We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Let $G$ be a finite group and ${\rm\Gamma}$ a $G$-symmetric graph. Suppose that $G$ is imprimitive on $V({\rm\Gamma})$ with $B$ a block of imprimitivity and ${\mathcal{B}}:=\{B^{g};g\in G\}$ a system of imprimitivity of $G$ on $V({\rm\Gamma})$. Define ${\rm\Gamma}_{{\mathcal{B}}}$ to be the graph with vertex set ${\mathcal{B}}$ such that two blocks $B,C\in {\mathcal{B}}$ are adjacent if and only if there exists at least one edge of ${\rm\Gamma}$ joining a vertex in $B$ and a vertex in $C$. Xu and Zhou [‘Symmetric graphs with 2-arc-transitive quotients’, J. Aust. Math. Soc.96 (2014), 275–288] obtained necessary conditions under which the graph ${\rm\Gamma}_{{\mathcal{B}}}$ is 2-arc-transitive. In this paper, we completely settle one of the cases defined by certain parameters connected to ${\rm\Gamma}$ and ${\mathcal{B}}$ and show that there is a unique graph corresponding to this case.
Let A be a finite dimensional algebra (not necessarily associative) over a field, whose automorphism group acts transitively. It is shown that K = GF(2) and A is a Kostrikin algebra. The automorphism group is determined to be a semi-direct product of two cyclic groups. The number of such algebras is also calculated.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.