Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-23T02:23:39.508Z Has data issue: false hasContentIssue false

Anthropogenic carbon distribution in the Ross Sea, Antarctica

Published online by Cambridge University Press:  29 June 2007

S. Sandrini*
Affiliation:
University of Bologna, Department of Chemistry “G. Ciamician”, via Selmi, 2, 40126 Bologna, Italy
N. Ait-Ameur
Affiliation:
LBDSI-University of Perpignan, 52 Avenue Paul Alduy, Perpignan, France
P. Rivaro
Affiliation:
University of Genoa, Department of Chemistry and Industrial Chemistry, via Dodecaneso, 31, 16146 Genoa, Italy
S. Massolo
Affiliation:
University of Genoa, Department of Chemistry and Industrial Chemistry, via Dodecaneso, 31, 16146 Genoa, Italy
F. Touratier
Affiliation:
LBDSI-University of Perpignan, 52 Avenue Paul Alduy, Perpignan, France
L. Tositti
Affiliation:
University of Bologna, Department of Chemistry “G. Ciamician”, via Selmi, 2, 40126 Bologna, Italy
C. Goyet
Affiliation:
LBDSI-University of Perpignan, 52 Avenue Paul Alduy, Perpignan, France

Abstract

The Ross Sea is an area of dense water formation within the Southern Ocean, hence it potentially plays an important role for anthropogenic CO2 sequestration. In order to estimate the penetration of anthropogenic carbon in the Ross Sea from total inorganic carbon (TCO2) measurements carried out in 2002–03 Antarctic Italian Expedition, we applied two independent models. Anthropogenic carbon was present throughout the water column. The highest concentrations were associated with the recently ventilated shelf waters, namely High Salinity Shelf Water (HSSW) and Ice Shelf Water (ISW), due to their recent contact with the atmosphere. The lowest concentrations were observed for Circumpolar Deep Water (CDW), due to its relatively older ventilation age. This water mass intrudes onto the shelf in some parts of the Ross Sea and hence is observed in the sampled section, where it is recognizable for its low O2 and high TCO2 concentrations. The overflow of the dense High Salinity Shelf Water out of the continental slope was observed in the area off Cape Adare. Since this recently formed shelf water contributes to the formation of the Antarctic Bottom Water (AABW), this process represents a pathway for anthropogenic carbon export down to the deep ocean.

Type
Physical Sciences
Copyright
Copyright © Antarctic Science Ltd 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aït-Ameur, N. & Goyet, C. 2006. Distribution and transport of natural and anthropogenic CO2 in the Gulf of Cadiz. Deep-Sea Research II, 53, 13291343.CrossRefGoogle Scholar
Bates, N.R., Hansell, D.A. & Carlson, C.A. 1998. Distribution of CO2 species, estimates of net community production, and air-sea CO2 exchange in the Ross Sea polynya. Journal of Geophysical Research, 103, 28832896.CrossRefGoogle Scholar
Brewer, P.G. 1978. Direct observation of the oceanic CO2 increase. Geophysical Research Letters, 5, 9971000.CrossRefGoogle Scholar
Broecker, W.S. 1974. “NO”, a conservative water-mass tracer. Earth and Planetary Science Letters, 23, 100107.CrossRefGoogle Scholar
Broecker, W.S. & Peng, T.H. 1982. Tracers in the sea. Palisades, NY: Eldigio Press, Lamont-Doherty Geological Observatory, 690 pp.Google Scholar
Broecker, W.S., Takahashi, T. & Peng, T.-H. 1985. Reconstruction of past atmospheric CO2 from the chemistry of the contemporary ocean: an evaluation. Washington, DC: Department of Energy, Technical Report TRO 20, 79 pp.Google Scholar
