). (60, 119, 121)
Davey, A. and Stewartson, K., On three-dimensional packets of surface waves, Proc. R. Soc. Lond. A 338, 101–110 (1974). (163)
P. G. deGennes, Superconductivity of Metals and Alloys, Benjamin, New York (1966). (119)
A. Degasperis, C. Rogers and W. K. Schief, Isothermic surfaces generated via Bäcklund and Moutard transformations. Boomeron and zoomeron connections, to appear in Stud. Appl. Math. (2002). (164, 198)
Demoulin, A., Sur les systèmes et les congruencesK, C. R. Acad. Sci. Paris 150, 156–159 (1910). (186)
Demoulin, A., Sur deux transformations des surfaces dont les quadriques de Lie n'ont que deux ou trois points charactéristiques, Bull. l'Acad. Belgique 19, 479–502, 579–592, 1352–1363 (1933). (329, 335)
J. de Pont, Essays on the cyclide patch, PhD Thesis, Cambridge University (1984). (198)
Dietz, W. and Hoenselaers, C., Two mass solutions of Einstein's vacuum equations: the double Kerr solution, Ann. Phys. 165, 319–383 (1985). (311)
Dmitrieva, L. A., Finite-gap solutions of the Harry Dym equation, Phys. Lett. A 182, 65–70 (1993). (234)
Dmitrieva, L. A., N -loop solitons and their link with the complex Harry Dym equation, J. Phys. A: Math. Gen. 27, 8197–8205 (1994). (226, 234)
Dmitrieva, L. and Khlabystova, M., Multisoliton solutions of the (2+1)-dimensional Harry Dym equation, Phys. Lett. A 237, 369–380 (1998). (239)
M. P. do Carmo, Differential Geometry of Curves and Surfaces, Prentice-Hall, Inc., Englewood Cliffs, New Jersey (1976). (18)
R. K. Dodd, General relativity, in A. P. Fordy, ed, Soliton Theory: A Survey of Results, pp. 174–207, Manchester University Press (1990). (319)
Dodd, R. K., Soliton immersions, Commun. Math. Phys. 197, 641–665 (1998). (208)
Dodd, R. K. and Bullough, R. K., Polynomial conserved densities for the sine-Gordon equations, Proc. R. Soc. Lond. A 352, 481–503 (1977). (88)
Doliwa, A. and Santini, P., An elementary geometric characterisation of the integrable motions of a curve, Phys. Lett. A 185, 373–384 (1994). (60)
Doliwa, A., Santini, P. M. and Ma~nas, M., Transformations of quadrilateral lattices, J. Math. Phys. 41, 944–990 (2000). (167)
C. Dupin, Applications de Géometrie et de Mécanique, Bachelier, Paris (1822). (198, 200)
J. Ehlers, Les théories relativistes de la gravitation, CRNS, Paris (1959). (310)
L. P. Eisenhart, Riemannian Geometry, Princeton University Press, Princeton, New Jersey (1950). (157, 158, 161)
L. P. Eisenhart, Non-Riemannian Geometry, American Mathematical Society, New York (1958). (309)
L. P. Eisenhart, A Treatise on the Differential Geometry of Curves and Surfaces, Dover, New York (1960). (47, 60, 68, 127)
L. P. Eisenhart, Transformations of Surfaces, Chelsea, New York (1962). (72, 89, 109, 117, 155, 157, 167, 175, 180)
Emde, F., Der Einfluß der Feldlinien auf Divergenz und Rotor, Arch. Elektrotechn. 39, 2–8 (1948). (139)
Ernst, F., New formulation of the axially symmetric gravitational field problem. I/II, Phys. Rev. 167, 1175–1178; Phys. Rev. 168, 1415–1417 (1968). (49, 297, 304, 309)
Estabrook, F. B., Moving frames and prolongation algebras, J. Math. Phys. 23, 2071–2076 (1982). (374)
Estabrook, F. B. and Wahlquist, H. D., Prolongation structures of nonlinear evolution equations. II, J. Math. Phys. 17, 1293–1297 (1976). (261, 312, 374)
Ferapontov, E. V., Reciprocal transformations and their invariants, Diff. Uravnen 25, 1256–1265 (1989). (230)
Ferapontov, E. V., Reciprocal transformations and hydrodynamic symmetries, Diff. Uravnen 27, 1250–1263 (1993). (230)
Ferapontov, E. V., Nonlocal Hamiltonian operators of hydrodynamic type: differential geometry and applications, Trans. Am. Math. Soc. 170, 33–58 (1995). (230)
Ferapontov, E. V., Dupin hypersurfaces and integrable Hamiltonian systems of hydrodynamic type which do not possess Riemann invariants, Diff. Geom. Appl. 5, 121–152 (1995). (198, 230)
E. V. Ferapontov, Surfaces in Lie sphere geometry and the stationary Davey-Stewartson hierarchy, Sfb 288 Preprint287, Technische Universität, Berlin (1997). (163)
Ferapontov, E. V., Stationary Veselov-Novikov equation and isothermally asymptotic surfaces in projective-differential geometry, Diff. Geom. Appl. 11, 117–128 (1999). (330, 357, 358, 363, 370)
Ferapontov, E. V., Lie sphere geometry and integrable systems, Tohoku Math. J. 52, 199–233 (2000). (230)
Ferapontov, E. V., Integrable systems in projective differential geometry, Kyushu J. Math. 54, 183–215 (2000). (329, 330)
Ferapontov, E. V., Rogers, C. and Schief, W. K., Reciprocal transformations of two-component hyperbolic systems and their invariants, J. Math. Anal. Appl. 228, 365–376 (1998). (230)
Ferapontov, E. V. and Schief, W. K., Surfaces of Demoulin: differential geometry, Bäcklund transformation and integrability, J. Geom. Phys. 30, 343–363 (1999). (329, 354)
R. P. Feynman, R. B. Leighton and M. Sands, The Feynman Lectures on Physics, Vol. II, Addison-Wesley (1964). (105)
S. P. Finikov, Projective-differential Geometry, Moscow-Leningrad (1937). (135, 329, 330, 370)
S. P. Finikov, Theory of Congruences, Moscow-Leningrad (1950). (117, 330, 370)
Fokas, A., A symmetry approach to exactly solvable evolution equations, J. Math. Phys. 21, 1318–1325 (1980). (240, 243)
Fokas, A. S. and Gelfand, I. M., Surfaces on Lie groups, on Lie algebras and their integrability, Comm. Math. Phys. 177, 203–220 (1996). (208)
