For their glucose supply, ruminants are highly dependent on the endogenous synthesis in the liver, but despite the numerous studies that evaluated hepatic glucose production, very few simultaneously measured hepatic glucose production and uptake of all precursors. As a result, the variability of precursor conversion into glucose in the liver is not known. The present study aimed at investigating by meta-analysis the relationships between hepatic glucose net release and uptake of precursors. We used the FLuxes of nutrients across Organs and tissues in Ruminant Animals database, which gathers international results on net nutrient fluxes at splanchnic level measured in catheterized animals. Response equations were developed for intakes up to 41 g DM intake/kg BW per day of diets varying from 0 to 100 g of concentrate/100 g DM in the absence of additives. The net hepatic uptake of propionate, α-amino-N and l-lactate was linearly and better related to their net portal appearance (NPA) than to their afferent hepatic flux. Blood flow data were corrected for lack of deacetylation of the para-aminohippuric acid, and this correction was shown to impact the response equations. To develop response equations between the availability of precursors (portal appearance and hepatic uptake) and net glucose hepatic release, missing data on precursor fluxes were predicted from dietary characteristics using previously developed response equations. Net hepatic release of glucose was curvilinearly related to hepatic supply and uptake of the sum of precursors, suggesting a lower conversion rate of precursors at high precursor supply. Factors of variation were explored for the linear portion of this relationship, which applied to NPA of precursors ranging from 0.99 to 9.60 mmol C/kg BW per h. Hepatic release of glucose was shown to be reduced by the portal absorption of glucose from diets containing bypass starch and to be increased by an increased uptake of β-hydroxybutyrate indicative of higher body tissue mobilization. These relationships were affected by the physiological status of the animals. In conclusion, we established equations that quantify the net release of glucose by the liver from the net availability of precursors. They provide a quantitative overview of factors regulating hepatic glucose synthesis in ruminants. These equations can be linked with the predictions of portal absorption of nutrients from intake and dietary characteristics, and provide indications of glucose synthesis from dietary characteristics.