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Abstract

In this article we prove that Kontsevich’s category NCnum(k)F of noncommutative
numerical motives is equivalent to the one constructed by the authors in [Marcolli and
Tabuada, Noncommutative motives, numerical equivalence, and semisimplicity, Amer.
J. Math., to appear, available at arXiv:1105.2950]. As a consequence, we conclude that
NCnum(k)F is abelian semi-simple as conjectured by Kontsevich.

1. Introduction and statement of results

Over the past two decades Bondal, Drinfeld, Kaledin, Kapranov, Kontsevich, Van den Bergh,
and others have been promoting a broad noncommutative (algebraic) geometry program where
‘geometry’ is performed directly on dg categories; see [BK89, BK90, BV03, Dri02, Dri04, Kal10,
Kon98, Kon05, Kon09, Kon10]. Among many developments, Kontsevich introduced a rigid
symmetric monoidal category NCnum(k)F of noncommutative numerical motives (over a ground
field k and with coefficients in a field F ); consult § 4 for details. The key ingredient in his approach
is the existence of a well-behaved bilinear form on the Grothendieck group of each smooth and
proper dg category.

Recently, the authors introduced in [MT11a] an alternative rigid symmetric monoidal
category NNum(k)F of noncommutative numerical motives; see § 5. In contrast to Kontsevich’s
approach, the authors used Hochschild homology to formalize the ‘intersection number’ in the
noncommutative world.

The main result of this article is the following theorem.

Theorem 1.1. The categories NCnum(k)F and NNum(k)F are equivalent (as rigid symmetric
monoidal categories).

By combining Theorem 1.1 with [MT11a, Theorem 1.9] and [MT11b, Theorem 4.6], we then
obtain the following result.

Theorem 1.2. Let k and F be fields of the same characteristic. Then the category NCnum(k)F
is abelian semi-simple.

In Theorem 1.2, k and F can be of characteristic zero or of positive characteristic.
Assuming several (polarization) conjectures, Kontsevich conjectured Theorem 1.2 in the

particular case where F = Q and k is of characteristic zero; see [Kon05]. We observe that
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Kontsevich’s beautiful insight not only holds much more generally but, moreover, does not require
the assumption of any (polarization) conjecture.

Notation
We will work over a (fixed) ground field k. The field of coefficients will be denoted by F . Let
(C(k),⊗k, k) be the symmetric monoidal category of complexes of k-vector spaces. We will use
cohomological notation, i.e. the differential increases the degree.

2. Differential graded categories

A differential graded (dg) category A (over k) is a category enriched over C(k), i.e. the morphism
sets A(x, y) are complexes of k-vector spaces and the composition operation satisfies the Leibniz
rule d(f ◦ g) = d(f) ◦ g + (−1)deg(f)f ◦ d(g); consult Keller’s ICM address [Kel06] for further
details.

The opposite dg category Aop has the same objects as A, with complexes of morphisms given
by Aop(x, y) :=A(y, x). The k-linear category H0(A) has the same objects as A and morphisms
given by H0(A)(x, y) := H0A(x, y), where H0 denotes 0th cohomology. A right dg A-module M
(or simply an A-module) is a dg functor M :Aop→Cdg(k) with values in the dg category Cdg(k)
of complexes of k-vector spaces. We will denote by C(A) the category of A-modules. Recall from
[Kel06, § 3] that C(A) carries a projective model structure. Moreover, the differential graded
structure of Cdg(k) naturally turns C(A) into a dg category Cdg(A). The dg category Cdg(A)
endowed with the projective model structure is a C(k)-model category in the sense of [Hov99,
Definition 4.2.18]. Let D(A) be the derived category of A, i.e. the localization of C(A) with
respect to the class of weak equivalences. Its full triangulated subcategory of compact objects
(i.e. those A-modules M such that the functor HomD(A)(M,−) preserves arbitrary sums; see
[Nee01, Definition 4.2.7]) will be denoted by Dc(A).

Notation 2.1. We will denote by Âpe the full dg subcategory of Cdg(A) consisting of those
cofibrant A-modules which become compact in D(A). Since all the objects in C(A) are fibrant
and Cdg(A) is a C(k)-model category, we have the natural isomorphisms of k-vector spaces

HiÂpe(M, N)' HomDc(A)(M, N [−i]), i ∈ Z. (1)

As any A-module admits a (functorial) cofibrant approximation, we obtain a natural equivalence
of triangulated categories H0(Âpe)'Dc(A).