Budillon, G., Fusco, G. & Spezie, G. 2000. A study of surface heat fluxes in the Ross Sea (Antarctica). Antarctic Science, 12, 243254.CrossRefGoogle Scholar
Budillon, G., Gremes Cordero, S. & Salusti, E. 2002. On the dense water spreading off the Ross Sea shelf (Southern Ocean). Journal of Marine Systems, 35, 207227.CrossRefGoogle Scholar
Budillon, G., Tucci, S., Artegiani, A. & Spezie, G. 1999. Water masses and suspended matter characteristics of the western Ross Sea. In Faranda, F.M., Guglielmo, L. & Ianora, A., eds. Ross Sea ecology. Milan: Springer, 6393.Google Scholar
Budillon, G., Pacciaroni, M., Cozzi, S., Rivaro, P., Catalano, G., Ianni, C. & Cantoni, C. 2003. An optimum multiparameter mixing analysis of the shelf waters in the Ross Sea. Antarctic Science, 15, 105118.CrossRefGoogle Scholar
Bullister, J.L. & Weiss, R.F. 1988. Determination of CCl3F and CCl2F2 in seawater and air. Deep Sea Research, 35, 839853.CrossRefGoogle Scholar
Carmack, E.C. 1977. Water characteristics of the Southern Ocean south of the Polar Front. In Angel, M. & Deacon, G., eds. A voyage of discovery. 70th Anniversary volume. Supplement to Deep-Sea Research. Elmsford, NY: Pergamon Press, 1542.Google Scholar
Chen, C.-T.A. 1982. On the distribution of anthropogenic CO2 in the Atlantic and Southern oceans. Deep-Sea Research, 29, 563580.CrossRefGoogle Scholar
Chen, C.-T.A. 1994. Some indications of excess CO2 penetration near Cape Adare off the Ross Sea. La Mer, 32, 167172.Google Scholar
Chen, C.T. & Drake, E.T. 1986. Carbon dioxide increase in the atmosphere and oceans and possible effects on climate. Annual Review of Earth and Planetary Sciences, 14, 201235.CrossRefGoogle Scholar
Chen, C.-T.A. & Millero, F.J. 1979. Gradual increase of oceanic CO2. Nature, 277, 205206.CrossRefGoogle Scholar
Coatanoan, C., Goyet, C., Gruber, N., Sabine, C.L. & Warner, M. 2001. Comparison of two approaches to quantify anthropogenic CO2 in the ocean: results from the northern Indian Ocean. Global Biogeochemical Cycles, 15, 1125.CrossRefGoogle Scholar
Dickson, A.G. 1981. An exact definition of total alkalinity, and a procedure for the estimation of alkalinity and total inorganic carbon from titration data. Deep-Sea Research, 28, 609623.CrossRefGoogle Scholar
Dickson, A.G. & Goyet, C., eds. 1994. Handbook of methods for analysis of the various parameters of the carbon dioxide system in sea water. version 2. London: DOE. ORNL/CDIAC-74.CrossRefGoogle Scholar
Dinniman, M.S., Klinck, J.M. & Smith, W.O. Jr 2003. Cross-shelf exchange in a model of the Ross Sea circulation and biogeochemistry. Deep-Sea Research II, 50, 31033120.CrossRefGoogle Scholar
Doney, S.C. & Hecht, M.W. 2001. Antarctic Bottom Water formation and deep water chlorofluorocarbon distributions in a global ocean climate model. Journal of Physical Oceanography, 32, 16421666.2.0.CO;2>CrossRefGoogle Scholar
Edmond, J.M. 1970. High precision determination of titration alkalinity and total carbon dioxide content of seawater by potentiometric titration. Deep-Sea Research, 17, 737750.Google Scholar
England, M.H. & Maier-Reimer, E. 2001. Using chemical tracers to assess ocean models. Reviews of Geophysics, 39, 2970.CrossRefGoogle Scholar
Friis, K. 2006. A review of marine anthropogenic CO2 definitions: introducing a thermodynamic approach based on observations. Tellus, B58, 215.CrossRefGoogle Scholar
Gordon, A.L. & Tchernia, P. 1972. Waters of the continental margin off Adélie coast, Antarctica. Antarctic Research Series, 19, 5669.Google Scholar
