We introduce the concept of infinite cochain sequences and initiate a theory of homological algebra for them. We show how these sequences simplify and improve the construction of infinite coclass families (as introduced by Eick and Leedham-Green) and also how they can be applied to prove that almost all groups in such a family have equivalent Quillen categories. We also include some examples of infinite families of $p$-groups from different coclass families that have equivalent Quillen categories.