The tensor product A⊗k B of two dg categories is defined as follows: the set of objects
is the Cartesian product of the sets of objects, and the complexes of morphisms are given
by (A⊗k B)((x, x′), (y, y′)) :=A(x, y)⊗k B(x′, y′). Note that the tensor product of any two dg
categories is automatically derived since we are working over a ground field k. Finally, a A-B-
bimodule X is a dg functor X :A⊗k Bop→Cdg(k) or, in other words, a (Aop ⊗k B)-module.

Definition 2.2 (Kontsevich [Kon05, Kon98]). A dg category A is smooth if the A-A-bimodule

A(−,−) :A⊗k Aop −→ Cdg(k), (x, y) 7→ A(y, x) (2)

belongs to Dc(Aop ⊗k A), and it is proper if for each ordered pair of objects (x, y) we have∑
i

dim HiA(x, y)<∞.
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3. Noncommutative Chow motives

The rigid symmetric monoidal category NChow(k)F of noncommutative Chow motives, which
we now recall, was originally constructed (over a commutative ground ring) in [Tab11, Tab05];
see [Tab10, § 4] for a survey. Let A, B and C be dg categories. The derived tensor product of
bimodules (see [Dri04, § 14.3]) gives rise to a bi-triangulated functor

Dc(Aop ⊗k B)×Dc(Bop ⊗k C)→Dc(Aop ⊗k C), (X, Y ) 7→X ⊗L
B Y.

By applying it to the F -linearized Grothendieck group functor K0(−)F , we then obtain a
well-defined bilinear pairing

K0(Aop ⊗k B)F ×K0(Bop ⊗k C)F →K0(Aop ⊗k C)F , ([X], [Y ]) 7→ [X ⊗L
B Y ].

The category NChow(k)F is defined as the pseudo-abelian envelope of the category whose objects
are the smooth and proper dg categories, whose morphisms from A to B are given by the
F -linearized Grothendieck group K0(Aop ⊗k B)F , and whose composition operation is given by
the above pairing.

In analogy with the commutative world, the morphisms of NChow(k)F are called
correspondences. Finally, the symmetric monoidal structure on NChow(k)F is induced by the
tensor product of dg categories.

4. Kontsevich’s approach

In this section we recall and enhance Kontsevich’s construction of the category NCnum(k)F of
noncommutative numerical motives; see [Kon05]. Let A be a proper dg category. By construction,
the dg category Âpe is also proper and we have a natural equivalence of triangulated categories
H0(Âpe)'Dc(A). Hence, thanks to the natural isomorphisms (1), we can consider the assignment

objDc(A)× objDc(A)−→ Z, (M, N) 7→ χ(M, N),

where χ(M, N) is the integer ∑
i

(−1)i dim HomDc(A)(M, N [−i]).

Since the Grothendieck group K0(A) of A is the Grothendieck group of the triangulated
category Dc(A), a simple verification shows us that the above assignment gives rise to a
well-defined bilinear form K0(A)⊗Z K0(A)→ Z. By tensoring it with F , we then obtain

χ(−,−) :K0(A)F ⊗F K0(A)F −→ F. (3)

The bilinear form (3) is in general neither symmetric nor anti-symmetric. For example, let A
be the dg enhancement Dperf

dg (P1) of the derived category Dperf(P1) of perfect complexes of
OP1-modules; see [LO10] for the uniqueness of this enhancement. By construction,
Dc(Dperf

dg (P1))' H0(Dperf
dg (P1))'Dperf(P1), and thanks to the work of Beilinson [Bei78] we have

HomDperf(P1)(O,O(1)[−i])'
{
k ⊕ k if i= 0,
0 if i 6= 0
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and HomDperf(P1)(O(1),O[−i]) = 0 for all i ∈ Z. Hence, χ([O], [O(1)]) = 2 while χ([O(1)], [O]) = 0.
Now, let us denote by

KerL(χ) := {M ∈K0(A)F | χ(M, N) = 0 for all N ∈K0(A)F },
KerR(χ) := {N ∈K0(A)F | χ(M, N) = 0 for all M ∈K0(A)F }

the left and right kernels of the above bilinear form (3). Since (3) is in general not symmetric
(nor anti-symmetric), it is expected that KerL(χ) 6= KerR(χ) in some cases, although the authors
do not know of an example where this nonequality holds. On the other hand, when A is in
addition smooth, we will prove in Theorem 4.3 that KerL(χ) = KerR(χ). In order to prove this
result, let us start by recalling Bondal and Kapranov’s notion of a Serre functor. Let T be a
k-linear Ext-finite triangulated category, i.e.

