We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Let f be a germ of a holomorphic diffeomorphism with an irrationally indifferent fixed point at the origin in
${\mathbb C}$
(i.e.
$f(0) = 0, f'(0) = e^{2\pi i \alpha }, \alpha \in {\mathbb R} - {\mathbb Q}$
). Pérez-Marco [Fixed points and circle maps. Acta Math.179(2) (1997), 243–294] showed the existence of a unique continuous monotone one-parameter family of non-trivial invariant full continua containing the fixed point called Siegel compacta, and gave a correspondence between germs and families
$(g_t)$
of circle maps obtained by conformally mapping the complement of these compacts to the complement of the unit disk. The family of circle maps
$(g_t)$
is the orbit of a locally defined semigroup
$(\Phi _t)$
on the space of analytic circle maps, which we show has a well-defined infinitesimal generator X. The explicit form of X is obtained by using the Loewner equation associated to the family of hulls
$(K_t)$
. We show that the Loewner measures
$(\mu _t)$
driving the equation are 2-conformal measures on the circle for the circle maps
$(g_t)$
.
We study convergence of return- and hitting-time distributions of small sets $E_{k}$ with $\unicode[STIX]{x1D707}(E_{k})\rightarrow 0$ in recurrent ergodic dynamical systems preserving an infinite measure $\unicode[STIX]{x1D707}$. Some properties which are easy in finite measure situations break down in this null-recurrent set-up. However, in the presence of a uniform set $Y$ with wandering rate regularly varying of index $1-\unicode[STIX]{x1D6FC}$ with $\unicode[STIX]{x1D6FC}\in (0,1]$, there is a scaling function suitable for all subsets of $Y$. In this case, we show that return distributions for the $E_{k}$ converge if and only if the corresponding hitting-time distributions do, and we derive an explicit relation between the two limit laws. Some consequences of this result are discussed. In particular, this leads to improved sufficient conditions for convergence to ${\mathcal{E}}^{1/\unicode[STIX]{x1D6FC}}{\mathcal{G}}_{\unicode[STIX]{x1D6FC}}$, where ${\mathcal{E}}$ and ${\mathcal{G}}_{\unicode[STIX]{x1D6FC}}$ are independent random variables, with ${\mathcal{E}}$ exponentially distributed and ${\mathcal{G}}_{\unicode[STIX]{x1D6FC}}$ following the one-sided stable law of order $\unicode[STIX]{x1D6FC}$ (and ${\mathcal{G}}_{1}:=1$). The same principle also reveals the limit laws (different from the above) which occur at hyperbolic periodic points of prototypical null-recurrent interval maps. We also derive similar results for the barely recurrent $\unicode[STIX]{x1D6FC}=0$ case.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.