The Ross Sea is an area of dense water formation within the Southern Ocean, hence it potentially plays an important role for anthropogenic CO2 sequestration. In order to estimate the penetration of anthropogenic carbon in the Ross Sea from total inorganic carbon (TCO2) measurements carried out in 2002–03 Antarctic Italian Expedition, we applied two independent models. Anthropogenic carbon was present throughout the water column. The highest concentrations were associated with the recently ventilated shelf waters, namely High Salinity Shelf Water (HSSW) and Ice Shelf Water (ISW), due to their recent contact with the atmosphere. The lowest concentrations were observed for Circumpolar Deep Water (CDW), due to its relatively older ventilation age. This water mass intrudes onto the shelf in some parts of the Ross Sea and hence is observed in the sampled section, where it is recognizable for its low O2 and high TCO2 concentrations. The overflow of the dense High Salinity Shelf Water out of the continental slope was observed in the area off Cape Adare. Since this recently formed shelf water contributes to the formation of the Antarctic Bottom Water (AABW), this process represents a pathway for anthropogenic carbon export down to the deep ocean.