Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-23T17:52:00.134Z Has data issue: false hasContentIssue false

TOMOGRAPHIE DES VARIÉTÉS SINGULIÈRES ET THÉORÈMES DE LEFSCHETZ

Published online by Cambridge University Press:  20 August 2001

CHRISTOPHE EYRAL
Affiliation:
Laboratoire d'Analyse, Topologie et Probabilités, (UMR CNRS 6632), Centre de Mathématiques et Informatique, Université de Provence, 39 rue Joliot-Curie, 13453 Marseille CEDEX 13, France, [email protected]
Get access

Abstract

{\frenchspacing Nous \'etudions l'homotopie d'une vari\'et\'e quasi-projective dans un espace projectif complexe selon la m\'ethode de Lefschetz, c'est-\`a-dire en consid\'erant ses sections par les hyperplans d'un pinceau (tomographie). En particulier, nous aboutissons \`a un th\'eor\`eme du type de Lefschetz qui g\'en\'eralise dans une certaine direction les meilleurs r\'esultats connus dus \`a Hamm, L\^e, Goresky et MacPherson. Ce th\'eor\`eme est d\'emontr\'e par r\'ecurrence sur la dimension de l'espace projectif ambiant \`a partir d'un th\'eor\`eme sur les pinceaux d'axe g\'en\'erique qui constitue le r\'esultat principal de l'article. Ce dernier compare la topologie de la vari\'et\'e \`a celle de sa section par un hyperplan g\'en\'erique du pinceau sur la base des comparaisons (section hyperplane g\'en\'erique -- section par l'axe du pinceau) et (sections hyperplanes exceptionnelles -- section par l'axe); l'incidence des singularit\'es est mesur\'ee par un invariant appel\'e `profondeur homotopique rectifi\'ee globale' (analogue global de la notion de profondeur homotopique rectifi\'ee de Grothendieck).} \vspace{6mm} \noindent We study the homotopy of a quasi-projective variety in a complex projective space following Lefschetz's method, that is, by considering its sections by the hyperplanes of a pencil (tomography). Specifically, we obtain a theorem of Lefschetz type which generalizes in a certain direction the best-known results due to Hamm, L\^e, Goresky and MacPherson. This theorem is proved by induction on the dimension of the ambient projective space with the help of a theorem on pencils with generic axis which is the main result of the paper. The latter compares the topology of the variety with that of its section by a generic hyperplane of the pencil, on the basis of the following comparisons: section by a generic hyperplane with section by the axis of the pencil; and sections by the exceptional hyperplanes with section by the axis. The effect of the singularities is measured by an invariant called `global rectified homotopical depth' (a global analogue of the notion of rectified homotopical depth of Grothendieck). E-mail: [email protected] 2000 Mathematics Subject Classification: 32S50, 14F35, 14F17.

Type
Research Article
Copyright
2001 London Mathematical Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)