A. S. Fokas, I. M. Gelfand, F. Finkel and Q. M. Liu, A formula for constructing infinitely many surfaces on Lie algebras and Lie groups, to appear in Selecta Math. (208)
Fordy, A. P. and Gibbons, J., Integrable nonlinear Klein Gordon equations, Commun. Math. Phys. 77, 21–30 (1980). (91, 113)
Foursov, M. V., Olver, P. J., and Reyes, E. G., On formal integrability of evolution equations and local geometry of surfaces, Diff. Geom. Appl. 15, 183–199 (2001). (22)
Fried, B. D. and Ichikawa, Y. H., On the nonlinear Schrödinger equation for Langmuir waves, J. Phys. Soc. Japan 33, 789–792 (1972). (119)
G. Fubini and E. ^ Cech, Geometria Proiettiva Differenziale, Zanichelli, Bologna (1926). (329, 330, 370)
Gaffet, B., SU(3) symmetry of the equations of uni-dimensional gas flow, with arbitrary entropy distribution, J. Math. Phys. 25, 245–255 (1984). (88, 95)
Gaffet, B., An infinite Lie group of symmetry of one-dimensional gas flow for a class of entropy distributions, Physica D 11, 287–308 (1984). (88, 95)
B. Gaffet, An S L(3)-Symmetrical F-Gordon Equation:, zαβ = ⅓(ez − e−2z, Lecture Notes in Physics246, pp. 301–319, Springer Verlag, Berlin (1986). (88, 95)
Gaffet, B., The non-isentropic generalisation of the classical theory of Riemann invariants, J. Phys. A: Math. Gen. 20, 2721–2731 (1987). (88, 95)
Gaffet, B., A class of 1-d gas flows soluble by the inverse scattering transform, Physica D 26, 123–139 (1987). (88, 95)
Geroch, R., A method for generating solutions of Einstein's equations. I/II, J. Math. Phys. 12, 918–924 (1971); J. Math. Phys. 13, 394–404 (1972). (310)
Gibbs, H. M. and Slusher, R. E., Peak amplification and pulse breakup of a coherent optical pulse in a simple atomic absorber, Phys. Rev. Lett. 24, 638–641 (1970). (22, 31)
Gilbarg, D., On the flow patterns common to certain classes of plane fluid motions, J. Math. and Phys. 26, 137–142 (1947). (120)
L. Godeaux, La théorie des surfaces et l'espace réglé (Géometrie projective differentielle), Actualités scientifiques et industrielles, N138, Hermann, Paris (1934). (329, 334)
Grammaticos, B., Papageorgiu, V. and Ramani, A., KdV equations and integrability detectors, Acta Appl. Math. 39, 335–348 (1995). (236)
Grimshaw, R., Slowly varying solitary waves: II, Nonlinear Schrödinger equation, Proc. R. Soc. Lond. A 368, 377–388 (1979). (119)
C. Gu, H. Hu and Z. Zhou, Darboux Transformation in Soliton Theory and its Geometric Applications, Shanghal Scientific & Technical Publishers (1999). (266)
Haar, A., Über adjungierte Variationsprobleme und adjungierte Extremalflächen, Math. Ann. 100, 481–502 (1928). (229)
Harrison, B. K., Bäcklund transformation for the Ernst equation of general relativity, Phys. Rev. Lett. 41, 1197–1200 (1978). (297, 305, 311, 317)
Harrison, B. K., Unification of Ernst equation Bäcklund transformations using a modified Wahlquist-Estabrook technique, J. Math. Phys. 24, 2178–2187 (1983). (374)
Hauser, I. and Ernst, F. J., A homogeneous Hilbert problem for the Kinnersley-Chitre transformations, J. Math. Phys. 21, 1126–1140 (1980). (305)
Hauser, I. and Ernst, F., Proof of a Geroch conjecture, J. Math. Phys. 22, 1051–1063 (1981). (311)
Hasegawa, A. and Tappert, F., Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers: I. Anomolous dispersion, Appl. Phys. Lett. 23, 142–144 (1973). (119)
Hasimoto, H., A soliton on a vortex filament, J. Fluid. Mech. 51, 477–485 (1972). (60, 120)
Hasimoto, H. and H. Ono, Nonlinear modulation of gravity waves, J. Math. Soc. Japan 33, 805–811 (1972). (119)
R. Hermann, The Geometry of Nonlinear Differential Equations, Bäcklund Transformations and Solitons, Part A, Math. Sci. Press, Brookline, Mass. (1976). (111)
Hertrich-Jeromin, U. and Pedit, F., Remarks on the Darboux transform of isothermic surfaces, Doc. Math. 2, 313–333 (1997). (171)
Hirota, R., Exact solution of the Korteweg-de Vries equation for multiple collisions of solitons, Phys. Rev. Lett. 27, 1192–1194 (1971). (198)
Hirota, R. and Satsuma, J., A simple structure of superposition formula of the Bäcklund transformation, J. Phys. Soc. Japan 45, 1741–1750 (1978). (79)
C. Hoenselaers, HKX transformations. An introduction, in C. Hoenselaers and W. Dietz, eds, Solutions of Einstein's Equations: Techniques and Results, Lecture Notes in Physics, pp. 68–84, Springer-Verlag, Berlin (1984). (311)
Hoenselaers, C., The sine-Gordon prolongation algebra, Progr. Theor. Phys. 74, 645–654 (1985). (249, 374)
Hoenselaers, C., More prolongation structures, Progr. Theor. Phys. 75, 1014–1029 (1986). (249, 374)
Hoenselaers, C., Equations admitting o(2, 1) × R(t, t-1) as a prolongation algebra, J. Phys. A: Math. Gen. 21, 17–31 (1988). (249, 374)
C. Hoenselaers and W. Dietz, eds, Solutions of Einstein's Equations: Techniques and Results, Lecture Notes in Physics, Springer Verlag, Berlin (1984). (297)
Hoenselaers, C. and Schief, W. K., Prolongation structures for Harry Dym type equations and Bäcklund transformations of cc-ideals, J. Phys. A: Math. Gen. 25, 601–622 (1992). (249, 374)
A. N. W. Hone, The associated Camassa-Holm equation and the KdV equation, J. Phys. A: Math. Gen.32, L307–L314 (1999). (230)
L. N. Howard, Constant Speed Flows, PhD Thesis, Princeton University (1953). (120)
R. W. H. T. Hudson, Kummer's Quartic Surface, Cambridge University Press (1990). (330)
