We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
Online ordering will be unavailable from 17:00 GMT on Friday, April 25 until 17:00 GMT on Sunday, April 27 due to maintenance. We apologise for the inconvenience.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Recently the authors introduced the concept of Markov decision drift processes. A Markov decision drift process can be seen as a straightforward generalization of a Markov decision process with continuous time parameter. In this paper we investigate the existence of stationary average optimal policies for Markov decision drift processes. Using a well-known Abelian theorem we derive sufficient conditions, which guarantee that a ‘limit point' of a sequence of discounted optimal policies with the discounting factor approaching 1 is an average optimal policy. An alternative set of sufficient conditions is obtained for the case in which the discounted optimal policies generate regenerative stochastic processes. The latter set of conditions is easier to verify in several applications. The results of this paper are also applicable to Markov decision processes with discrete or continuous time parameter and to semi-Markov decision processes. In this sense they generalize some well-known results for Markov decision processes with finite or compact action space. Applications to an M/M/1 queueing model and a maintenance replacement model are given. It is shown that under certain conditions on the model parameters the average optimal policy for the M/M/1 queueing model is monotone non-decreasing (as a function of the number of waiting customers) with respect to the service intensity and monotone non-increasing with respect to the arrival intensity. For the maintenance replacement model we prove the average optimality of a bang-bang type policy. Special attention is paid to the computation of the optimal control parameters.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.