The aim of this study was to construct risk maps for the presence of the dominant Leishmania infantum vector, P. perniciosus, and check its usefulness (a) to predict the risk of canine leishmaniasis and (b) to define effective leishmaniasis control measures. We obtained data for the presence/absence of P. perniciosus at 167 sampling sites in southern Spain, from which we also took a series of ecological and climate-related data. The probability of P. perniciosus presence was estimated as a function of these environmental variables and generated spatial risk maps. Altitude, land use and drainage hole features (with or without PVC piping) were retained as the only predictors for the distribution of this vector species. Drainage hole features in retaining walls, with or without PVC piping, produce significant variations in the probability of P. perniciosus presence, varying from 2·3 to 91·8% if PVC piping is absent and from 0·4 to 66·5% if all holes have PVC piping. It was concluded that the use of PVC piping in drainage holes could help to reduce leishmaniasis transmission.