In this paper we examine different problems regarding complete intersection varieties of high multidegree in a smooth complex projective variety. First we prove an existence theorem for jet differential equations that generalizes a theorem of Diverio. Then we show how one can deduce hyperbolicity for generic complete intersections of high multidegree and high codimension from the known results on hypersurfaces. Finally, motivated by a conjecture of Debarre, we focus on the positivity of the cotangent bundle of complete intersections, and prove some results towards this conjecture; among other things, we prove that a generic complete intersection surface of high multidegree in a projective space of dimension at least four has an ample cotangent bundle.