Ibragimov, N., Sur l'équivalence des équations d'évolution qui admettent une algèbre de Lie-Bäcklund infinie, C. R. Acad. Sci. Paris 293, 657–660 (1981). (234)
Ichikawa, Y. H., Imamura, T. and Tanuiti, T., Nonlinear wave modulation in collisionless plasma, J. Phys. Soc. Japan 33, 189–197 (1972). (119)
N. Jacobson, Lie algebras, Dover Publications, Inc., New York (1962). (113)
A. Jeffrey, Equations of evolution and waves, in C. Rogers and T. B. Moodie, eds, Wave Phenomena: Modern Theory and Applications, North Holland, Amsterdam (1986). (226)
M. E. Johnston, Geometry and the Sine Gordon Equation, M.Sc. Thesis, University of New South Wales (1994). (40, 83)
Johnston, M. E., Rogers, C., Schief, W. K. and Seiler, M. L., On moving pseudospherical surfaces: a generalised Weingarten system, Lie Groups and Their Applications 1, 124–136 (1994). (72)
Jonas, H., Über die Transformation der konjugierten Systeme und über den gemeinsamen Ursprung der Bianchischen Permutabilitätstheoreme, Sitzungsberichte Berl. Math. Ges. 14, 96–118 (1915). (89, 167, 180)
Jonas, H., Sopra una classe di transformazioni asintotiche, applicabili in particolare alle superficie la cui curvatura è proporzionale alla quarta potenza della distanza del piano tangente da un punto fisso, Ann. Mat. Pura Appl. Bologna Ser. III 30, 223–255 (1921). (88)
Jonas, H., Die Differentialgleichung der Affinsphären in einer neuen Gestalt, Math. Nachr. 10, 331–361 (1953). (88, 92, 93, 94, 100)
V. G. Kac, Infinite Dimensional Lie Algebras, Cambridge University Press (1985). (113, 250)
Kadanoff, L. P., Exact solutions for the Saffman-Taylor problem with surface tension, Phys. Rev. Lett. 65, 2986–2988 (1986). (239)
Kakutani, T. and Ono, H., Weak nonlinear hydromagnetic waves in cold collisionless plasma, J. Phys. Soc. Japan 26, 1305–1318 (1969). (71)
Kambe, T. and Takao, T., Motion of distorted vortex rings, J. Phys. Soc. Japan 31, 591–599 (1971). (60)
Kamran, N. and Tenenblat, K., On differential equations describing pseudo-spherical surfaces, J. Diff. Eq. 115, 75–98 (1995). (22)
Karpman, V. I. and Kruskal, E. M., Modulated waves in nonlinear dispersive media, Sov. Phys. JETP 28, 277–281 (1969). (119)
Kaup, D. J., The method of solution for stimulated Raman scatttering and two-photon propagation, Physica D 6, 143–154 (1983). (130)
Keener, J. P. and Tyson, J. J., The dynamics of scroll waves in excitable media, SIAM Rev. 38, 1–39 (1992). (120)
Kelley, P. L., Self focussing of optic beams, Phys. Rev. Lett. 15, 1005–1008 (1965). (119)
Kingston, J. G. and Rogers, C., Reciprocal Bäcklund transformations of conservation laws, Phys. Lett. A 92, 261–264 (1982). (230, 378)
J. G. Kingston, C. Rogers and D. Woodall, Reciprocal auto-Bäcklund transformations, J. Phys. A: Math. Gen.17, L35–L38 (1984). (230, 243)
Kinnersley, W., Symmetries of the stationary Einstein-Maxwell field equations I, J. Math. Phys. 18, 1529–1537 (1977). (311)
Kinnersley, W. and Chitre, D. M., Symmetries of the stationary Einstein-Maxwell field equations II, J. Math. Phys. 18, 1538–1542 (1978). (311)
Kinnersley, W. and Chitre, D. M., Symmetries of the Einstein-Maxwell field equations III, J. Math. Phys. 19, 1926–1931 (1978). (305)
P. Klimczewski, M. Nieszporski and A. Sym, Luigi Bianchi, Pasquale Calapso and solitons, Preprint Instytut Fizyki Teoretycznej, Uniwersytet Warszawski (2000). (152)
Kochendörfer, A. and Seeger, A., Theorie der Versetzungen in eindimensionalen Atomreihen I. Periodisch angeordnete Versetzungen, Z. Phys. 127, 533–550 (1950). (21)
Konno, K. and Jeffrey, A., Some remarkable properties of two loop soliton solutions, J. Phys. Soc. Japan 52, 1–3 (1983). (226)
Konno, K., Kameyama, W. and Sanuki, H., Effect of weak dislocation potential on nonlinear wave equation in an anharmonic crystal, J. Phys. Soc. Japan 37, 171–176 (1974). (71)
Konno, K. and Sanuki, H., Bäcklund transformation for equation of motion for nonlinear lattice under weak dislocation potential, J. Phys. Soc. Japan 39, 22–24 (1975). (78)
Konopelchenko, B. G., Elementary Bäcklund transformations, nonlinear superposition principles and solutions of the integrable equations, Phys. Lett. A 87, 445–448 (1982). (237)
Konopelchenko, B. G., Soliton eigenfunction equations: the IST integrability and some properties, Rev. Math. Phys. 2, 399–440 (1990). (204, 217)
Konopelchenko, B. G., The non-abelian (1+1)-dimensional Toda lattice as the periodic fixed point of the Laplace transform for (2+1)-dimensional integrable systems, Phys. Lett. A 156, 221–222 (1991). (118)
Konopelchenko, B. G., Induced surfaces and their integrable dynamics, Stud. Appl. Math. 96, 9–51 (1996). (208)
Konopelchenko, B. G. and Pinkall, U., Integrable deformations of affine surfaces via the Nizhnik-Veselov-Novikov equation, Phys. Lett. A 245, 239–245 (1998). (88)
Konopelchenko, B. G. and Rogers, C., On a 2+1-dimensional nonlinear system of Loewner-type, Phys. Lett. A 152, 391–397 (1991). (64, 99)
Konopelchenko, B. G. and Rogers, C., On generalised Loewner systems: novel integrable equations in 2+1 dimensions, J. Math. Phys. 34, 214–242 (1993). (64, 99)
B. G. Konopelchenko and W. K. Schief, Lamé and Zakharov-Manakov systems: Combescure, Darboux and Bäcklund transformations, Preprint AM 93/9 Department of Applied Mathematics, The University of New South Wales (1993). (167)