∑
i dim HomT (M, N [−i])<∞ for any two objects

M and N in T . Following Bondal and Kapranov [BK89, § 3], a Serre functor S : T ∼−−→ T is an
autoequivalence together with bifunctorial isomorphisms

HomT (M, N)' HomT (N, S(M))∗, (4)

where (−)∗ stands for the k-duality functor. Whenever a Serre functor exists, it is unique up to
isomorphism.

Theorem 4.1. Let A be a smooth and proper dg category. Then the triangulated category
Dc(A) admits a Serre functor.

Proof. Note first that the properness of Âpe, the equivalence of categories H0(Âpe)'Dc(A), and
the natural isomorphisms (1) imply that Dc(A) is Ext-finite. By [BK89, Corollary 3.5], it then
suffices to show that Dc(A) is saturated in the sense of [BK89, Definition 2.5]. By combining
[CT12, Proposition 4.10] with [Kel06, Theorem 4.12], we observe that every dg category A is dg
Morita-equivalent to a dg algebra A. Hence, without loss of generality, we may replace A by A.
The fact that Dc(A) is saturated is now the content of [Shk07, Theorem 3.1]. 2

Lemma 4.2. Let A be a smooth and proper dg category and let M, N ∈ Dc(A). Then we have
the equalities

χ(M, N) = χ(N, S(M)) = χ(S−1(N), M),

where S is the Serre functor given by Theorem 4.1.

Proof. Consider the following sequence of equalities:

χ(M, N) =
∑
i

(−1)i dim HomDc(A)(M, N [−i])

=
∑
i

(−1)i dim HomDc(A)(N [−i], S(M)) (5)

=
∑
i

(−1)i dim HomDc(A)(N, S(M)[i]) (6)

= χ(N, S(M)). (7)

Equality (5) follows from the bifunctorial isomorphisms (4) and from the fact that a finite-
dimensional k-vector space and its k-dual have the same dimension. Equality (6) follows from the
fact that the suspension functor is an autoequivalence of the triangulated categoryDc(A). Finally,
equality (7) follows from a reordering of the finite sum which does not alter the sign of each
term. This shows the equality χ(M, N) = χ(N, S(M)). The equality χ(M, N) = χ(S−1(N), M)
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is proven in a similar way: simply use

HomT (M, N)' HomT (S−1(N), M)∗

instead of the bifunctorial isomorphisms (4). 2

Theorem 4.3. Let A be a smooth and proper dg category. Then KerL(χ) = KerR(χ); the
resulting well-defined subspace of K0(A)F will be denoted by Ker(χ).

Proof. We start by proving the inclusion KerL(χ)⊆KerR(χ). Let M be an element of KerL(χ).
Since K0(A)F is generated by the elements of shape [N ], with N ∈ Dc(A), it suffices to show
that χ([N ], M) = 0 for every such N . Note that M can be written as [a1M1 + · · ·+ anMn] with
a1, . . . , an ∈ F and M1, . . . , Mn ∈ Dc(A). We then have the equalities

χ([N ], M) = a1χ(N,M1) + · · ·+ anχ(N,Mn)
= a1χ(M1, S(N)) + · · ·+ anχ(Mn, S(N))
= χ(M, [S(N)]), (8)

where (8) follows from Lemma 4.2. Finally, since by hypothesis M belongs to KerL(χ), we
have χ(M, [S(N)]) = 0 and so conclude that χ([N ], M) = 0. Using the equality χ(M, N) =
χ(S−1(N), M) of Lemma 4.2, the proof of the inclusion KerR(χ)⊆KerL(χ) is similar. 2

Let A and B be two smooth and proper dg categories. Recall that, by definition,

HomNChow(k)F
(A, B) =K0(Aop ⊗k B)F . (9)

Since smooth and proper dg categories are stable under tensor product (see [CT12, § 4]), the
above bilinear form (3) (applied to A=Aop ⊗k B) gives rise to

χ(−,−) : HomNChow(k)F
(A, B)⊗F HomNChow(k)F

(A, B)−→ F.

