We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
For a finite group G, let
$\Delta (G)$
denote the character graph built on the set of degrees of the irreducible complex characters of G. A perfect graph is a graph
$\Gamma $
in which the chromatic number of every induced subgraph
$\Delta $
of
$\Gamma $
equals the clique number of
$\Delta $
. We show that the character graph
$\Delta (G)$
of a finite group G is always a perfect graph. We also prove that the chromatic number of the complement of
$\Delta (G)$
is at most three.
For $S\,\subseteq \,{{\mathbb{R}}^{n}}$ a set $C\,\subseteq \,S$ is an $m$-clique if the convex hull of no $m$-element subset of $C$ is contained in $S$. We show that there is essentially just one way to construct a closed set $S\,\subseteq \,{{\mathbb{R}}^{2}}$ without an uncountable 3-clique that is not the union of countably many convex sets. In particular, all such sets have the same convexity number; that is, they require the same number of convex subsets to cover them. The main result follows from an analysis of the convex structure of closed sets in ${{\mathbb{R}}^{2}}$ without uncountable 3-cliques in terms of clopen, ${{P}_{4}}$-free graphs on Polish spaces.
In 1968, Galvin conjectured that an uncountable poset $P$ is the union of countably many chains if and only if this is true for every subposet $Q\,\subseteq \,P$ with size ${{\aleph }_{1}}$. In 1981, Rado formulated a similar conjecture that an uncountable interval graph $G$ is countably chromatic if and only if this is true for every induced subgraph $H\,\subseteq \,G$ with size ${{\aleph }_{1}}$. Todorčević has shown that Rado's conjecture is consistent relative to the existence of a supercompact cardinal, while the consistency of Galvin's conjecture remains open. In this paper, we survey and collect a variety of results related to these two conjectures. We also show that the extension of Rado's conjecture to the class of all chordal graphs is relatively consistent with the existence of a supercompact cardinal.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.