Gordon, L.I., Codispoti, L.A., Jennings, J.C. Jr, Millero, F.J., Morrison, J.M. & Sweeney, C. 2000. Seasonal evolution of hydrographic properties in the Ross Sea, Antarctica, 1996–1997. Deep-Sea Research II, 47, 30953117.CrossRefGoogle Scholar
Gouretsky, V. 1999. The large-scale thermohaline structure of the Ross Gyre. In Spezie, G. & Manzella, G.M.R., eds. Oceanography of the Ross Sea, Antarctica. Berlin: Springer, 77100.CrossRefGoogle Scholar
Goyet, C., Coatanoan, C., Eischeid, G., Amaoka, T., Okuda, K., Healy, R. & Tsunogai, S. 1999. Spatial variation of total alkalinity in the northern Indian Ocean: a novel approach for the quantification of anthropogenic CO2 in seawater. Journal of Marine Research, 57, 135163.CrossRefGoogle Scholar
Grasshoff, K. 1983. Determination of oxygen. In Grasshoff, K., Ehrhardt, M. & Kremlig, K., eds. Methods of sea water analysis. Weinheim: Verlag Chemie, 6172.Google Scholar
Gruber, N. 1998. Anthropogenic CO2 in the Atlantic Ocean. Global Biogeochemical Cycles, 12, 165191.CrossRefGoogle Scholar
Hoppema, M., Fahrbach, E., Stoll, M.H.C. & De Baar, H.J.W. 1998. Increase of carbon dioxide in the bottom water of the Weddell Sea, Antarctica. Marine Chemistry, 59, 201210.CrossRefGoogle Scholar
Hoppema, M., Roether, W., Bellerby, R.G.J. & De Baar, H.J.W. 2001. Direct measurements reveal insignificant storage of anthropogenic CO2 in the abyssal Weddell Sea. Geophysical Research Letters, 28, 17471750.CrossRefGoogle Scholar
Hoppema, M., De Baar, H.J.W., Fahrbach, E. & Bellerby, R.G.J. 2002. Renewal time and transport of unventilated Central Intermediate Water of the Weddell Sea derived from biogeochemical properties. Journal of Marine Research, 60, 677697.CrossRefGoogle Scholar
IPCC. 2001. Climate change 2001: the scientific basis. Contribution of Working Group I to the third assessment report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press, 881 pp.Google Scholar
Jacobs, S.S. & Comiso, J.C. 1989. Sea ice and oceanic processes on the Ross Sea continental shelf. Journal of Geophysical Research, 94, 1819518211.CrossRefGoogle Scholar
Jacobs, S.S. & Giulivi, C.F. 1998. Interannual ocean and sea ice variability in the Ross Sea. Antarctic Research Series, 75, 135150.Google Scholar
Jacobs, S.S. & Giulivi, C.F. 1999. Thermohaline data and ocean circulation on the Ross Sea continental shelf. In Spezie, G. & Manzella, G.M.R., eds. Oceanography of the Ross Sea, Antarctica. Berlin: Springer, 316.CrossRefGoogle Scholar
Jacobs, S.S., Amos, A.F. & Bruchhausen, P.M. 1970. Ross Sea oceanography and Antarctic Bottom Water formation. Deep-Sea Research, 17, 935962.Google Scholar
Jacobs, S.S., Fairbanks, R.G. & Horibe, Y. 1985. Origin and evolution of water masses near the Antarctic continental margin: evidence from H218O = H216O ratios in seawater. Antarctic Research Series, 43, 5985.CrossRefGoogle Scholar
Kurtz, D.D. & Bromwich, D.H. 1983. Satellite observed behavior of the Terra Nova Bay polynya. Journal of Geophysical Research, 88, 97179722.CrossRefGoogle Scholar
Kurtz, D.D. & Bromwich, D.H. 1985. A recurring atmospherically-forced polynya in Terra Nova Bay. Antarctic Research Series, 43, 177201.CrossRefGoogle Scholar
Locarnini, R.A. 1994. Water masses and circulation in the Ross Sea Gyre environs. PhD thesis, Texas A & M University, College Station, 87 pp. [Unpublished].Google Scholar
Lo Monaco, C., Metzl, N., Poisson, A., Brunet, C. & Schauer, B. 2005a. Anthropogenic CO2 in the Southern Ocean: distribution and inventory at the Indian-Atlantic boundary (World Ocean Circulation Experiment line I6). Journal of Geophysical Research, 110, doi: 10.1029/2004JC002643.CrossRefGoogle Scholar