By Theorem 4.3 we then obtain a well-defined kernel Ker(χ)⊂ HomNChow(k)F
(A, B). These

kernels (one for each ordered pair of smooth and proper dg categories) assemble themselves
into a ⊗-ideal. Moreover, this ⊗-ideal extends naturally to the pseudo-abelian envelope, giving
rise to a well-defined ⊗-ideal Ker(χ) on the category NChow(k)F .

Definition 4.4 (Kontsevich [Kon05]). The category NCnum(k)F of noncommutative numerical
motives (over k and with coefficients in F ) is the pseudo-abelian envelope of the quotient category
NChow(k)F /Ker(χ).

Remark 4.5. The fact that Ker(χ) is a well-defined ⊗-ideal of NChow(k)F will become clear(er)
after the proof of Theorem 1.1.

5. Alternative approach

The authors introduced in [MT11a] an alternative category NNum(k)F of noncommutative
numerical motives. Let A and B be two smooth and proper dg categories, and let X = [

∑
i aiXi]

and Y = [
∑

j bjYj ] be two correspondences. Recall that the Xi are A-B-bimodules, the Yj are
B-A-bimodules, and the sums are indexed by a finite set. The intersection number 〈X · Y 〉 of X
with Y is given by the formula∑

i,j,n

(−1)nai · bj · dimHHn(A, Xi ⊗L
B Yj) ∈ F,
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where HHn(A, Xi ⊗L
B Yj) denotes the nth Hochschild homology group of A with coefficients in

the A-A-bimodule Xi ⊗L
B Yj . This procedure gives rise to a well-defined bilinear pairing

〈− · −〉 : HomNChow(k)F
(A, B)⊗F HomNChow(k)F

(B,A)−→ F. (10)

As explained in [MT11a, Proposition 4.3], the intersection number 〈X · Y 〉 agrees with the

categorical trace of the composed correspondence A X−−→B Y−−→A in the rigid symmetric
monoidal category NChow(k)F . By standard properties of the categorical trace (see [AK02a,
(7.2)]), we then have the equality 〈X · Y 〉= 〈Y ·X〉, where the latter pairing is similar to (10)
with A and B interchanged.

A correspondence X is said to be numerically equivalent to zero if for every correspondence Y
the intersection number 〈X · Y 〉 is zero. As proved in [MT11a, Theorem 1.5], the correspondences
which are numerically equivalent to zero form a ⊗-ideal N of the category NChow(k)F . The
category of noncommutative numerical motives NNum(k)F is then defined as the pseudo-abelian
envelope of the quotient category NChow(k)F /N .

6. Proof of Theorem 1.1

The proof will consist of showing that the ⊗-ideals Ker(χ) and N , described in §§ 4 and 5, are
exactly the same. As explained in the proof of Theorem 4.1, working with smooth and proper
dg categories is equivalent to working with smooth and proper dg algebras. In what follows, we
will use the latter approach.

Let A be a dg algebra and M a right dg A-module. We will denote by D(M) its dual,
i.e. the left dg A-module Cdg(A)(M, A). This procedure is (contravariantly) functorial in M
and thus gives rise to a triangulated functor D(A)→D(Aop)op which restricts to an equivalence
Dc(A) ∼−−→Dc(Aop)op. Since the Grothendieck group of a triangulated category is canonically
isomorphic to the one of the opposite category, we obtain then an induced isomorphism
K0(A)F

∼−−→K0(Aop)F .

Proposition 6.1. Let A and B be two smooth and proper dg algebras and let X, Y ∈
Dc(Aop ⊗k B). Then χ(X, Y ) ∈ F agrees with the categorical trace of the correspondence
[Y ⊗L

B D(X)] ∈ HomNChow(k)F
(A, A).

