Spermatogenesis and the fine structure of the mature spermatozoon of Fasciola hepatica have been studied by transmission electron microscopy. The primary spermatogonia display a typical gonial morphology and occupy the periphery of the testis. They undergo 3 mitotic divisions to give rise to 8 primary spermatocytes forming a rosette of cells connected to a central cytophore. The primary spermatocytes undergo 2 meiotic divisions, resulting in 32 spermatids that develop into spermatozoa. Intranuclear synaptonemal complexes in primary spermatocytes confirm the first meiotic division. The onset of spermiogenesis is marked by the formation of the zone of differentiation which contains 2 basal bodies and a further centriole derivative, the central body. The zone extends away from the spermatid cell to form the median process; into this migrates the differentiated and elongate nucleus. Simultaneously, 2 axonemes develop from the basal bodies. During development, they rotate through 90° to extend parallel to the median process. The migration of the nucleus to the distal end of the median process coincides with the fusion of the axonemes to the latter to form a monopartite spermatozoon. The mature spermatozoon possesses 2 axonemes of the 9 + ‘1’ pattern typical of parasitic platyhelminths, 2 elongate mitochondria and a variable array of peripheral microtubules. The nuclear region of the spermatozoon is immotile. The value of sperm ultrastructure as a taxonomic tool in platyhelminth phylogeny is discussed.