We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In this article, we construct some examples of noncommutative projective Calabi–Yau schemes by using noncommutative Segre products and quantum weighted hypersurfaces. We also compare our constructions with commutative Calabi–Yau varieties and examples constructed in Kanazawa (2015, Journal of Pure and Applied Algebra 219, 2771–2780). In particular, we show that some of our constructions are essentially new examples of noncommutative projective Calabi–Yau schemes.
Making use of Gruson–Raynaud’s technique of ‘platification par éclatement’, Kerz and Strunk proved that the negative homotopy $K$-theory groups of a Noetherian scheme $X$ of Krull dimension $d$ vanish below $-d$. In this article, making use of noncommutative algebraic geometry, we improve this result in the case of quotient singularities by proving that the negative homotopy $K$-theory groups vanish below $-1$. Furthermore, in the case of cyclic quotient singularities, we provide an explicit ‘upper bound’ for the first negative homotopy $K$-theory group.
The purpose of this work is to give a definition of a topological K-theory for dg-categories over $\mathbb{C}$ and to prove that the Chern character map from algebraic K-theory to periodic cyclic homology descends naturally to this new invariant. This topological Chern map provides a natural candidate for the existence of a rational structure on the periodic cyclic homology of a smooth proper dg-algebra, within the theory of noncommutative Hodge structures. The definition of topological K-theory consists in two steps: taking the topological realization of algebraic K-theory and inverting the Bott element. The topological realization is the left Kan extension of the functor ‘space of complex points’ to all simplicial presheaves over complex algebraic varieties. Our first main result states that the topological K-theory of the unit dg-category is the spectrum $\mathbf{BU}$. For this we are led to prove a homotopical generalization of Deligne’s cohomological proper descent, using Lurie’s proper descent. The fact that the Chern character descends to topological K-theory is established by using Kassel’s Künneth formula for periodic cyclic homology and the proper descent. In the case of a dg-category of perfect complexes on a separated scheme of finite type, we show that we recover the usual topological K-theory of complex points. We show as well that the Chern map tensorized with $\mathbb{C}$ is an equivalence in the case of a finite-dimensional associative algebra – providing a formula for the periodic homology groups in terms of the stack of finite-dimensional modules.
Let $k$ be a base commutative ring, $R$ a commutative ring of coefficients, $X$ a quasi-compact quasi-separated $k$-scheme, and $A$ a sheaf of Azumaya algebras over $X$ of rank $r$. Under the assumption that $1/r\in R$, we prove that the noncommutative motives with $R$-coefficients of $X$ and $A$ are isomorphic. As an application, we conclude that a similar
isomorphism holds for every $R$-linear additive invariant. This leads to several computations.
Along the way we show that, in the case of finite-dimensional algebras of finite
global dimension, all additive invariants are nilinvariant.
In this article we prove that Kontsevich’s category NCnum(k)F of noncommutative numerical motives is equivalent to the one constructed by the authors in [Marcolli and Tabuada, Noncommutative motives, numerical equivalence, and semisimplicity, Amer. J. Math., to appear, available at arXiv:1105.2950]. As a consequence, we conclude that NCnum(k)F is abelian semi-simple as conjectured by Kontsevich.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.