The most deleterious stage of a trematode life cycle occurs in the first intermediate host where the parasite penetrates as a miracidium and asexually multiplicates in sporocysts or rediae. When infection advances, other organs can be occupied with severe effects on host individual health and population dynamics. Existing studies focused on these host/parasite systems are still scarce due to the usual low prevalence in ecosystems. Using cockles (Cerastoderma spp.) and two trematode species (Monorchis parvus and Gymnophallus choledochus) infecting these bivalves as first and second intermediate host, the present work aimed to (1) summarize the most relevant literature and (2) provide new information regarding this host/parasite system, taking advantage of a 21-year monthly database from Banc d'Arguin (France). This long-term monitoring showed that different trematode species display varying host size range preference (6–38 and 31–36 mm for M. parvus and G. choledochus, respectively). The occurrence of coinfection was lower than expected, raising some questions related to parasite interspecific competition. This review improved our understanding of the processes shaping the prevalence and distribution of parasitism. This study highlighted that beyond constant trematode assemblage monitoring, there is a need to identify the main predictors of rediae/sporocysts infection, such as the definitive host dynamics and miracidium infection processes, for future better management of host severe disease and mortality episodes.