Lo Monaco, C., Goyet, C., Metzl, N., Poisson, A. & Touratier, F. 2005b. Distribution and inventory of anthropogenic CO2 in the Southern Ocean: comparison of three data-based methods. Journal of Geophysical Research, 110, doi: 10.1029/2004JC002571.CrossRefGoogle Scholar
Mackas, D.L., Denman, K.L. & Bennett, A.F. 1987. Least squares multiple tracer analysis of water mass composition. Journal of Geophysical Research, 92, 29072918.CrossRefGoogle Scholar
Matear, R.J. & Hirst, A.C. 1999. Climate change feedback on the future oceanic CO2 uptake. Tellus, B51, 722733.CrossRefGoogle Scholar
Meredith, M.P., Watson, A.J., Van Scoy, K.A. & Haine, T.W.N. 2001. Chlorofluorocarbon-derived formation rates of the deep and bottom waters of the Weddell Sea. Journal of Geophysical Research, 106, 28992919.CrossRefGoogle Scholar
Orsi, A.H., Johnson, G.C. & Bullister, J.L. 1999. Circulation, mixing and production of Antarctic bottom water. Progress in Oceanography, 43, 55109.CrossRefGoogle Scholar
Orsi, A.H., Smethie, W.M. & Bullister, J.L. 2002. On the total input of Antarctic waters to the deep ocean: a preliminary estimate from chlorofluorocarbon measurements. Journal of Geophysical Research, 107, 31.131.14.CrossRefGoogle Scholar
Park, Y.-H., Charriaud, E., Ruiz Pino, D. & Jeandel, C. 1998. Seasonal and interannual variability of the mixed layer properties and steric height at station KERFIX, southwest of Kerguelen. Journal of Marine Systems, 17, 571586.CrossRefGoogle Scholar
Pérez, F.F., Álvarez, M. & Ríos, A.F. 2002. Improvements on the back-calculation technique for estimating anthropogenic CO2. Deep Sea Research, 49, 859875.CrossRefGoogle Scholar
Poisson, A. & Chen, C.T.A. 1987. Why is there little anthropogenic CO2 in Antarctic Bottom Water. Deep Sea Research, 34, 12551275.CrossRefGoogle Scholar
Price, J. & Baringer, M. 1994. Outflows and deep water production by marginal seas. Progresses in Oceanography, 33, 161200.CrossRefGoogle Scholar
Price, J.F., Mooers, C.N.K. & Van Leer, J.C. 1978. Observation and simulation of storm-induced mixed-layer deepening. Journal of Physical Oceanography, 8, 582599.2.0.CO;2>CrossRefGoogle Scholar
Rintoul, S.R., Hughes, C.W. & Olbers, D. 2001. The Antarctic Circumpolar Current system. In Siedler, G., Church, J. & Gould, J., eds. Ocean circulation and climate. San Diego, CA: Academic Press, 271302.Google Scholar
Rivaro, P., Frache, R., Bergamasco, A. & Hohmann, R. 2003. Dissolved Oxygen, NO and PO as tracers for Ross Sea Ice Shelf Water overflow. Antarctic Science, 15, 399404.CrossRefGoogle Scholar
Rivaro, P., Budillon, G., Massolo, S., Bergamasco, A. & Spezie, G. 2004b. Chlorofluorocarbon signature of the shelf waters in the western Ross Sea. SCAR Open Conference Abstracts, Bremen, Germany, 2531.07.Google Scholar
Rivaro, P., Bergamasco, A., Budillon, G., Frache, R., Hohmann, R., Massolo, S. & Spezie, G. 2004a. Chlorofluorocarbon distribution in the Ross Sea water masses. Chemistry and Ecology, 20, S29S41.CrossRefGoogle Scholar
Rodman, M. & Gordon, A. 1982. Southern Ocean bottom waters in the Australia–New Zealand sector. Journal of Geophysical Research, 87, 57715778.CrossRefGoogle Scholar
Sabine, C.L. & Feely, R.A. 2001. Comparison of recent Indian Ocean anthropogenic CO2 estimates with a historical approach. Global Biogeochemical Cycles, 15, 3142.CrossRefGoogle Scholar
Sabine, C.L., Key, R.M., Johnson, K.M., Millero, F.J., Poisson, A., Sarmiento, J.L., Wallace, D.W.R & Winn, C.D. 1999. Anthropogenic CO2 inventory of the Indian Ocean. Global Biogeochemical Cycles, 13, 179198.CrossRefGoogle Scholar