Konopelchenko, B. G. and Schief, W. K., Three-dimensional integrable lattices in Euclidean spaces: conjugacy and orthogonality, Proc. R. Soc. Lond. A 454, 3075–3104 (1998). (167)
Konopelchenko, B. G., Schief, W. and Rogers, C., A 2+1-dimensional sine-Gordon system: its auto-Bäcklund transformation, Phys. Lett. A 172, 39–48 (1992). (110)
D. Kramer, GR 9 Abstracts1, 42 (1980). (319)
Kramer, D., Equivalence of various pseudopotential approaches for Einstein-Maxwell fields, J. Phys. A: Math. Gen. 15, 2201–2207 (1982). (305)
Kramer, D. and Neugebauer, G., Zu axialsymmetrischen stationären Lösungen der Einsteinschen Feldgleichungen für das Vakuum, Comm. Math. Phys. 10, 132–139 (1968). (297, 308)
Kramer, D. and Neugebauer, G., The superposition of two Kerr solutions, Phys. Lett. A 75, 259–261 (1980). (319)
D. Kramer and G. Neugebauer, Bäcklund transformations in general relativity, in C. Hoenselaers and W. Dietz, eds, Solutions of Einstein's Equations: Techniques and Results, Lecture Notes in Physics, pp. 1–25, Springer-Verlag, Berlin (1984). (319)
Kramer, D., Neugebauer, G. and Matos, T., Bäcklund transforms of chiral fields, J. Math. Phys. 32, 2727–2730 (1991). (305)
D. Kramer, H. Stephani, H. Herlt and M. MacCallum, Exact Solutions of Einstein's Equations, Cambridge University Press (1980). (297, 309)
Lakshmanan, M., Ruijgrok, Th. W. and Thompson, C. J., On the dynamics of a continuum spin system, Physica A 84, 577–590 (1976). (60, 128)
Lamb, G. L. Jr., Analytical descriptions of ultrashort optical pulse propagation in a resonant medium, Rev. Mod. Phys. 43, 99–124 (1971). (22, 30)
Lamb, G. L. Jr., Solitons on moving space curves, J. Math. Phys. 18, 1654–1661 (1977). (60, 61)
G. L. Lamb, Elements of Soliton Theory, John Wiley, New York (1980). (148)
G. Lamé, Leçons sur les coordonnées curvilignes et leurs diverses applications, Mallet-Bechelier, Paris (1859). (60)
E. P. Lane, Projective Differential Geometry of Curves and Surfaces, University of Chicago Press, Chicago (1932). (109, 329, 330, 370)
Lax, P. D., Integrals of nonlinear equations of evolution and solitary waves, Comm. Pure Appl. Math. 21, 467–490 (1968). (217)
Levi, D., Nonlinear differential difference equations as Bäcklund transformations, J. Phys. A: Math. Gen. 14, 1082–1098 (1981). (237)
Levi, D. and Benguria, R., Bäcklund transformations and nonlinear differential difference equations, Proc. Natl. Acad. Sci. U.S.A. 77, 5025–5027 (1980). (237)
Levi, D. and Ragnisco, O., Bäcklund transformations for chiral field equations, Phys. Lett. A 87, 381–384 (1982). (270)
Levi, D., Ragnisco, O. and Sym, A., Bäcklund transformation vs. the dressing method, Lett. Nuovo Cimento 33, 401–406 (1982). (266, 270)
Levi, D., Ragnisco, O. and Sym, A., Dressing method vs. classical Darboux transformation, Il Nuovo Cimento B 83, 34–42 (1984). (266, 270)
Levi, D. and Sym, A., Integrable systems describing surfaces of non-constant curvature, Phys. Lett. A 149, 381–387 (1990). (21, 54, 299)
T. Levi-Civita, Attrazione Newtoniana dei Tubi Sottili e Vortici Filiformi, Ann. R. Scuola Norm. Sup. Pisa, Zanichelli, Bologna (1932). (60)
Lewis, T., Some special solutions of the equations of axially symmetric gravitational fields, Proc. R. Soc. Lond. A 136, 176–192 (1932). (309)
Loewner, C., A transformation theory of partial differential equations of gasdynamics, NACA Technical Note 2065, 1–56 (1950). (98, 229)
Loewner, C., Generation of solutions of systems of partial differential equations by composition of infinitesimal Bäcklund transformations, J. Anal. Math. 2, 219–242 (1952). (64)
L. G. Loitsyanskii, Mechanics of Liquids and Gases, International Series of Monographs in Aeronautics and Astronautics, Pergamon Press, New York (1966) (Translation Editor K. Stewartson). (105)
Lund, F. and Regge, T., Unified approach to strings and vortices with soliton solutions, Phys. Rev. D 14, 1524–1535 (1976). (120, 129, 204)
Maison, D., Are the stationary, axially symmetric Einstein equations completely integrable? Phys. Rev. Lett. 41, 521–522 (1978). (297, 305, 311)
Martin, M. H., A new approach to problems in two-dimensional flow, Q. Appl. Math. 8, 137–350 (1951). (96, 229)
Martin, M. H., The propagation of a plane shock into a quiet atmosphere, Can. J. Math. 5, 37–39 (1953). (96)
R. R. Martin, Principal patches for computational geometry, PhD Thesis, Cambridge University (1982). (198)
R. R. Martin, J. de Pont and T. J. Sharrock, Cyclide surfaces in computer aided design, in J. A. Gregory, ed, The Mathematics of Surfaces, Oxford University Press (1986). (198)
Marris, A. W., On motions with constant speed and streamline parameters, Arch. Rat. Mech. Anal. 90, 1–14 (1985). (120)
Marris, A. W. and Passman, S. L., Vector fields and flows on developable surfaces, Arch. Rat. Mech. Anal. 32, 29–86 (1969). (120, 137, 138, 142, 144)
Marris, A. W. and Wang, C. C., Solenoidal screw fields of constant magnitude, Arch. Rat. Mech. Anal. 39, 227–244 (1970). (140)
Masotti, A., Decomposizione intrinseca del vortice a sue applicazioni, Instituto Lombardo di Scienze a Lettere Rendiconti (2) 60, 869–874 (1927). (139)
Y. Matsuno, Bilinear Transformation Method, Academic Press (1984). (198)
V. B. Matveev and M. A. Salle, Darboux Transformations and Solitons, Springer-Verlag, Berlin (1991). (266, 270)
Matzner, R. A. and Misner, C. W., Gravitational field equations for sources with axial symmetry and angular momentum, Phys. Rev. 154, 1229–1232 (1967). (310)
