We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
Online ordering will be unavailable from 17:00 GMT on Friday, April 25 until 17:00 GMT on Sunday, April 27 due to maintenance. We apologise for the inconvenience.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Given a normal variety Z, a p-form σ defined on the smooth locus of Z and a resolution of singularities , we study the problem of extending the pull-back π*(σ) over the π-exceptional set . For log canonical pairs and for certain values of p, we show that an extension always exists, possibly with logarithmic poles along E. As a corollary, it is shown that sheaves of reflexive differentials enjoy good pull-back properties. A natural generalization of the well-known Bogomolov–Sommese vanishing theorem to log canonical threefold pairs follows.
We prove the following theorem characterizing Du Bois singularities. Suppose that $Y$ is smooth and that $X$ is a reduced closed subscheme. Let $\pi : \tilde{Y} \rightarrow Y$ be a log resolution of $X$ in $Y$ that is an isomorphism outside of $X$. If $E$ is the reduced pre-image of $X$ in $\tilde{Y}$, then $X$ has Du Bois singularities if and only if the natural map $\mathcal{O}_X \rightarrow R \pi_* \mathcal{O}_E$ is a quasi-isomorphism. We also deduce Kollár's conjecture that log canonical singularities are Du Bois in the special case of a local complete intersection and prove other results related to adjunction.
Kollár's conjecture, that log canonical singularities are Du Bois, is proved in the case of Cohen–Macaulay 3-folds. This in turn is used to derive Kodaira vanishing for this class of varieties. Finally it is proved that small deformations of Du Bois singularities are again Du Bois.
Let X be a proper complex variety with Du Bois singularities. Then H(X,C)→ H(X,${\mathcal O}$) is surjective for all i. This property makes this class of singularities behave well with regard to Kodaira type vanishing theorems. Steenbrink conjectured that rational singularities are Du Bois and Kollár conjectured that log canonical singularities are Du Bois. Kollár also conjectured that under some reasonable extra conditions Du Bois singularities are log canonical. In this article Steenbrink‘s conjecture is proved in its full generality, Kollár‘s first conjecture is proved under some extra conditions and Kollár‘s second conjecture is proved under a set of reasonable conditions, and shown that these conditions cannot be relaxed.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.