Sabine, C.L., Feely, R.A., Key, R.M., Bullister, J.L., Millero, F.J., Lee, K., Peng, T.H., Tilbrook, B., Ono, T. & Wong, C.S. 2002. Distribution of anthropogenic CO2 in the Pacific Ocean. Global Biogeochemical Cycles, 16, art. 1083.CrossRefGoogle Scholar
Sabine, C.L., Feely, R.A., Gruber, N., Key, R.M., Lee, K., Bullister, J.L., Wanninkhof, R., Wong, C.S., Wallace, D.W.R., Tilbrook, B., Millero, F.J., Peng, T.-H., Kozyr, A. & Ono, T., Rios, A. F. 2004. The oceanic sink for anthropogenic CO2. Science, 305, 367371.CrossRefGoogle ScholarPubMed
Sarmiento, J. L., Gruber, N. 2002. Sinks for anthropogenic carbon. Physics Today, 55, 3036.CrossRefGoogle Scholar
Sarmiento, J.L., Hughes, T.M.C. & Stouffer, R.J. 1998. Simulated response of the ocean carbon cycle to anthropogenic climate warming. Nature, 393, 245249.CrossRefGoogle Scholar
Shiller, A.M. 1981. Calculating the oceanic CO2 increase: a need for caution. Journal of Geophysical Research, 86, 11 08311 088.CrossRefGoogle Scholar
Smethie, W.M., Chipman, D., Swift, J. & Koltermann, K. 1988. Chlorofluoromethanes in the Arctic Mediterranean seas: evidence for formation of bottom water in the Eurasian Basin and deep-water exchange through Fram Strait. Deep Sea Research, 35, 347369.CrossRefGoogle Scholar
Sweeney, C. 2003. The annual cycle of surface CO2 and O2 in the Ross Sea: a model for gas exchange on the continental shelves of Antarctica. Antarctic Research Series, 78, 295312.CrossRefGoogle Scholar
Sweeney, C., Hansell, D.A., Carlson, C.A., Codispoti, L.A., Gordon, L.I., Marra, J., Millero, F.J., Smith, W.O. & Takahashi, T. 2000a. Biogeochemical regimes, net community production and carbon export in the Ross Sea, Antarctica. Deep-Sea Research II, 47, 33693394.CrossRefGoogle Scholar
Sweeney, C., Smith, W.O., Hales, B., Bidigare, R.R., Carlson, C.A., Codispoti, L.A., Gordon, L.I., Hansell, D.A., Millero, F.J., Park, M.-O. & Takahashi, T. 2000b. Nutrient and carbon removal ratios and fluxes in the Ross Sea, Antarctica. Deep-Sea Research II, 47, 33953421.CrossRefGoogle Scholar
Tomczak, M. 1981. A multiparameter extension of temperature/salinity diagram techniques for the analysis of non-isopycnal mixing. Progresses in Oceanography, 10, 147171.CrossRefGoogle Scholar
Tomczak, M. & Large, D.G.B. 1989. Optimum multiparameter analysis of mixing in the thermocline of the Eastern Indian Ocean. Journal of Geophysical Research, 94, 16 14116 149.CrossRefGoogle Scholar
Touratier, F. & Goyet, C. 2004a. Definition, properties, and Atlantic Ocean distribution of the new tracer ‘TrOCA’. Journal of Marine Systems, 46, 181197.CrossRefGoogle Scholar
Touratier, F. & Goyet, C. 2004b. Applying the new TrOCA approach to assess the distribution of anthropogenic CO2 in the Atlantic Ocean. Journal of Marine Systems, 46, 181197.CrossRefGoogle Scholar
Touratier, F., Azouzi, L. & Goyet, C. 2007. CFC-11, Δ14C and 3H tracers as a means to assess anthropogenic CO2 concentrations in the ocean. Tellus, 59B, 318375.CrossRefGoogle Scholar
Touratier, F., Goyet, C., Coatanoan, C. & Andrié, C. 2005. Assessments of anthropogenic CO2 distribution in the tropical Atlantic Ocean. Deep Sea Research I, 52, 22752284.CrossRefGoogle Scholar
Van Woert, M.L. 1999. Wintertime dynamics of the Terra Nova Bay polynya. Journal of Geophysical Research, 104, 77537769.CrossRefGoogle Scholar
You, Y. & Tomczak, M. 1993. Thermocline circulation and ventilation in the Indian Ocean derived from water mass analysis. Deep-Sea Research, 40, 1356.CrossRefGoogle Scholar