Proof. The A-B-bimodules X and Y give rise, respectively, to correspondences [X] :A→B and
[Y ] :A→B in NChow(k)F . On the other hand, the B-A-bimodule

D(X) := ̂(Aop ⊗k B)pe(X, A
op ⊗k B) ∈ Dc(Bop ⊗k A)

(see Notation 2.1) gives rise to a correspondence [D(X)] :B→A. We can then consider the
composition

[Y ⊗L
B D(X)] :A

[Y ]−−−→B
[D(X)]−−−−−→A. (11)

Recall from [Tab11] that the⊗-unit of NChow(k)F is the ground field k considered as a dg algebra
concentrated in degree zero. Recall also that the dual of A is Aop and that the evaluation map
A⊗k Aop ev−−→ k is given by the class [A] ∈K0(Aop ⊗k A)F of A considered as an A-A-bimodule.
Hence, the categorical trace of the correspondence (11) is the composition

k
[Y⊗L

BD(X)]
−−−−−−−−−→Aop ⊗k A'A⊗k Aop [A]−−−→ k.
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Since the composition operation in NChow(k)F is induced by the derived tensor product of
bimodules, the above composition corresponds to the class in K0(k)F ' F of the complex
of k-vector spaces

(Y ⊗L
B D(X))⊗L

Aop⊗kA
Aop. (12)

Now, note that the complex of k-vector spaces Y ⊗k D(X) carries two actions of Aop and two
actions of B: the actions of Aop are induced by the left action of A on Y and by the right action of
A on D(X), while the actions of B are induced by the right action of B on Y and by the left action
of B on D(X). The coequalizer of the two Aop-actions is given by (Y ⊗k D(X))⊗L

Aop⊗kA
Aop,

which is naturally isomorphic to Y ⊗L
Aop D(X). Similarly, the coequalizer of the two B-actions is

given by (Y ⊗k D(X))⊗L
Bop⊗kB

B, which is naturally isomorphic to Y ⊗L
B D(X). The complex of

k-vector spaces (Y ⊗L
B D(X))⊗L

Aop⊗kA
Aop is therefore the coequalizer of the Aop- and B-actions,

and hence by the above arguments it is naturally isomorphic to Y ⊗L
Aop⊗kB

D(X). By combining
this fact with the natural isomorphism

Y ⊗L
Aop⊗kB

D(X)' ̂(Aop ⊗k B)pe(X, Y ),

we deduce that (12) is naturally isomorphic to ̂(Aop ⊗k B)pe(X, Y ). As a consequence, these two
complexes of k-vector spaces have the same Euler characteristic,∑

i

(−1)i dim Hi((Y ⊗L
B D(X))⊗L

Aop⊗kA
Aop) =

∑
i

(−1)i dim Hi( ̂(Aop ⊗k B)pe(X, Y )).

The natural isomorphisms of k-vector spaces (1) (applied to A=Aop ⊗k B, M =X and N = Y )
then allow us to conclude that the right-hand side of the above equality agrees with χ(X, Y ) ∈ Z.
On the other hand, the left-hand side is simply the class of the complex (12) in the Grothendieck
group K0(k) = Z. As a consequence, this equality holds also on the F -linearized Grothendieck
group K0(k)F ' F , and so the proof is finished. 2

Now, let A and B be two smooth and proper dg algebras. As explained above, the
duality functor induces an isomorphism K0(Aop ⊗k B)F 'K0(Bop ⊗k A)F on the F -linearized
Grothendieck groups. Via the description (9) of the Hom-sets of NChow(k)F , we obtain an
induced duality isomorphism

D(−) : HomNChow(k)F
(A, B) ∼−−→ HomNChow(k)F

(B, A). (13)

Proposition 6.2. The square

HomNChow(k)F
(A, B)⊗F HomNChow(k)F

(A, B)

(13)⊗id '
��

χ(−,−) // F

HomNChow(k)F
(B, A)⊗F HomNChow(k)F

(A, B)
〈−·−〉

// F

is commutative.

Proof. Since the F -linearized Grothendieck group K0(Aop ⊗k B)F is generated by the elements
of shape [X], with X ∈ Dc(Aop ⊗k B), and χ(−,−) and 〈− · −〉 are bilinear, it suffices to show
the commutativity of the above square with respect to the correspondences X = [X] and Y = [Y ].
By Proposition 6.1, χ(X, Y ) = χ(X, Y ) ∈ F agrees with the categorical trace in NChow(k)F of
the correspondence [Y ⊗L

B D(X)] ∈ HomNChow(k)F
(A, A).