Maxwell, J. C., On the cyclide, Q. J. Pure Appl. Math. 9, 111–126 (1868). (198)
O. Mayer, Contribution à l'étude des surfaces minima projectives, Bull. Sci. Math. Ser. 256, 146–168, 188–200 (1932). (329)
McCall, S. L. and Hahn, E. L., Self-induced transparency by pulsed coherent light, Phys. Rev. Lett. 18, 908–911 (1967). (130)
McLean, D., A method of generating surfaces as a composite of cyclide patches, Comput. J. 4, 433–438 (1985). (198)
McLachlan, R. I. and Segur, H., A note on the motion of surfaces, Phys. Lett. A 194, 165–172 (1994). (68)
A. M. Meirmanov, V. V. Pukhnachov and S. I. Shmarev, Evolution Equations and Lagrangian Coordinates, de Gruyter, Berlin (1997). (230)
Michailov, A. V., The reduction problem and the inverse scattering method, Physica D 3, 73–117 (1981). (88, 91, 105, 329)
L. M. Milne-Thomson, Theoretical Hydrodynamics, Macmillan & Company Ltd, London (1962). (151)
Minding, F., Wie sich entscheiden lässt, ob zwei gegebene krumme Flächen aufeinander abwickelbar sind order nicht; nebst Bemerkungen über die Flächen von unverändlichem Krümmungsmasse, J. für die reine und angewandte Mathematik 18, 297–302 (1838). (17)
Miura, R. M., Korteweg-de Vries equation and generalizations: I. A remarkable explicit nonlinear transformation, J. Math. Phys. 9, 1202–1204 (1968). (217)
Motz, H., Pavlenko, V. P. and Weiland, J., Acceleration and slowing down of nonlinear packets in a weakly nonuniform plasma, Phys. Lett. A 76, 131–133 (1980). (119)
Th. Moutard, Sur la construction des équations de la forme qui admettent une intégrale générale explicite, J. l'Ecole Polytechn., Cahier 45, 1–11 (1878). (103, 266)
Mullins, W. W., Theory of thermal grooving, J. Appl. Phys. 28, 333–339 (1957). (232)
Natale, M. F. and Tarzia, D. A., Explicit solutions to the two-phase Stefan problem for Storm-type materials, J. Phys. A: Math. Gen. 33, 395–404 (2000). (229)
G. Neugebauer, Bäcklund transformations of axially symmetric stationary gravitational fields, J. Phys. A: Math. Gen.12, L67–L70 (1979). (297, 305)
G. Neugebauer, A general integral of the axially symmetric stationary Einstein equations, J. Phys. A: Math. Gen.13, L19–L21 (1980). (319, 325)
Neugebauer, G. and Kramer, D., Einstein-Maxwell solitons, J. Phys. A: Math. Gen. 16, 1927–1936 (1983). (270, 277)
Neugebauer, G. and Meinel, R., General N-soliton solution of the AKNS class on arbitrary background, Phys. Lett. A 100, 467–470 (1984). (266, 270, 277, 279)
A. C. Newell, Solitons in Mathematics and Physics, SIAM, Philadelphia (1985). (214)
Nijhoff, F. W., Capel, H. W., Wiersma, G. L. and Quispel, G. R. W., Bäcklund transformations and three-dimensional lattice equations, Phys. Lett. A 105, 267–272 (1984). (237)
Nimmo, J. J. C. and Schief, W. K., Superposition principles associated with the Moutard transformation: an integrable discretization of a 2+1-dimensional sine-Gordon system, Proc. R. Soc. Lond. A 453, 255–279 (1997). (105, 237)
Nimmo, J. J. C. and Schief, W. K., An integrable discretization of a 2+1-dimensional sine-Gordon equation, Stud. Appl. Math. 100, 295–309 (1998). (105, 237)
Nimmo, J. J. C., Schief, W. K. and Rogers, C., Termination of Bergman series. Connection to the Bn Toda system, J. Eng. Math. 36, 137–148 (1999). (98)
Nizhnik, L. P., Integration of multidimensional nonlinear equations by the inverse problem method, Dokl. Akad. Nauk SSSR 254, 332–335 (1980). (362)
K. Nomizu and T. Sasaki, Affine Differential Geometry, Cambridge University Press (1994). (88)
A. W. Nutbourne and R. R. Martin, Differential Geometry Applied to the Design of Curves and Surfaces, Ellis Horwood, Chichester (1988). (198, 245)
Nycander, J., Dritschel, D. G. and Sutyrin, G. G., The dynamics of long frontal waves in the shallow-water equations, Phys. Fluids A 5, 1089–1091 (1993). (231)
Oevel, W. and Rogers, C., Gauge transformations and reciprocal links in 2 + 1-dimensions, Rev. Math. Phys. 5, 299–330 (1993). (217, 239)
W. Oevel and W. Schief, Darboux theorems and the KP hierarchy, in P. A. Clarkson, ed, Applications of Analytic and Geometric Methods to Nonlinear Differential Equations, pp. 192–206, Kluwer Academic Publishers, Dordrecht (1993). (366)
F. Pempinelli, Localized soliton solutions for the Davey-Stewartson I and Davey-Stewartson III equations, in P. A. Clarkson, ed, Applications of Analytic and Geometric Methods to Nonlinear Differential Equations, pp. 207–215, Kluwer, Dordrecht (1993). (196)
Perline, R., Localized induction equation and pseudospherical surfaces, J. Phys. A: Math. Gen. 27, 5335–5344 (1994). (87)
Perline, R., Localized induction hierarchy and Weingarten systems, Phys. Lett. A 220, 70–74 (1996). (87)
Pohlmeyer, K., Integrable Hamiltonian systems and iteractions through quadratic constraints, Comm. Math. Phys. 46, 207–221 (1976). (120, 129, 204)
Power, G. and Smith, P., Reciprocal properties of plane gas flows, J. Math. Mech. 10, 349–361 (1961). (229)
Pratt, M. J., Cyclides in computer aided geometric design, Computer Aided Geometric Design 7, 221–242 (1990). (198)
Prim, R., On the uniqueness of flows with given streamlines, J. Math. and Phys. 28, 50–53 (1949). (120)
Prim, R. C., Steady rotational flow of ideal gases, Arch. Rat. Mech. Anal. 1, 425–497 (1952). (95)
R. Prus, Geometry of Bianchi surfaces in E3, Master Thesis, Warsaw University (1995). (57)
