The aim of this paper is to extend the well-known asymptotic shape result for first-passage percolation on $\mathbb{Z}^d$ to first-passage percolation on a random environment given by the infinite cluster of a supercritical Bernoulli percolation model. We prove the convergence of the renormalized set of wet vertices to a deterministic shape that does not depend on the realization of the infinite cluster.As a special case of our result, we obtain an asymptotic shape theorem for the chemical distance in supercritical Bernoulli percolation.We also prove a flat edge result in the case of dimension 2. Various examples are also given.