On the other hand, since the bilinear pairing 〈− · −〉 is symmetric (as explained in § 5), we
have the equality 〈D(X) · Y 〉= 〈Y ·D(X)〉. By [MT11a, Corollary 4.4], we then conclude that
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the intersection number 〈Y ·D(X)〉 also agrees with the categorical trace of the correspondence
[Y ⊗L

B D(X)]. The proof is then achieved. 2

We now have all the ingredients needed to prove Theorem 1.1. We will show that a
correspondence X ∈ HomNChow(k)F

(A, B) belongs to Ker(χ) if and only if it is numerically
equivalent to zero. Assume first that X ∈KerR(χ) = Ker(χ). Then, by Proposition 6.2, the
intersection number 〈D(Y ) ·X〉 is trivial for every correspondence Y ∈ HomNChow(k)F

(A, B).
The symmetry of the bilinear pairing 〈− · −〉, combined with the isomorphism (13), then allows
us to conclude that X is numerically equivalent to zero.

Now, assume that X is numerically equivalent to zero. Once again, the symmetry of the
bilinear pairing 〈− · −〉, together with the isomorphism (13), implies that χ(Y , X) = 0 for
every correspondence Y ∈ HomNChow(k)F

(A, B). As a consequence,X ∈KerR(χ) = Ker(χ). These
results extend naturally to the pseudo-abelian envelope, and so we conclude that the ⊗-ideals
Ker(χ) and N , described respectively in § 4 and § 5, are exactly the same. This concludes the
proof of Theorem 1.1.

Remark 6.3. Note that the proof of Theorem 1.1 does not make use of the equality KerL(χ) =
KerR(χ). If in the proof we replace KerR(χ) by KerL(χ), we would conclude that this latter
⊗-ideal also agrees with N . As a consequence, KerL(χ) =N = KerR(χ), and so we obtain an
alternative proof of Theorem 4.3.

7. An open question

In this final section, following the suggestion of an anonymous referee, we formulate a precise
question relating the classical theory of motives with the recent theory of noncommutative
motives. Recall from [MT11c, Proposition 3.1] the construction of the commutative diagram

Chow(k)F

��

// Chow(k)F/−⊗Q(1)
R //

��

NChow(k)F

��
Voev(k)F

��

// Voev(k)F/−⊗Q(1)

��

R⊗nil // NVoev(k)F

��
Num(k)F // Num(k)F/−⊗Q(1)

RN
// NNum(k)F

where R, R⊗nil
and RN are F -linear, additive, symmetric monoidal, and fully faithful functors.

Some explanations are in order: Chow(k)F stands for the category of Chow motives, Voev(k)F
stands for the category of Voevodsky’s (pure) motives (i.e. the pseudo-abelian envelope of the
quotient of Chow(k)F by the ⊗-nilpotence ideal), Num(k)F stands for the category of numerical
motives, and NChow(k)F , NVoev(k)F and NNum(k)F stand for their noncommutative analogues.
The categories Chow(k)F/−⊗Q(1), Voev(k)F/−⊗Q(1) and Num(k)F/−⊗Q(1) are the orbit categories
associated to the action of the Tate motive Q(1). Intuitively speaking, the above commutative
diagram formalizes the conceptual idea that all the categories of pure motives can be embedded
into their noncommutative analogues after factoring out by the action of the Tate motive. It is
then natural to ask the following question.

Question. Are the functors R, R⊗nil
and RN essential surjective (and hence equivalences) under

appropriate conditions on k and F?
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It seems unlikely that the answer to this question will be ‘yes’. Another way of approaching
the possible existence of ‘truly noncommutative motives’ was discussed in [MT11b] in terms
of motivic Galois groups of suitable Tannakian categories Num†(k)k and NNum†(k)k of
commutative or noncommutative numerical motives. In [MT11b] the ‘truly noncommutative
motives’ are identified with the category of representations of the kernel of the surjective
homomorphism

Gal(NNum†(k)k) � Ker(t : Gal(Num†(k)k)→Gm)

between motivic Galois groups. At present, it is not known whether this surjective homomorphism
has a nontrivial kernel, but this is likely to be the case.
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