Quispel, G. R. W., Nijhoff, F. W., Capel, H. W. and Linden, J., Linear integral equations and nonlinear difference-difference equations, Physica A 125, 344–380 (1984). (237)
Rabelo, M. L., On equations which describe pseudospherical surfaces, Stud. Appl. Math. 81, 221–248 (1989). (22)
A. Razzaboni, Delle superficie nelle quali un sistema di geodetiche sono del Bertrand, Bologna Mem (5) 10, 539–548 (1903). (245)
Reyes, E. G., Conservation laws and Calapso-Guichard deformations of equations describing pseudo-spherical surfaces, J. Math. Phys. 41, 2968–2989 (2000). (22)
Rogers, C., Reciprocal relations in non-steady one-dimensional gasdynamics, Z. Angew. Math. Phys. 19, 58–63 (1968). (223, 229)
Rogers, C., Invariant transformations in non-steady gasdynamics and magneto-Gasdynamics, Z. Angew. Math. Phys. 20, 370–382 (1969). (229)
Rogers, C., The construction of invariant transformations in plane rotational gasdynamics, Arch. Rat. Mech. Anal. 47, 36–46 (1972). (229)
C. Rogers, Application of a reciprocal transformation to a two-phase Stefan problem, J. Phys. A: Math. Gen.18, L105–L109 (1985). (229)
Rogers, C., On a class of moving boundary problems in nonlinear heat conduction: application of a Bäcklund transformation, Int. J. Nonlinear Mech. 21, 249–256 (1986). (229)
C. Rogers, On the Heisenberg spin equation in hydrodynamics, Research Report, Inst. Pure Appl. Math., Rio de Janeiro, Brazil (2000). (120, 151)
Rogers, C. and Broadbridge, P., On a nonlinear moving boundary problem with heterogeneity: application of a Bäcklund transformation, Z. Angew. Math. Phys. 39, 122–128 (1988). (229)
Rogers, C. and Broadbridge, P., On sedimentation in a bounded column, Int. J. Nonlinear Mech. 27, 661–667 (1992). (229)
Rogers, C. and Carillo, S., On reciprocal properties of the Caudrey-Dodd-Gibbon and Kaup-Kuperschmidt hierarchies, Physica Scripta 36, 865–869 (1987). (239)
Rogers, C., Castell, S. P. and Kingston, J. G., On invariance properties of conservation laws in non-dissipative planar magneto-Gasdynamics, J. de Mécanique 13, 243–354 (1974). (229)
Rogers, C. and Kingston, J. G., Non-dissipative magneto-hydrodynamic flows with magnetic and velocity field lines orthogonal geodesics, Soc. Ind. Appl. Math. J. Appl. Math. 26, 183–195 (1974). (137, 142)
Rogers, C. and Kingston, J. G., Reciprocal properties in quasi one-dimensional non-steady oblique field magneto-Gasdynamics, J. de Mécanique 15, 185–192 (1976). (229)
Rogers, C., Kingston, J. G. and Shadwick, W. F., On reciprocal-type invariant transformations in magneto-Gasdynamics, J. Math. Phys. 21, 395–397 (1980). (229)
Rogers, C. and Nucci, M. C., On reciprocal Bäcklund transformations and the Korteweg-de Vries hierarchy, Physica Scripta 33, 289–292 (1986). (233)
Rogers, C., Nucci, M. C. and Kingston, J. G., On reciprocal auto-Bäcklund transformations: application to a new nonlinear hierarchy, Il Nuovo Cimento 96, 55–63 (1986). (238)
Rogers, C. and Ruggeri, T., A reciprocal Bäcklund transformation: application to a nonlinear hyperbolic model in heat conduction, Lett. Nuovo Cimento 44, 289–296 (1985). (229)
C. Rogers and W. F. Shadwick, Bäcklund Transformations and Their Applications, Academic Press, New York (1982). (21, 31, 99, 198, 205)
Rogers, C. and Schief, W. K., Intrinsic geometry of the NLS equation and its auto-Bäcklund transformation, Stud. Appl. Math. 26, 267–287 (1998). (137, 142, 146)
Rogers, C. and Schief, W. K., On geodesic hydrodynamic motions, Heisenberg spin connections. J. Math. Anal. Appl. 251, 855–870 (2000). (120, 151)
C. Rogers, W. K. Schief and M. E. Johnston, Bäcklund and his works: applications in soliton theory, in Geometric Approaches to Differential Equations, P. J. Vassiliou and I. G. Lisle, eds, Australian Mathematical Society Lecture Series15, pp. 16–55, Cambridge University Press (2000). (124)
Rogers, C., Stallybrass, M. P. and Clements, D. L., On two-phase filtration under gravity and with boundary infiltration: application of a Bäcklund transformation, J. Nonlinear Analysis, Theory, Methods and Applications 7, 785–799 (1983). (229)
Rogers, C. and Wong, P., On reciprocal Bäcklund transformations of inverse scattering schemes, Physica Scripta 30, 10–14 (1984). (224, 233)
Rogers, C. and Yu, B. Guo, A note on the onset of melting in a class of simple metals. Condition on the applied boundary flux, Acta Math. Sci. 8, 425–430 (1988). (229)
Rozet, O., Sur certaines congruences W attachée aux surfaces dont les quadriques de Lie n'ont que deux points characteristiques, Bull. Sci. Math. II 58, 141–151 (1934). (329, 334)
Salle, M. A., Darboux transformations for non-abelian and nonlocal equations of the Toda chain type, Teoret. Mat. Fiz. 53, 227–237 (1982). (270)
Santini, P. M. and Fokas, A. S., Recursion operators and bi-Hamiltonian structures in multidimensions. I, Comm. Math. Phys. 115, 375–419 (1988). (163)
Sasaki, R., Soliton equations and pseudospherical surfaces, Nucl. Phys. B 154, 343–357 (1979). (22)
Sasaki, T., On a projectively minimal hypersurface in the unimodular affine space, Geom. Dedicata 23, 237–251 (1987). (329)
Schief, W. K., Bäcklund transformations for the (un)pumped Maxwell-Bloch system and the fifth Painlevé equation, J. Phys. A: Math. Gen. 27, 547–557 (1994). (249, 374)
