We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
Online ordering will be unavailable from 17:00 GMT on Friday, April 25 until 17:00 GMT on Sunday, April 27 due to maintenance. We apologise for the inconvenience.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We study the error analysis of the weak Galerkin finite element method in [24, 38] (WG-FEM) for the Helmholtz problem with large wave number in two and three dimensions. Using a modified duality argument proposed by Zhu and Wu, we obtain the pre-asymptotic error estimates of the WG-FEM. In particular, the error estimates with explicit dependence on the wave number k are derived. This shows that the pollution error in the broken H1-norm is bounded by under mesh condition k7/2h2≤C0 or (kh)2+k(kh)p+1≤C0, which coincides with the phase error of the finite element method obtained by existent dispersion analyses. Here h is the mesh size, p is the order of the approximation space and C0 is a constant independent of k and h. Furthermore, numerical tests are provided to verify the theoretical findings and to illustrate the great capability of the WG-FEM in reducing the pollution effect.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.