{\frenchspacing
Nous \'etudions l'homotopie d'une vari\'et\'e
quasi-projective dans un espace projectif complexe
selon la m\'ethode de Lefschetz, c'est-\`a-dire en
consid\'erant ses sections par les hyperplans d'un
pinceau (tomographie). En particulier, nous
aboutissons \`a un th\'eor\`eme du type de Lefschetz
qui g\'en\'eralise dans une certaine direction les
meilleurs r\'esultats connus dus \`a Hamm, L\^e,
Goresky et MacPherson. Ce th\'eor\`eme est
d\'emontr\'e par r\'ecurrence sur la dimension de
l'espace projectif ambiant \`a partir d'un
th\'eor\`eme sur les pinceaux d'axe g\'en\'erique
qui constitue le r\'esultat principal de l'article.
Ce dernier compare la topologie de la vari\'et\'e
\`a celle de sa section par un hyperplan
g\'en\'erique du pinceau sur la base des comparaisons
(section hyperplane g\'en\'erique -- section par
l'axe du pinceau) et (sections hyperplanes
exceptionnelles -- section par l'axe); l'incidence
des singularit\'es est mesur\'ee par un invariant
appel\'e `profondeur homotopique rectifi\'ee
globale' (analogue global de la notion de profondeur
homotopique rectifi\'ee de Grothendieck).}
\vspace{6mm}
\noindent
We study the homotopy of a quasi-projective variety
in a complex projective space following Lefschetz's
method, that is, by considering its sections by the
hyperplanes of a pencil (tomography). Specifically,
we obtain a theorem of Lefschetz type which
generalizes in a certain direction the best-known
results due to Hamm, L\^e, Goresky and MacPherson.
This theorem is proved by induction on the dimension
of the ambient projective space with the help of a
theorem on pencils with generic axis which is the main
result of the paper. The latter compares the topology
of the variety with that of its section by a generic
hyperplane of the pencil, on the basis of the
following comparisons:
section by a generic hyperplane with
section by the axis of the pencil;
and sections by the exceptional hyperplanes with
section by the axis.
The effect of the singularities is measured by an
invariant called `global rectified homotopical depth'
(a global analogue of the notion of rectified
homotopical depth of Grothendieck). E-mail: [email protected] 2000 Mathematics Subject Classification:
32S50, 14F35, 14F17.