Schief, W. K., On a 2+1-dimensional integrable Ernst-type equation, Proc. R. Soc. Lond. A 446, 381–398 (1994). (49)
Schief, W. K., Self-dual Einstein spaces via a permutability theorem for the Tzitzeica equation, Phys. Lett. A 223, 55–62 (1996). (91, 105, 237)
Schief, W. K., On the geometry of an integrable (2+1)-dimensional sine-Gordon system, Proc. R. Soc. Lond. A 453, 1671–1688 (1997). (86)
W. K. Schief, Self-dual Einstein spaces and a discrete Tzitzeica equation. A permutability theorem link, in P. A. Clarkson and F. W. Nijhoff, eds, Symmetries and Integrability of Difference Equations, London Mathematical Society, Lecture Note Series 255, pp. 137–148, Cambridge University Press (1999). (91, 105, 237)
W. K. Schief, Integrable discretization of geodesics of constant torsion and pseudospherical surfaces, in preparation (2002). (263)
Schief, W. K., The Painlevé III, V and VI transcendents as solutions of the Einstein-Weyl equations, Phys. Lett. A 267, 265–275 (2000). (45)
Schief, W. K., Hyperbolic surfaces in centro-affine geometry. Integrability and discretization, Chaos, Solitons and Fractals 11, 97–106 (2000). (88, 105)
Schief, W. K., Isothermic surfaces in spaces of arbitrary dimension: integrability, discretization and Bäcklund transformations. A discrete Calapso equation, Stud. Appl. Math. 106, 85–137 (2001). (163, 171, 172, 176, 183, 184, 188, 190, 237)
Schief, W. K., On Laplace-Darboux-type sequences of generalized Weingarten surfaces, J. Math. Phys. 41, 6566–6599 (2000). (45, 118)
W. K. Schief, On the geometry of the Painlevé V equation and a Bäcklund transformation, to appear in The ANZIAM J. (J. Austral. Math. Soc.) (2002). (45, 118)
W. K. Schief, On the integrability of geodesic Bertrand curves, in preparation (2002). (245)
W. K. Schief, Nested toroidal surfaces in magnetohydrostatics. Generation via soliton theory, in preparation (2002). (120)
Schief, W. K. and Rogers, C., The affinsphären equation. Moutard and Bäcklund transformations, Inverse Problems 10, 711–731 (1994). (88, 91, 95, 98, 249, 374)
Schief, W. K. and Rogers, C., On a Laplace sequence of nonlinear integrable Ernst-type equations, Prog. Nonlinear Diff. Eq. 26, 315–321 (1996). (118)
Schief, W. K. and Rogers, C., Loewner transformations: adjoint and binary Darboux connections, Stud. Appl. Math. 100, 391–422 (1998).(98)
Schief, W. K. and Rogers, C., Binormal motion of curves of constant curvature and torsion. Generation of soliton surfaces, Proc. R. Soc. Lond. A 455, 3163–3188 (1999). (240, 242, 249, 253, 260, 261, 374)
Schief, W. K., Rogers, C. and Tsarev, S. P., On a 2+1-dimensional Darboux system: integrable and geometric connections, Chaos, Solitons and Fractals 5, 2357–2366 (1995). (110)
B. G. Schmidt, The Geroch group is a Banach Lie group, in C. Hoenselaers and W. Dietz, eds, Solutions of Einstein's Equations: Techniques and Results, Lecture Notes in Physics, pp. 113–127, Springer-Verlag, Berlin (1984). (311)
Schulman, E. I., On the integrability of equations of Davey-Stewartson type, Math. Theor. Phys. 56, 720–724 (1984). (163)
B. F. Schutz, Geometric Methods of Mathematical Physics, Cambridge University Press, Cambridge (1980). (65)
Scott, A. C., Propagation of magnetic flux on a long Josephson junction, Il Nuovo Cimento B 69, 241–261 (1970). (22)
Seeger, A., Donth, H. and Kochendörfer, A., Theorie der Versetzungen in eindimensionalen Atomreihen III. Versetzungen, Eigenbewegungen und ihre Wechselwirkung, Z. Phys. 134, 173–193 (1953). (21, 22, 30)
Seeger, A. and Kochendörfer, A., Theorie der Versetzungen in eindimensionalen Atomreihen II. Beliebig angeordnete und beschleunigte Versetzungen, Z. Phys. 130, 321–336 (1951). (21)
T. J. Sharrock, Surface design with cyclide patches, PhD Thesis, Cambridge University (1985). (198)
Shimuzu, K. and Ichikawa, Y. H., Automodulation of ion oscillation modes in plasma, J. Phys. Soc. Japan 33, 789–792 (1972). (119)
Steudel, H., Space-Time symmetry of self-induced transparency and of stimulated Raman scattering, Phys. Lett. A 156, 491–492 (1991). (120, 130, 134)
Steudel, H., Solitons in stimulated Raman scattering and resonant two-photon propagation, Physica D 6, 155–178 (1983). (120, 130)
Steuerwald, R., Über die Enneper'sche Flächen und Bäcklund'sche Transformation, Abh. Bayer. Akad. Wiss. 40, 1–105 (1936). (40)
D. J. Struick, Lectures on Classical Differential Geometry, 2nd ed, Addison-Wesley Publishing Company, Inc., Reading, Mass. (1961). (18, 32, 63)
Sym, A., Soliton surfaces, Lett. Nuovo Cimento 33, 394–400 (1982). (204, 210)
Sym, A., Soliton surfaces II. Geometric unification of solvable nonlinearities, Lett. Nuovo Cimento 36, 307–312 (1983). (286, 292)
Sym, A., Soliton surfaces V. Geometric theory of loop solitons, Lett. Nuovo Cimento 41, 33–40 (1984). (222, 227)
A. Sym, Soliton surfaces and their applications, in R. Martini, ed, Geometric Aspects of the Einstein Equations and Integrable Systems, Springer, Berlin (1985). (124, 204, 208, 210, 304)
M. Tabor, Painlevé property for partial differential equations, in A. P. Fordy, ed, Soliton Theory: A Survey of Results, pp. 427–446, Manchester University Press (1990). (234)
Tafel, J., Surfaces in ℝ3 with prescribed curvature, J. Geom. Phys. 294, 1–10 (1995). (210, 304)
Takhtajan, L. A., Integration of the continuous Heisenberg spin chain through the inverse scattering method, Phys. Lett. A 64, 235–237 (1977). (128)
