Homologues of the pea SBP65, a late embryogenesis abundant (LEA) biotinylated protein that behaves as a putative sink for the free vitamin biotin during embryo development, were characterized biochemically in various plant species, including soybean, lentil, peanut, rape, cabbage, carrot and sugarbeet. Based on sequence homologies, the genome of Arabidopsis thaliana contains a gene putatively encoding a homologue of pea SBP65. These proteins exhibit two remarkable features. First, they only accumulate in seeds, particularly during late stages of embryo development. The results strongly suggest that these seed-specific biotinylated proteins belong to the class of plant proteins called seed maturation proteins, which are presumed to play major roles in embryo development. Secondly, covalent attachment of biotin occurs at a lysine residue within a conserved motif of (V/M)GKF, which shows no resemblance to the highly conserved AMKM tetrapeptide that houses the target lysine residue in the well-characterized biotin-dependent carboxylases and decarboxylases. These findings highlight novel structural features for protein biotinylation.