This paper demonstrates how learning the structure of a Bayesian network, often used to predict and represent causal pathways, can be used to inform policy decision-making.
We show that Bayesian networks are a rigorous and interpretable representation of interconnected factors that affect the complex environment in which policy decisions are made. Furthermore, Bayesian structure learning differentiates between proximal or immediate factors and upstream or root causes, offering a comprehensive set of potential causal pathways leading to specific outcomes.
We show how these causal pathways can provide critical insights into the impact of a policy intervention on an outcome. Central to our approach is the integration of causal discovery within a Bayesian framework, which considers the relative likelihood of possible causal pathways rather than only the most probable pathway.
We argue this is an essential part of causal discovery in policy making because the complexity of the decision landscape inevitably means that there are many near equally probable causal pathways. While this methodology is broadly applicable across various policy domains, we demonstrate its value within the context of educational policy in Australia. Here, we identify pathways influencing educational outcomes, such as student attendance, and examine the effects of social disadvantage on these pathways. We demonstrate the methodology’s performance using synthetic data and its usefulness by applying it to real-world data. Our findings in the real example highlight the usefulness of Bayesian networks as a policy decision tool and show how data science techniques can be used for practical policy development.