Talanov, V. I., Self focussing of wave beams in nonlinear media, JETP Lett. Engl. Transl. 2, 138–141 (1965). (119)
Taniuki, T. and Washimi, H., Self trapping and instability of hydromagnetic waves along the magnetic field in a cold plasma, Phys. Rev. Lett. 21, 209–212 (1968). (119)
Temple, B., Systems of conservation laws with invariant submanifolds, Trans. Am. Math. Soc. 280, 781–795 (1983). (230)
K. Tenenblat, Transformations of Manifolds and Applications to Differential Equations, Pitman Monographs and Surveys in Pure and Applied Mathematics 93, Longman, Harlow (1998). (22)
Thomsen, G., Über eine liniengeometrische Behandlungsweise der projektiven Flächentheorie und die projektive Geometrie der Systeme von Flächen zweiter Ordnung, Abhandl. Math. Sem. Hamburg 4, 232–266 (1926). (329)
Thomsen, G., Sulle superficie minime proiettive, Ann. Math. 5, 169–184 (1928). (329)
Tritscher, P. and Broadbridge, P., Grain boundary grooving by surface diffusion: an analytic nonlinear model for a symmetric groove, Proc. R. Soc. Lond. A 450, 569–587 (1995). (232)
Tsien, H. S., Two dimensional subsonic flow of compressible fluids, J. Aeronaut. Sci. 6, 399–407 (1939). (229)
Tsuzuki, T., Nonlinear waves in the Pitaevsky-Gross equation, J. Low Temp. Phys. 4, 441–457 (1971). (119)
Tzitzeica, G., Sur une nouvelle classe de surfaces, C. R. Acad. Sci. Paris 144, 1257–1259 (1907); sur une classe de surfaces, C. R. Acad. Sci. Paris 146, 165–166 (1908). (88)
G. Tzitzeica, Sur une nouvelle classe de surfaces, C. R. Acad. Sci. Paris150, 955–956, 1227–1229 (1910). (88)
Veselov, A. P. and Novikov, S. P., Finite-gap two-dimensional potential Schrödinger operators. Explicit formulas and evolution equations, Dokl. Akad. Nauk SSSR 279, 20–24 (1984). (362)
A. Voss, Encyclopädie der mathematischen Wissenschaften, Bd. III, DGa, Leipzig (1902). (152)
Vranceanu, M. G., Les éspaces non-holonomes et leurs applications mécaniques, Mém. Sci. Mathém. 76, 1–70 (1936). (140)
Wadati, M., Wave propagation in nonlinear lattice: I, J. Phys. Soc. Japan 38, 673–680 (1975). (79)
Wadati, M., Sanuki, H. and Konno, K., Relationships among inverse method, Bäcklund transformation and an infinite number of conservation laws, Progr. Theor. Phys. 53, 419–436 (1975). (266)
M. Wadati, K. Konno and Y. H. Ichikawa, New integrable nonlinear evolution equations, J. Phys. Soc. Japan, 47, 1698–1700 (1979). (205, 224, 225)
Wahlquist, H. D. and Estabrook, F. B., Bäcklund transformations for solutions of the Korteweg-de Vries equation, Phys. Rev. Lett. 31, 1386–1390 (1973). (236)
Wahlquist, H. D. and Estabrook, F. B., Prolongation structures of nonlinear evolution equations, J. Math. Phys. 16, 1–7 (1975). (261, 312, 374)
Wasserman, R. H., On a class of three-dimensional compressible fluid flows, J. Math. Anal. Appl. 5, 119–135 (1962). (120)
C. E. Weatherburn, Differential Geometry of Three Dimensions, Vol. I, Cambridge University Press (1927). (127, 142, 143, 199, 245)
C. E. Weatherburn, Differential Geometry of Three Dimensions, Vol. II, Cambridge University Press (1930). (128, 141, 142)
Weiss, J., On classes of integrable systems and the Painlevé property, J. Math. Phys. 25, 13–24 (1984). (239)
Weyl, H., Zur Gravitationstheorie, Ann. Phys. 54, 117–145 (1917). (319)
E. I. Wilczynski, Projective-differential geometry of curved surfaces, Trans. Am. Math. Soc.8, 233–260 (1907); Trans. Am. Math. Soc.9, 79–120, 293–315 (1908); Trans. Am. Math. Soc.10, 176–200, 279–296 (1909). (329, 331)
D. Wójcik and J. Cieśliński, eds, Nonlinearity & Geometry, Polish Scientific Publishers PWN, Warsaw (1998). (17)
Yin, W. L. and Pipkin, A. C., Kinematics of viscometric flow, Arch. Rat. Mech. Anal. 37, 111–135 (1970). (141)
H. C. Yuen and B. M. Lake, Nonlinear wave concepts applied to deep water waves, in K. Lonngren and A. Scott, eds, Solitons in Action, Academic Press, New York (1978). (119)
N. J. Zabusky, A synergetic approach to problems of nonlinear dispersive wave propagation, in W. F. Ames, ed, Nonlinear Partial Differential Equations, Academic Press, New York (1967). (71)
Zabusky, N. J. and Kruskal, M. D., Interaction of ‘solitons’ in a collisionless plasma and recurrence of initial states, Phys. Rev. Lett. 15, 240–243 (1965). (22)
Zakharov, V. E., Stability of periodic waves of finite amplitude on the surface of a deep fluid, J. Appl. Mech. Tech. Phys. 9, 86–94 (1968). (119)
Zakharov, V. E., Description of the n-orthogonal curvilinear coordinate systems and Hamiltonian integrable systems of hydrodynamic type. I. Integration of the Lamé equations, Duke Math. J. 94, 103–139 (1998). (61)
Zakharov, V. E. and Manakov, S. V., Construction of multidimensional nonlinear integrable systems and their solutions, Funct. Anal. Pril. 19, 11–25 (1985). (110)
V. E. Zakharov, S. V. Manakov, S. P. Novikov and L. P. Pitaevskii, The Theory of Solitons: The Inverse Problem Method [in Russian], Nauka, Moscow (1980). (266, 270)
Zakharov, V. E. and Mikhailov, A. V., Relativistically invariant two-dimensional models of field theory which are integrable by means of the inverse scattering method, Sov. Phys. JETP 47, 1017–1027 (1978). (48)
Zakharov, V. E. and Shabat, A. B., A scheme for integrating the nonlinear equations of mathematical physics by the method of the inverse scattering transform, Funct. Anal. Appl. 8, 226–235 (1974). (266, 270)